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Diffraction of light from a small hole in a two-level quantum-well screen
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Quantum-mechanical linear-response theory is used to calculate the diffraction of light from a small hole in
a thin flat screen. The field-induced dynamics of the charged particles (electrons) is obtained by modeling a
screen without a hole as a two-level quantum well, with jellium behavior for the in-plane electron motion. Local-
field corrections are calculated in a self-field approximation to a coupled-antenna theory. Particular attention is
devoted to frequency resonance effects in the local field. A generalization to a screen with a hole is suggested,
replicating the homogeneous jellium surface electron density by a space varying density in the vicinity of the
hole. Quantum-mechanical expressions for the electric dipole moment p(ω), the magnetic dipole moment m(ω),
and the electric quadrupole moment Q(ω) of the so-called aperture current density are derived and the light
scattering from these moments is studied. From the general theory results for p(ω), m(ω), and Q(ω) in three
cases are given: (i) no induced electron motion perpendicular to the plane of the screen [leading to p(ω) = 0],
(ii) resonance excitation of the electron system, and (iii) a circular hole. This paper presents an extension of the
quantum-mechanical diffraction theory developed in two recent papers of ours [J. Jung and O. Keller, Phys. Rev.
A 90, 043830 (2014); 92, 012122 (2015)].
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I. INTRODUCTION

In a seminal theoretical paper Bethe studied the diffraction
of electromagnetic waves by a small hole in a plane, infinitely
thin and perfectly conducting screen [1]. In particular, he gave
an explicit solution for a circular hole of small radius com-
pared with the wavelength of the assumed monochromatic
incident field. Small for Bethe meant that the electric and
magnetic fields can be considered as constant over the hole.
In consequence, the incident wave need not be a plane. Bethe
came to the conclusion that, in the far field of the hole, the
diffracted field may be considered as owing to an electric and
a magnetic dipole, the first pointing in the direction of the nor-
mal to the screen and the second lying in the plane of the hole.
By a careful examination, Bouwkamp revealed that the correct
(under the given assumption of infinite conductivity) electric
field near and in the hole differs appreciable from that follow-
ing from Bethe’s theory [2,3]. The result of Bethe’s approach
is completely different from that of Kirchhoff’s method [4,5].

Although the Bethe-Bouwkamp theory may give a fair
description of the diffracted field from a hole in a metal
screen at long wavelengths (on the order of microwave fre-
quencies and below), the assumption of perfect conductivity
certainly is a strong idealization in general, e.g., at optical
frequencies. The interaction of the incoming electromagnetic
field with the charged particles (electrons, ions) of a screen
with finite conductivity inevitably will give rise to frequency
dispersion in the diffracted radiation. In more recent studies
such material dispersion effects have almost always been
accounted for by using macroscopic electrodynamics and a
frequency-dependent dielectric constant (tensor) (see, e.g.,
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Refs. [6–15] and references therein). While material disper-
sion effects perhaps may be accounted for by macroscopic
electrodynamics for sufficiently thick screens, macroscopic
approaches certainly fail for screens so thin that quantum-size
phenomena play a role. The quantum description in any case
requires that the unphysical assumption of vanishing screen
thickness must be abandoned.

In the present theoretical work we study the diffraction of
an electromagnetic field from a screen so thin and a hole so
small that quantum mechanics is needed for the description of
the induced electron dynamics in the screen, in particular in
the vicinity of the hole. In two previous paper of ours [16,17]
we established a quantum-mechanical diffraction theory for a
small hole in a metallic (or semiconducting) screen dominated
by diamagnetic field-matter interaction. Part of the analysis in
the aforementioned papers dealt with a quantum-well screen
so thin that only one bound electron level exist in relation to
the electron confinement potential perpendicular to the screen.
The in-plane essentially two-dimensional electron dynamics
was treated in the jellium approximation. The diamagnetic
interaction gives a frequency dependence of the microscopic
conductivity tensor proportional to ω−1 [and (ω + i/τ )−1

if losses are taken into account in a relaxation-time (τ )
approximation].

From a conceptual point of view it is interesting to ex-
tend the quantum-mechanical diffraction theory to two-level
quantum-well screens for the following (interrelated) reasons.
(i) Two-level dynamics (necessarily including the paramag-
netic contribution to the microscopic conductivity tensor)
leads to a pronounced frequency resonance in a diffraction
spectrum. (ii) In general, the resonance frequency does not
coincide with the Bohr transition frequency between the
two quantum levels because of local-field corrections. (iii)
The self-consistent field driving the electron dynamics in
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the screen deviates from the incident field precisely because
of local-field effects, and this fact is a crucial difficulty for
the Bethe-Bouwkamp approach. (iv) For a two-level quan-
tum well the local-field correction can be calculated quite
accurately in a self-field approximation [18] using the so-
called coupled-antenna theory [19] (Secs. II B–II E and III A).
(v) In the Bethe-Bouwkamp theory and related macroscopic
works, the (oscillating) induced screen current is assumed to
possess no component in the normal direction to the screen,
near (and at) local-field resonance, the dynamic flow of the
electrons perpendicular to the screen plane certainly cannot
be neglected [except in the case of (near) normal incidence of
the incoming field] (see Secs. II E and III B).

Although scattering and diffraction of electromagnetic ra-
diation often are treated as different phenomena, they have
a common physical basis, namely, field-matter interaction. In
many diffraction problems the role of this interaction is com-
pletely hidden or appears in a conspicuous indirect manner.
For example, in all classical studies of the diffraction from
large apertures (holes) in opaque, infinitely thin metal screens
the interaction appears only in the form of screen surface cur-
rent densities needed to satisfy idealized boundary conditions
of the electromagnetic field. The close connection between
scattering and diffraction occurs in a manifest manner if one
compares the scattering from mesoscopic (or microscopic)
objects to the diffraction from subwavelength holes. In both
cases a systematic multipole description (in which most often
only lowest-order multipoles are kept) is appropriate. The use
of dipole moments to describe small-hole diffraction can be
traced back to Rayleigh [20].

In the framework of quantum mechanics, a major part of
the present work is devoted to a multipole description of the
diffraction from a small hole in a two-level quantum-well
screen with in-plane jellium dynamics. Notwithstanding the
fact that our quantum approach conceptually is very different
from the classical methods of Bethe and Bouwkamp, some
similarities appear in the initial steps of the formulation. Thus,
we connect the multipole expansion scheme to the dynamics
in the effective optical aperture, a concept defined as the in-
plane screen area in which the difference � ≡ σ cau − σ cau

∞ be-
tween the causal microscopic conductivity tensors of identical
screens with (σ cau) and without a hole (σ cau

∞ ) is nonvanishing,
essentially. Also in Bethe’s analysis a comparison of diffrac-
tion from screens with and without a hole is central. Hence, in
a zeroth-order approximation the field on a screen with a hole
satisfies the standard boundary conditions everywhere on the
screen but not in the hole [1].

The determination of the aperture response � in the fre-
quency (ω) domain is done under the justified assumption that
the electromagnetic field’s in-plane wave number q‖ is (van-
ishing) small compared to all relevant electron wave numbers
k‖ in the two-dimensional jellium. Once an explicit expression
has been obtained for � (Sec. III B), a systematic multipole
expansion scheme can be implemented. In this scheme two
smallness parameters enter, viz., q0d (�1) and q0a (�1),
where d is the effective width of the quantum well, a the
effective hole size, and q0 = ω/c the vacuum wave number
of the field. In the Bethe-Bouwkamp theory the physically
important expansion in q0d is lost because d = 0 from the
onset.

In previous works on small-hole diffraction going beyond
the first-order electric dipole (ED) approximation, only a
magnetic dipole (MD) term appears in the second order. In
general, also an electric quadrupole (EQ) term is present in
the second order. The EQ and MD parts are given as the
symmetric and antisymmetric parts of the first-order moment
of the source [19,21] (here effective aperture) current density
distribution. To determine these parts, a three-dimensional
analysis is required (see Appendix C).

II. INTERNAL ELECTRODYNAMICS OF A SCREEN
WITHOUT A HOLE

A. Microscopic linear-response theory: General aspects
and approximations

Let us assume that a screen (with or without a hole) is ex-
cited by an incident electric field, defined by E0(r; ω) ≡ E0(r)
in the space-frequency (r-ω) domain. In the framework of mi-
croscopic linear-response theory, the induced self-consistent
motions of the charged particles in the screen imply that
the microscopic electric field E(r; ω) ≡ E(r) in the arbitrary
space point r is given by the spatially nonlocal connection
[16,22]

E(r) =
∫ ∞

−∞
�(r, r′) · E0(r′)d3r ′, (1)

where �(r, r′; ω) ≡ �(r, r′) is the so-called field-field re-
sponse tensor. This tensor satisfies an integral equation

�(r, r′) = Uδ(r − r′) +
∫ ∞

−∞
K(r, r′′) · �(r′′, r′)d3r ′′, (2)

with a tensorial kernel K(r, r′; ω) ≡ K(r, r′) given by

K(r, r′) = iμ0ω

∫ ∞

−∞
G(r − r′′) · σ (r′′, r′)d3r ′′. (3)

In Eq. (2), U is the unit tensor and δ the Dirac delta function.
In Eq. (3), σ (r, r′; ω) ≡ σ (r, r′) is the linear microscopic
conductivity tensor and G(R; ω) ≡ G(R) (with R = r − r′)
is the well-known (standard) dyadic Green’s function of
vacuum. Since σ (r, r′) is nonvanishing only when the two
space points r and r′ are located inside the screen (in a
quantum-mechanical context, the region where the particle
probability density effectively is nonvanishing), it appears
from a combination of Eqs. (2) and (3) that once the loop
equation for �(r, r′) (both points r and r′ located inside the
screen) has been solved, �(r, r′) can be determined on every
pairs of points (r and r′) in the entire space. For observation
points r inside the screen �(r, r′) is most often called the
local-field tensor in the literature [cf. Eq. (1)]. Outside the
screen �(r, r′) relates to the scattered field E(r) − E0(r).
Thus,

E(r)−E0(r) =
∫

screen
K(r, r′′) · �(r′′, r′) · E0(r′)d3r ′′d3r ′,

(4)

as one realizes by inserting Eq. (2) into Eq. (1). As indicated,
the integrations run over coordinates located inside the screen,
a circumstance which becomes obvious from an equivalent
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FIG. 1. (a) Planar infinitely extended screen. The z direction
is placed perpendicular to the screen. (b) Two-level quantum-well
potential for the electron dynamics perpendicular to the screen. The
Fermi level is assumed to be in between the two quantum levels.

expression one may write for the scattered field, viz.,

E(r) − E0(r)

= iμ0ω

∫
screen

G(r − r′′) · σ (r′′, r′) · E(r′)d3r ′′d3r ′. (5)

The linear-response theory analysis summarized above is
quite general in the sense that it holds for screens with and
without holes (apertures) and for scattering objects (media)
of arbitrary forms. It is only necessary that the scattering
medium in question possesses translationally invariant elec-
trodynamic properties in time, a demand which requires that
σ = σ (r, r′, t − t ′) in the space-time (r-t) domain, and that
it is not necessary to take into account modifications rooted
in the fact that the induced longitudinal field is not a dy-
namical variable [19,23]. (In theoretical studies, for instance,
of spatial photon localization, photon tunneling [24], and
Lamb shifts [19] carried out on the basis of photon wave
mechanics or its quantum electrodynamic covering theory, it
is needed to distinguish between transverse and longitudinal
electrodynamics.) In the framework of the present theory, the
distinction between various scattering media lies solely in the
expression adopted for σ (r, r′; ω).

Let us now consider a metallic or semiconducting planar
(infinitely extended) screen without a hole and let us assume
that it is so thin that it behaves like a two-level quantum well
(QW) for the particle (electron) dynamics in the direction
perpendicular to the screen (see Fig. 1). In the present study
we may, without loss of essential generality, treat the in-plane
electron dynamics in the framework of the jellium model.
The translational invariance of the in-plane electrodynamic
properties means that

σ∞(r, r′) = σ∞(r‖ − r′
‖, z, z

′), (6)

where, in a Cartesian (x, y, z) coordinate system, the z di-
rection is placed perpendicular to the screen, so r‖ = (x, y)
[and r′

‖ = (x ′, y ′)]. To underline that we are dealing with a
screen without a hole a subscript ∞ has been added to σ . A
two-dimensional (2D) spatial Fourier-integral transformation
of σ∞(R‖, z, z′) (with R‖ = r‖ − r′

‖) gives the representation

σ∞(z, z′; q‖) =
∫ ∞

−∞
σ∞(R‖, z, z′)e−iq‖·R‖d2R‖ (7)

and, as we will soon realize, the subsequent calculations can
(conveniently) be carried out in the mixed 2D wave-vector–
space (q‖−z) domain. In this domain the vacuum Green’s
tensor G(r − r′) = G(r‖ − r′

‖, z − z′) = G(R‖, Z) (with

Z = z − z′) has a 2D Fourier amplitude G(Z; q‖) whose
explicit dyadic form is well known, viz., the disk-contracted
representative [22]

G(Z; q‖) = −q2
0δ(Z)ẑẑ + i

2κ⊥q2
0

eiκ⊥|Z|

× [
q2

0 U − q‖q‖ − κ2
⊥ẑẑ − (q‖ẑ + ẑq‖)κ⊥sgnZ

]
,

(8)

where

κ⊥ = (
q2

0 − q2
‖
)1/2

�(q0 − q‖) + i
(
q2

‖ − q2
0

)1/2
�(q‖ − q0).

(9)

In the equations above, � and sgn designate the unit-step and
signum functions, respectively, q0 = ω/c is the vacuum wave
number of light, and ẑ is a unit vector in the z direction.

For what follows it is sufficient to calculate σ∞(z, z′; q‖)
in the long-wavelength limit (q‖ → 0). In consequence,
all electronic intersubband transitions (k‖, n) ⇔ (k′

‖, n
′) =

(k‖ + q‖, n′) are considered vertical. Hence, the energy mo-
mentum conservation condition for the elementary processes,
i.e.,

h̄ω + εn − εn′ + h̄2

2m
k2
‖ − h̄2

2m
|k‖ + q‖|2 = 0, (10)

is reduced to ε′
n − εn = h̄ω, giving the Bohr condition for

εn′ > εn. For εn′ 
= εn Eq. (10) describes the kinematics in
inelastic Compton scattering.

Readers less interested in the technical details of the local-
field calculation leading up to the resonance condition for
excitation in the two-level QW system (Secs. II B–II E) may
start reading Sec. II F.

B. Field-field response tensor

Based on the procedure used in the so-called coupled-
antenna theory developed by one of the present authors (O.K.)
two decades ago [25] and described in details in Refs. [19,22],
we now show that it is possible to obtain an exact analytical
expression for the field-field response tensor associated with a
two-level QW screen without a hole. Although we will start
from the long-wavelength (q‖ → 0) approximation for the
conductivity tensor, it is possible to generalize the procedure
to an arbitrary number of bound QW levels and to go beyond
the q‖ → 0 approximation and use the general conductivity
tensor σ∞(z, z′; q‖, ω).

A similar method has been used previously to calculate
the field-field response for a two-level QW sheet, dominated
by the paramagnetic part σ P of the conductivity tensor σ

and placed on top of a substrate [18]. After the publication
of Ref. [18], it was shown that also the diamagnetic part
σ D of the conductivity tensor could be written as a sum of
(r, r′)-separable tensor products [22], a circumstance which
is basic to the coupled-antenna theory in its general form. The
separable form of σ D was first obtained by an indirect argu-
ment, viz., the demand that the total conductivity tensor σ =
σ P + σ D must vanish in the static limit, i.e., σ∞(r, r′, ω →
0) = 0, and then by a direct calculation [22]. Below, the long-
wavelength expression for the total conductivity tensor is used
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in the calculation of the field-field response tensor. The quite
significant progress achieved in using σ∞ instead of σ P

∞ is
discussed in Appendix A, where also the following expression
of the long-wavelength conductivity tensor is obtained:

σ∞(z, z′; q‖ → 0, ω) = a∞(ω)(U − ẑẑ)φ(z)φ(z′)

+ b∞(ω)ẑẑ�(z)�(z′). (11)

The functions φ and � are related to the orthonormalized
time-independent electron wave functions ψn(u), n = 1, 2, of

the lower (n = 1) and upper (n = 2) energy eigenstates (both
wave functions of our symmetric QW taken without loss of
generality as real) as follows:

φ(u) = ψ1(u)ψ2(u), (12)

�(u) = ψ1(u)
dψ2(u)

du
− ψ2(u)

dψ1(u)

du
. (13)

The explicit expressions for a∞(ω) and b∞(ω) are given in
Appendix A.

It appears from Eqs. (3) and (7) that the kernel for the
infinitely extended jellium screen K∞ is given by

K∞(R‖, z, z′) = iμ0ω

∫ ∞

−∞
G(r‖ − r′′

‖ , z − z′′) · σ∞(r′′
‖ − r′

‖, z
′′, z′)d2r ′′

‖ dz′′

= iμ0ω

∫ ∞

−∞
G(R‖ − r′′

‖ + r′
‖, z − z′′) · σ∞(r′′

‖ − r′
‖, z

′′, z′)d2r ′′
‖ dz′′ (14)

and hence represented by

K∞(z, z′; q‖) = iμ0ω

∫ ∞

−∞
G(z − z′′; q‖) · σ∞(z′′, z′; q‖)dz′′

(15)

in the mixed wave-vector and space domain. By rewriting the
long-wavelength expression for σ∞ [Eq. (11)] in the form

σ∞(z, z′; q‖ → 0) = a∞(ω)φ(z′)(U − ẑẑ) · (U − ẑẑ)φ(z)

+ b∞(ω)�(z′)ẑẑ · ẑẑ�(z), (16)

it is realized that the tensorial kernel is an inner product of
tensors of z and z′, respectively. Thus,

K∞(z, z′; q‖) = F∞(z; q‖) · �∞(z′), (17)

where

F∞(z; q‖) = iμ0ω

∫
QW

G(z − z′; q‖) · [(U − ẑẑ)a∞(ω)φ(z′)

+ ẑẑb∞(ω)�(z′)]dz′ (18)

and

�∞(z′) = (U − ẑẑ)φ(z′) + ẑẑ�(z′). (19)

In Eq. (18) we have stressed that the integration runs over the
z′ values inside the QW screen.

The fact that the kernel in Eq. (15) is a function of the
difference r‖ − r′

‖ (=R‖) only dictates that the same must
be the case for �∞ [cf. the structural form of Eq. (2) for
K = K(r‖ − r′′

‖ , z, z
′′)]. In the (q‖, z) domain, �∞(z, z′, q‖)

consequently satisfies the integral equation

�∞(z, z′; q‖) = Uδ(z − z′) +
∫ ∞

−∞
K∞(z, z′′; q‖)

·�∞(z′′, z′; q‖)dz′′. (20)

By inserting Eq. (17) into Eq. (20) (and letting the reference
to q‖ be kept implicit) one obtains

�∞(z, z′) = Uδ(z − z′) + F∞(z) · N∞(z′), (21)

where

N∞(z′) =
∫

QW
�∞(z′′) · �∞(z′′, z′)dz′′. (22)

By reinserting Eq. (21) into Eq. (22) and by solving thereafter
the resulting equation for N∞(z′), one gets

N∞(z′) =
[

U −
∫

QW
�∞(z′′) · F∞(z′′)dz′′

]−1

· �∞(z′)

(23)

and finally

�∞(z, z′) = Uδ(z − z′) + F∞(z) ·
[

U −
∫

QW
�∞(z′′)

·F∞(z′′)dz′′
]−1

· �∞(z′). (24)

The factorization of the kernel K∞(z, z′; q‖) thus has enabled
one to achieve an exact analytical expression for the field-field
response tensor.

By now we have obtained a complete determination of the
self-consistent electric field in the (q‖, z) domain, viz.,

E∞(z; q‖) = E0(z; q‖) + F∞(z; q‖)

·
[

U −
∫

QW
�∞(z′) · F∞(z′; q‖)dz′

]−1

·
∫

QW
�∞(z′) · E0(z′; q‖)dz′, (25)

with F∞(z; q‖) and �(z′) given by Eqs. (18) and (19).

C. Causal conductivity tensor

It is well known that the microscopic Maxwell-Lorentz
equations lead to the following scattering formula in the
(z; q‖) domain:

E∞(z; q‖) = E0(z; q‖) + iμ0ω

∫
QW

G(z − z′; q‖)

·J∞(z′; q‖)dz′. (26)
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A comparison of this equation to Eq. (25), with Eq. (18)
inserted, readily gives one an explicit expression for the
current density in our two-level quantum-well screen, namely,

J∞(z; q‖) =[(U − ẑẑ)a∞(ω)φ(z) + ẑẑb∞(ω)�(z)]

·
[

U −
∫

QW
�∞(z′) · F∞(z′; q‖)dz′

]−1

·
∫

QW
�∞(z′) · E0(z′; q‖)dz′. (27)

In the microscopic theory of light diffraction the so-called
causal conductivity tensor σ cau plays a central role [16]. In
general, this tensor relates the current density in a given
point in the scattering medium to the incident electric field
in this and surrounding points. For a medium exhibiting two-
dimensional invariance in space (perpendicular to a chosen z

direction), the causal conductivity has a (q‖, z) representation.
A comparison of the general causal constitutive equation

J∞(z; q‖) =
∫ ∞

−∞
σ cau

∞ (z, z′; q‖) · E0(z′; q‖)dz′ (28)

and Eq. (27) gives one the following expression for σ cau
∞ :

σ cau
∞ (z, z′; q‖) = [(U − ẑẑ)a∞(ω)φ(z) + ẑẑb∞(ω)�(z)]

·
[

U −
∫

QW
�∞(z′) · F∞(z′; q‖)dz′

]−1

·�∞(z′). (29)

Since �∞ is a diagonal tensor it can be interchanged with
the [· · · ]−1 tensor, and in the view of Eq. (16), the relation
between σ∞(z, z′; q‖) and σ cau

∞ (z, z′; q‖) is obtained,

σ cau
∞ (z, z′; q‖) = σ∞(z, z′; q‖ → 0) · L∞(q‖), (30)

where

L∞(q‖) =
[

U −
∫

QW
�(z) · F∞(z; q‖)dz

]−1

(31)

is what we call the local-field factor, a frequency-dependent
[L∞(q‖) ≡ L∞(q‖; ω)] tensor, here for a screen without a
hole.

D. Local-field corrections in the self-field approximation

It is remarkable that the local-field factor is independent
of z and z′. The dependence of L∞(q‖) on q‖ solely appears
via the vacuum Green’s function G(z − z′; q‖) [cf. Eq. (18)].
Since the integrations in Eqs. (18) and (31) run over z and z′
coordinates inside the quantum well, one may approximate
G(Z; q‖) by its self-field term and if needed add a Taylor
expansion of its nonlocal part. In the self-field approximation
for the Green’s tensor

G(z − z′) = −q−2
0 δ(z − z′)ẑẑ, (32)

even the q‖ dependence of the local-field factor disappears.
By inserting Eq. (32) into Eq. (18) one obtains

F∞(z) = (iε0ω)−1b∞(ω)�(z)ẑẑ. (33)

The term proportional to a∞(ω) in F∞ has disappeared be-
cause ẑẑ · (U − ẑẑ) = 0. With F∞(z) given by Eq. (33) we

get∫
QW

�∞(z) · F∞(z)dz = ẑẑ
iε0ω

b∞(ω)
∫

QW
�2(z)dz (34)

and thus a local-field factor

LSF
∞ =

[
U − ẑẑ

iε0ω
b∞(ω)

∫
QW

�2(z)dz

]−1

, (35)

where the superscript SF is meant to remind the reader that the
result refers to the self-field approximation. Since the tensor in
the square brackets of Eq. (35) is in diagonal form, its inverse
is readily determined. Hence,

LSF
∞ = U − ẑẑ +

[
1 − b∞(ω)

iε0ω

∫
QW

�2(z)dz

]−1

ẑẑ. (36)

By combining Eqs. (16), (30), and (36) one finally ob-
tains the following expression for the causal conductivity
tensor in the long-wavelength limit (q‖ → 0) and self-field
approximations:

σ cau
∞ (z, z′; q‖ → 0) = a∞(ω)(U − ẑẑ)φ(z)φ(z′)

+ b∞(ω)

1 − b∞(ω)
iε0ω

∫
QW �2(z)dz

ẑẑ�(z)�(z′).

(37)

In general, the causal conductivity tensor [σ cau(r, r′)] is dif-
ferent from the conductivity tensor itself [σ (r, r′)] because of
spatially nonlocal electromagnetic and electronic correlations
effects (see Refs. [16,17]). In the self-field approximation only
electronic correlations remain, and it appears from Eq. (37)
that these in the long-wavelength limit for the conductivity
tensor only make the zz components of the two diagonal
conductivity tensors different. The ratio, given by

σ cau
∞,zz(z, z′; q‖ → 0)

σ∞,zz(z, z′; q‖ → 0)
=

[
1 − b∞(ω)

iε0ω

∫
QW

�2(z)dz

]−1

,

(38)

is, as we already know, independent of z and z′ and may
become very large at a certain frequency called the local-
field resonance frequency. As we will soon realize, local-field
resonances play an important role in light diffraction both
from two-level quantum screens without and with a small
hole.

E. The ED-ED sheet current density: Resonance condition

Let us return to the constitutive relation in Eq. (28) and
recognize that a two-level QW screen in its response to
light usually will behave like an electric dipole absorber and
radiator [a so-called ED-ED sheet (screen)] [16]. This means
that the variation of the incoming electric field across the QW
is negligible, E0(z′, q‖) � E0(0, q‖)[≡E0(q‖)], and that only
the integral of the sheet current density, viz.,

JS
∞(q‖) =

∫
QW

J∞(z; q‖)dz, (39)

is needed. The quantity JS
∞(q‖) is called the surface (S)

current density [16], here given in the 2D wave-vector (q‖)
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domain. In the ED-ED approximation the constitutive relation
in Eq. (28) is reduced to the algebraic form

JS
∞(q‖) = S∞(q‖) · E0(q‖), (40)

where

S∞(q‖) =
∫

QW
σ cau

∞ (z, z′; q‖)dz′dz, (41)

with S∞(q‖) ≡ SED-ED
∞ , has been named the causal surface

(or ED-ED) conductivity tensor [16]. In the long-wavelength
limit (q‖ → 0) and within the self-field approximation this
quantity is independent of q‖, since σ cau

∞ is. By inserting
Eq. (37) in Eq. (41) and utilizing the orthogonality of the wave
functions of the two QW levels, expressed as∫

QW
φ(z)dz = 0, (42)

one obtains

S∞(ω) =
b∞(ω)[

∫
QW �(z)dz]2

1 − b∞(ω)
iε0ω

∫
QW �2(z)dz

ẑẑ (43)

in the limit q‖ → 0. When S∞ is independent of q‖ a 2D
Fourier transform of Eq. (40) shows that the surface current
density in the space-frequency (r‖−ω) domain is given by

JS
∞(r‖; ω) = ẑ

b∞(ω)[
∫

QW �(z)dz]2

1 − b∞(ω)
iε0ω

∫
QW �2(z)dz

ẑ · E0(r‖; ω). (44)

It appears from this equation that the surface current density
everywhere (for all r‖) is perpendicular to the plane of the
screen and of course only driven by the z component of the
incoming field E0

z (r‖, z = 0; ω).
The local-field factor (36), and thus also the surface current

density, is resonantly enhanced for frequencies ωres
∞ , satisfying

the condition

b∞
(
ωres

∞
)

iε0ωres∞

∫
QW

�2(z)dz = 1. (45)

In a two-level quantum well there is only one resonance
frequency for the local field, and to examine the relation
between the Bohr transition frequency ωB = (ε2 − ε1)/h̄ and
ωres

∞ we need the explicit expression for b∞(ω). Limiting
ourselves to the low-temperature limit (T → 0 K), we obtain
(see Appendix A)

b∞(ω) = ie2h̄2ω

2πm

(
εF − ε1

ε2 − ε1

)
1

(h̄ω)2 − (ε2 − ε1)2
, (46)

where ε1 and ε2 are the eigenenergies of the lower and upper
QW states, respectively, and εF is the Fermi energy of the
electrons. Above, the Fermi energy was assumed to satisfy
ε1 < εF < ε2, so only the lower level is occupied in the field
unperturbed state. In the usual notation, −e, m, and h = 2πh̄

denote the electron charge and mass, and Planck’s constant
respectively. By combining Eqs. (45) and (46) it readily
appears that the local-field resonance frequency is given by

ωres
∞ =

[
ω2

B + β∞
ωB

]1/2

, (47)
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FIG. 2. (a) Frequency dependence of |S∞,zz|. The calculation is
for a two-level GaAs quantum-well screen of thickness d = 130 Å
and it is carried out using infinite barrier wave functions. The energy
distance between the lower (occupied ε1) and upper (unoccupied ε2)
quantum state is h̄ωB = ε2 − ε1 = 100 meV. The distance of ε1 to
the Fermi level εF is varied from 10 to 90 meV in steps of 20 meV. If
we set εF − ε1 = 50 meV the resulting conduction electron density
per unit area (surface electron density) is N 0

∞ = 1.39 × 1012cm−2

and we find the local-field resonance at h̄ωres
∞ ≈ 216 meV. Note

that |S∞,zz| becomes singular at h̄ωres
∞ because no damping has been

introduced. The dashed line displays the Bohr energy at h̄ωB . The
resonance energy in |S∞,zz| is h̄ωB if self-field effects are neglected.
(b) Local-field resonance h̄ωres

∞ for the GaAs quantum-well screen as
function of εF − ε1. Note how the resonance significantly blueshifts
as εF rises.

with the abbreviation

β∞ = e2(εF − ε1)

2πε0mh̄

∫
QW

�2(z)dz. (48)

In Fig. 2 we present a numerical calculation of the frequency
dependence of the magnitude of the zz component of the
causal surface conductivity [Eq. (43)] for a two-level GaAs
quantum-well screen.

F. Overview of physical principles

A qualitative account of the key results of Secs. II A–II E
is given below and illustrated in schematic form in Fig. 3.
For brevity, the references to the field’s wave-vector compo-
nent parallel to the plane of the screen (q‖) and the angular
frequency (ω) are left out of the various vector and tensor
arguments.
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FIG. 3. Schematic diagrams showing the fundamental electron-
light interactions entering the calculation of σ∞(z, z′): (a) the RW
loop, (b) the ARW loop, and (c) the RW loop for σ cau

∞ (z, z′). The
incident field line is denoted by a zero. Upward electron transitions
[|1〉 → |2〉 and |1〉 → |res〉] are indicated by white arrows and
downward transitions [|2〉 → |1〉 and |res〉 → |1〉] by black arrows.

The field-induced current density in the two-level QW
screen can be written in two forms, viz.,

J∞(z) =
∫

QW
σ∞(z, z′) · E∞(z′)dz′ (49)

and

J∞(z) =
∫

QW
σ cau

∞ (z, z′) · E0(z′)dz′. (50)

A quantum-mechanical calculation in the random-phase ap-
proximation [19,26–29] gives an expression for the conductiv-
ity σ∞(z, z′). From an experimental point of view the external
field E0 is known, not the local field E∞. Thus, in order to
determine J∞(z) we seek to replace σ∞(z, z′) by the causal
conductivity σ cau

∞ (z, z′). The word causal refers to the fact that
J∞(z) is delayed in time with respect to E0(z) (in the space-
time domain). The relation between J∞(z) and E∞(z) does
not satisfy a strict causality criterion. To replace σ∞(z, z′) by
σ cau

∞ (z, z′). a determination of the field-field response tensor
�∞(z, z′) is needed [cf. Eq. (1)]; �∞(z, z′) is calculated in
Sec. II B and σ CAU

∞ (z, z′) is obtained in Secs. II C–II E in
various approximations.

A determination of σ∞(z, z′) requires that a coherent sum
of electronic loops between the lower (|1〉) and upper (|2〉)
states is calculated. Two fundamental types of loops are
needed to determine �∞(z, z′) (see Fig. 3). Near resonance
the so-called rotating-wave (RW) loop [30] dominates [see
Fig. 3(a)]: An electron in state |1〉 is excited (stimulated ab-
sorption) to state |2〉 by the sum of the incident field (denoted
by a zero in Fig. 3) and the field emitted in the downward
transition (|2〉 → |1〉). Away from the resonance a signifi-
cant contribution related to the so-called counterrotating-wave
(CRW) [30] loop is present [see Fig. 3(b)]: an electron is
deexcited from state |2〉 to |1〉 by stimulated emission. The
field inducing this transition is the sum of the incoming field

and the field emitted in the upward (|1〉 → |2〉) transition. In
a self-consistent theory both loops are present [30].

In the calculation of σ cau
∞ (z, z′), only the incident field

drives the two loops. The loops now are between the ground
state |1〉 and the so-called resonant state |res〉. Here |res〉
represents a blueshift of the excited state |2〉. The blueshift
originates in the local-field correction. Figure 3(c) shows the
RW loop. We urge the reader to draw the CRW loop for
σ cau

∞ (z, z′).

III. INTERNAL ELECTRODYNAMICS OF A SCREEN
WITH A SMALL HOLE

A. Causal surface conductivity: Partially heuristic approach

An ab initio calculation of the causal conductivity tensor
[σ cau

∞ (r‖, r′; ω) ≡ σ cau
∞ (r‖, r′

‖, z, z
′; ω)] for a jellium quantum-

well screen with a hole is a formidable (if not impossible) task
taking us far beyond the scope of this paper. Let us therefore,
in a partially heuristic manner, try to generalize the result
given in Eq. (37) for a screen without a hole. This result was
achieved by retaining only the self-field part of the vacuum
Green’s tensor and by using the long-wavelength (q‖ → 0)
expression for the conductivity tensor.

A hint of how to make the generalization is obtained by a
certain rewriting of the low-temperature (T → 0) expressions
for a∞(ω) [Eq. (A28)] and b∞(ω) [Eq. (A11)]. In the T → 0
limit the electron density of a jellium screen with an arbitrary
number of bound QW levels is given by

n0
∞(z; T → 0) = m

πh̄2

∑
n

(εF − εn)|ψn(z)|2, εn < εF ,

(51)

where ψn(z) is the normalized wave function of energy
eigenstate number n. As indicated, the summation only runs
over occupied stats (εn < εF ). For our two-level system (with
ε1 < εF < ε2) we get

n0
∞(z; T → 0) = m

πh̄2 (εF − ε1)|ψ1(z)|2 (52)

and hence a related surface electron density

N 0
∞ =

∫
QW

n0
∞(z; T → 0)dz = m

πh̄2 (εF − ε1). (53)

The result in Eq. (53) allows one to rewrite the expressions for
a∞(ω) [Eq. (A28)] and b∞(ω) [Eq. (A11)] as follows:

a∞(ω) = πiω

(
eh̄2

m

)2 1

(h̄ω)2 − (ε2 − ε1)2

(
N 0

∞
)2

ε2 − ε1
(54)

and

b∞(ω) = iω

2

(
eh̄2

m

)2 1

(h̄ω)2 − (ε2 − ε1)2

N 0
∞

ε2 − ε1
. (55)

Our alternative formula for b∞(ω) and a∞(ω) contain the
position (r‖) -independent surface electron density (and its
square) as factors.

For a screen with a hole we heuristically replace N 0
∞ by

the corresponding position-dependent surface electron density
N 0(r‖). This quantity, which depends on r‖ in the vicin-
ity of the hole, was studied (calculated) on the basis of
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a two-dimensional microscopic extinction-theorem approach
in Ref. [17]. Our generalized expressions for a(r‖; ω) and
b(r‖; ω) thus are given by

a(r‖; ω) = πiω

(
eh̄2

m

)2 1

(h̄ω)2 − (ε2 − ε1)2

[N 0(r‖)]2

ε2 − ε1
(56)

and

b(r‖; ω) = iω

2

(
eh̄2

m

)2 1

(h̄ω)2 − (ε2 − ε1)2

N 0(r‖)

ε2 − ε1
. (57)

Hence, for a two-level QW screen with a hole we suggest to
apply the expression for the causal conductivity tensor

σ cau(r‖, r′
‖, z, z

′; ω) = δ(r‖ − r′
‖)σ̃ cau(r‖, z, z′; ω), (58)

where

σ̃ cau(r‖, z, z′; ω) = a(r‖; ω)(U − ẑẑ)φ(z)φ(z′)

+ b(r‖; ω)

1 − b(r‖;ω)
iε0ω

∫
QW �2(z)dz

ẑẑ�(z)�(z′).

(59)

B. Effective aperture current density

In the framework of linear microscopic theory the screen
current density is given by

J(r‖, z; ω) =
∫

QW

∫ ∞

−∞
σ cau(r‖, r′

‖, z, z
′; ω)

·E0(r′
‖, z

′; ω)d2r ′
‖dz′ (60)

in the most general situation. However, in our heuristic ap-
proach the connection between J and E0 is spatially local in
the coordinate parallel to the plane of the screen [see Eq. (58)].
The screen thus appears as an inhomogeneous medium in
these coordinates with a constitutive equation of the form

J(r‖, z; ω) =
∫

QW
σ̃ cau(r‖, z, z′; ω) · E0(r‖, z′; ω)dz′. (61)

The causal conductivity tensor σ cau(r, r′; ω) consists of para-
and diamagnetic parts. The diamagnetic part is spatially local
in the r‖ (r′

‖) coordinates and a function of the surface
electron density N 0(r‖) [cf. Eqs. (56), (57), and (59)]. The
paramagnetic part always is spatially nonlocal in form and in
the heuristic approach it is this part which we treat in an ap-
proximate sense. In frequency regions where the diamagnetic
response is the dominating one we expect the expression given
for σ̃ cau(r‖, z, z′; ω) in Eq. (59) to be quite accurate. The local
structure of the diamagnetic response in the z (z′) coordinate
is broken due to the fact that only two energy levels are taken
into account in the z dynamics of the electrons.

Based on general considerations [16], it turns out to be
useful to introduce the so-called effective aperture A current
density

JA(r‖, z; ω) ≡ J(r‖, z; ω) − J∞(r‖, z; ω), (62)

defined as the difference between the current densities of
identical screens with and without a hole. By identical we
mean that, apart for the electronic disturbance caused by the
hole, the optical properties of the screens are exactly alike. It is

+

H A I

=

0 0

R
TS

E 
0

B 
0

p-, m-, Q- photons

Sca�. Photon Triplet Photon

(a)

(b)

(d)

(c)

FIG. 4. Schematic illustrations of (a) the division of the current
density of a screen with a hole (H) into infinite screen (I) and
effective aperture (A) parts, (b) the multipole aperture scattering, and
(c) the triplet photon scattering. (d) It is indicated that the p(E0

⊥),
m(E0

⊥, B0
‖), and Q(E0

⊥, B0
‖) moments are induced by the components

of the incoming electric field perpendicular to the two-level QW (E0
⊥)

and the magnetic field parallel to the screen (B0
‖).

further assumed that the incident electromagnetic field giving
rise to the current densities is the same in the two cases.

It is obvious that the constitutive equation relating JA to E0

is given by

JA(r‖, z; ω) =
∫

QW
�(r‖, z, z′; ω) · E0(r‖, z′; ω)dz′, (63)

where

�(r‖, z, z′; ω) = [a(r‖; ω) − a∞(ω)](U − ẑẑ)φ(z)φ(z′)

+ [b̃(r‖; ω) − b̃∞(ω)]ẑẑ�(z)�(z′), (64)

with the abbreviation

b̃(r‖; ω) = b(r‖; ω)

1 − b(r‖;ω)
iε0ω

∫
QW �2(z)dz

(65)

and an analogous one for b̃∞(ω), obtained by the replacement
b(r‖; ω) ⇒ b∞(ω) in Eq. (65).

The qualitative idea behind the calculations (Secs. III A
and III B) of the current density J(z) inside a two-level QW
with a hole H is presented in schematic form in Fig. 4. The
field-unperturbed surface electron density N 0(r‖) varies in the
vicinity of the hole, and this fact makes a direct calculation
of the diffraction pattern difficult. The H current density is
divided into a sum of contributions from a screen without a
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hole I and a so-called effective aperture A. The I surface
electron density N 0

∞ is constant across the screen, whereas
the A surface electron density various across A. As indicated
in Fig. 4(a), the A area is larger than the geometrical size of
the hole in general. This fact is associated with two physical
effects: (i) the finite penetration depth of the field in matter
and (ii) a quantum electronic density variation near a vacuum-
matter interface. In a photon formulation the amplitude scat-
tering from I [incident (0), reflected (R), and transmitted (T)
field] may be described as consisting of triplet photons [31]
[Figs. 4(b) and 4(c)]. If the hole is sufficiently small, it is
useful to expand the incident field induced A current density
in a multipole series. The first three terms relate to electric
dipole (p), magnetic dipole (m), and electric quadropole
(Q) moments of the A current density; p, m, and Q and
the scattered fields from these moments are calculated in
Secs. III C–III E, and IV A–IV C. The key results, relating
p, m, and Q to the components of the incoming electric
and magnetic fields, are discussed in Sec. V. Readers not
interested in the detailed calculations may skip Secs. III C–
III E and IV A–IV C (in a first reading of the paper).

C. Multipole expansion of aperture electrodynamics

Since the characteristic wavelength of the incident elec-
tromagnetic fields, which are of interest in this work, always
are assumed to be much larger that the thickness of the QW
screen, it is possible to treat the internal screen (aperture) elec-
trodynamics on the basis of a multipole expansion scheme.
Below we will concentrate on the two lowest-order terms in
the scheme.

Let us start by dividing the aperture current density into its
components parallel (‖) and perpendicular (⊥) to the plane of
the screen, i.e.,

JA(r‖, z; ω) = JA
‖ (r‖, z; ω) + JA

⊥(r‖, z; ω) (66)

in the space-frequency domain. From Eqs. (63) and (64) we
readily get the explicit expressions

JA
‖ (r‖, z; ω) = [a(r‖; ω) − a∞(ω)]φ(z)

×
∫

QW
φ(z′)E0

‖(r‖, z′; ω)dz′ (67)

and

JA
⊥(r‖, z; ω) = [b̃(r‖; ω) − b̃∞(ω)]�(z)

×
∫

QW
�(z′)E0

⊥(r‖, z′; ω)dz′, (68)

where E0
‖ = (U − ẑẑ) · E0 and E0

⊥ = ẑẑ · E0.
Next we employ a moment expansion of the aperture

current density in the z coordinate, i.e.,

JA(r‖, z; ω) = δ(z)
∫

QW
JA(r‖, z; ω)dz

− dδ(z)

dz

∫
QW

zJA(r‖, z; ω)dz + · · · , (69)

and a Taylor series expansion (in z) of the incident electric
field, viz.,

E0(r‖, z; ω) = E0(r‖, 0; ω) + z
∂E0

∂z
(r‖, 0; ω) + · · · . (70)

By inserting Eqs. (69) and (70) into Eqs. (67) and (68)
and making use of the orthogonality of the two QW states
[Eq. (42)] ∫

QW
φ(z)dz = 0 (71)

and their opposite parity∫
QW

z�(z)dz = 0, (72)

one obtains the following result correct to second order:

JA
⊥(r‖, z; ω|ED) = δ(z)[b̃(r‖; ω) − b̃∞(r‖; ω)]

×
[∫

QW
�(z)dz

]2

E0
⊥(r‖, 0; ω) (73)

and

JA
‖ (r‖, z; ω|EQ-MD) = − dδ(z)

dz
[a(r‖; ω) − a∞(r‖; ω)]

×
[∫

QW
zφ(z)dz

]2 ∂E0
‖

∂z
(r‖, 0; ω).

(74)

The expression given in Eq. (73) reflects the fact that the
component of the aperture current density perpendicular to
the plane of the QW screen (JA

⊥) relates to an approximation
where the effective aperture is both an ED absorber and
radiator [16]. In JA

⊥ there is no term where the aperture
behaves like an EQ plus MD in both absorption and radiation.
Furthermore, mixed terms corresponding to an ED (absorp-
tion) and an EQ plus MD (radiation), or an EQ plus MD
(absorption) and ED (radiation) do not exist. As the readers
may prove to themselves, such terms vanish because of the
orthogonality [Eq. (71)] and opposite parity [Eq. (72)] of the
two neighboring QW levels. Mixed terms also are absent in
the aperture current density’s component along the plane of
the screen (JA

‖ ). The lowest-order terms in JA
‖ is of the EQ

plus MD type [Eq. (74)]. We have thus reached the conclusion
that the effective aperture current density to second order in a
multipole expansion consists of an ED current density per-
pendicular to the plane of the screen plus an EQ-MD current
density parallel to this plane. As required, JA

⊥(r‖, z; ω|ED)
and JA

‖ (r‖, z; ω|EQ-MD) are proportional to E0
⊥(r‖, 0; ω) and

E0
‖(r‖, 0; ω), respectively.

It follows from the analysis in Appendix B that the inte-
grals appearing in Eqs. (73) and (74) satisfy the relation∫

QW
�(z)dz = 2m

h̄2 (ε1 − ε2)
∫

QW
zφ(z)dz. (75)

We already know that the electrodynamics related to the
electron motion perpendicular to the plane of the screen is
subjected to a local-field correction. Within the framework of
the self-field approximation, where the zz component of the
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space-dependent local-field factor for a screen with a hole is
given by

LSF
zz (r‖; ω) =

[
1 − b(r‖; ω)

iε0ω

∫
QW

�2(z)dz

]−1

(76)

and the right-hand side of Eq. (36) equals the zz component of
the space-independent local-field factor for a screen without a
hole [LSF

∞,zz(ω)], it is readily shown that

b̃(r‖; ω) − b̃∞(ω) = LSF
∞,zz(ω)LSF

zz (r‖, ω)[b(r‖; ω) − b∞(ω)].
(77)

The role of the local-field correction appears in explicit form
in Eq. (77).

In the general multipole formalism the second-rank tensor∫ ∞
−∞ J(r)r d3r relates to the sum of electric quadrupole and

magnetic dipole dynamics, and the symmetric [ 1
2

∫ ∞
−∞(Jr +

rJ)d3r] and antisymmetric [ 1
2

∫ ∞
−∞(Jr − rJ)d3r] parts relate

to the EQ and MD dynamics, respectively. Hence, it is rea-
sonable to characterize the QW dynamics proportional to∫

QW zJA(r‖, z; ω)dz [Eq. (69)], as EQ-MD dynamics (the z

dynamics is described via the terms in the third column of Jr
integrated over z).

Since

b(r‖; ω) − b∞(ω) ∝ N 0(r‖) − N 0
∞, (78)

it is the difference between the electron surface density for
screens with and without a hole which in the present (approx-
imate) approach determines the size of the effective aperture
for the dynamics perpendicular to the plane of the screen.
Because

a(r‖; ω) − a∞(ω) ∝ [N 0(r‖)]2 − (
N 0

∞
)2

= [
N 0(r‖) − N 0

∞
][
N 0(r‖) + N 0

∞
]
, (79)

the effective aperture related to the in-plane dynamics essen-
tially is the same. This result, which need not hold in general,
is a consequence of our heuristic replacement N 0

∞ → N 0(r‖).

D. Magnetic dipole moment

Although we have classified part of the scattering from the
effective optical aperture as magnetic dipole scattering, we
have not yet given an explicit expression for the magnetic
dipole moment of the hole. In order to calculate this moment
we use the fact that the antisymmetric second-rank tensor
JA

MD(ω), given in Eq. (C3), can be written in the dyadic
cross-product form [19]

JA
MD(ω) = U × m(ω), (80)

where

m(ω) = 1

2

∫ ∞

−∞
r × JA(r; ω)d3r (81)

is the sought-for magnetic dipole moment of the optical
aperture. From the rewriting

m(ω) = 1

2

∫ ∞

−∞
r × [JA

‖ (r; ω) + JA
⊥(r; ω)]d3r

= 1

2

∫ ∞

−∞
(xx̂ + yŷ + zẑ) × (

JA
‖,x x̂ + JA

‖,y ŷ+JA
⊥,zẑ

)
d3r,

(82)

use of Eqs. (67), (68), (71), and (72) leads to the expression

m(ω) = 1

2

∫ ∞

−∞

[
z
(
JA

‖,x ŷ − JA
‖,y x̂

) + JA
⊥ (yx̂ − xŷ)

]
d3r

(83)

or in compact form

m(ω) = 1

2

∫ ∞

−∞
ẑ × [zJA

‖ (r; ω) − r‖JA
⊥ (r; ω)]d3r. (84)

It appears from Eq. (84) that the magnetic dipole moment of
the aperture lies in the plane of the screen.

In the small-hole limit, where Eqs. (67) and (68), via a
Taylor expansion of E0(r‖, z; ω) in z, give

JA
‖ (r; ω) = [a(r‖; ω) − a∞(ω)]φ(z)

×
[∫

QW
zφ(z)dz

]
∂E0

‖
∂z

(0; ω) (85)

and

JA
⊥(r; ω) = [b̃(r‖; ω) − b̃∞(ω)]�(z)

×
[∫

QW
�(z)dz

]
E0

⊥(0; ω), (86)

the magnetic dipole moment takes the explicit form

m(ω) = 1

2

[∫
QW

zφ(z)dz

]2 ∫ ∞

−∞
[a(r‖; ω) − a∞(ω)]d2r‖ẑ

× ∂E0
‖

∂z
(0; ω) + 1

2

[∫
QW

�(z)dz

]2

×
∫ ∞

−∞
[b̃(r‖; ω) − b̃∞(ω)]r‖d2r‖ × E0

⊥(0; ω). (87)

In the small-hole limit, where ∂E0
‖/∂x = ∂E0

‖/∂y = 0 across
the effective aperture, it follows from the Maxwell equation
∇ × E0 = iωB0 that the incoming magnetic field in the hole
is parallel to the plane of the screen and given by

B0(0; ω)[=B0
‖(0; ω)] = 1

iω
ẑ × ∂E0

‖
∂z

(0; ω). (88)

Using this relation, Eq. (87) may be written in the elegant form

m(ω) = βB(ω) · B0(0; ω) + βE(ω) · E0(0; ω), (89)

where

βB(ω) = iω

2

[∫
QW

zφ(z)dz

]2

×
∫
A

[a(r‖; ω) − a∞(ω)]d2r‖(U − ẑẑ) (90)

and

βE(ω) = 1

2

[∫
QW

�(z)dz

]2

×
∫
A

[b̃(r‖; ω) − b̃∞(ω)]r‖d2r‖ × ẑẑ. (91)

It appears from Eq. (89) that the induced magnetic dipole
moment of the effective aperture in the small-hole limit in
general must be characterized by two frequency-dependent
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MD-polarizability tensors, viz., βB(ω) and βE(ω). The ten-
sorial forms of these quantities reflect the fact that only the
components of the incoming magnetic and electric fields,
respectively parallel (B0

‖) and perpendicular (E0
⊥) to the plane

of the screen, enter the formula for m(ω).
Local-field resonance enhancement may appear in βE(ω)

and this can be discussed along the same lines as the cor-
responding tensors in the ED polarizability, which will be
discussed in Sec. IV B. For certain geometrical aperture forms
it may happen that only one of the two MD-polarizability ten-
sors is nonvanishing. For a circular hole, for instance, where
a(r‖; ω) = a(|r‖|; ω) and b(r‖; ω) = b(|r‖|; ω) [and thus also
b̃(r‖; ω) = b̃(|r‖|; ω)], it is clear that βE(ω) = 0 (the integral
over A is zero since the integrand is uneven in x and y). In this
particular case no local-field resonance effects can appear.

Finally, it should be noted that if the component of the
electronic current density perpendicular to the plane of the
screen is neglected [JA

⊥(r; ω) = 0], as it has been in many
previous macroscopic studies, the induced magnetic dipole
moment is proportional to B0 alone, i.e.,

m(ω) = βB (ω) · B0(0; ω). (92)

In such macroscopic models the diffraction from a small
hole can be considered as caused by the combined effect of
an electric dipole and a magnetic dipole. The reader may
wonder why no electric quadrupole radiation is present in
these models. However, a comparison of Eqs. (C16) and (C17)
shows that EA

EQ(r; ω) = EA
MD(r; ω) if one sets JA

⊥(r; ω) =
0. Therefore, one may take EA

EQ + EA
MD = 2EA

MD and hence
consider the combined EQ-MD radiators alone as a magnetic
dipole radiator.

E. Electric quadrupole moment

It is known that the first-order tensorial moment
JA(t |EQ-MD) = ∫ ∞

−∞ JA(r, t )r d3r of the aperture current
density distribution JA(r, t ), when divided into symmetric
and antisymmetric parts, may be written as [19]

JA(t |EQ-MD) = d

dt
Q(t ) + U × m(t ), (93)

where Q(t ) is the symmetric quadrupole moment tensor, given
in the frequency domain by

Q(ω) ≡ i

ω
JA

EQ(ω) = i

2ω

∫ ∞

−∞
[JA(r; ω)r + rJA(r; ω)]d3r.

(94)

The tensor JA
EQ(ω) is calculated in Appendix C. When the

general result [Eq. (C8)] is taken in the small-hole limit and
Eq. (88) is used to eliminate ∂E0

‖(0; ω)/dz in favor of B0
‖

(∂E0
‖/∂z = −iωẑ × B0

‖), one obtains the dyadic expression
for the quadrupole moment tensor

Q(ω) = μ(ω)E0
⊥(0; ω) + η(ω)ẑẑ × B0

‖(0; ω) + T, (95)

where T is the transpose of the sum of the first two terms. The
scalar

η(ω) = 1

2

[∫
QW

zφ(z)dz

]2 ∫
A

[a(r‖; ω) − a∞(ω)]d2r‖ (96)

and the vector

μ(ω) = i

2ω

[∫
QW

�(z)dz

]2 ∫
A

[b̃(r‖; ω) − b̃∞(ω)]r‖d2r‖

(97)

relate to the light-induced electron dynamics of the effective
aperture parallel and perpendicular to the plane of the screen,
respectively. A comparison of Eqs. (96) and (97) to Eqs. (89)–
(91) shows that the magnetic moment may be written in the
alternative form

m(ω) = iω[η(ω)B0
‖(0; ω) − μ(ω) × E0

⊥(0; ω)]. (98)

In Sec. V we discuss the results obtained in Eqs. (95) and (98).

IV. SCATTERING FROM A SMALL HOLE

A. Aperture field: ED and EQ-MD contributions

The effective optical aperture field

EA(r; ω) ≡ E(r, ω) − E∞(r; ω), (99)

which is associated with the difference between the electric
fields scattered from identical screens with and without a hole
by the same incident field, may be conceived as a field radiated
by the effective aperture current density. Hence

EA(r; ω) =iμ0ω

∫
A

G(r − r′; ω) · JA(r′; ω)d3r ′, (100)

in general. On the basis of the second-order approximations
given in Eqs. (73) and (74) for the two parts of JA(r; ω)
[Eq. (66)], we have

JA(r; ω) = δ(z)IA
⊥ (r‖; ω) − dδ(z)

dz
IA
‖ (r‖; ω), (101)

where

IA
⊥ (r‖; ω) = [b̃(r‖; ω) − b̃∞(r‖; ω)]

×
[∫

QW
�(z)dz

]2

E0
⊥(r‖, z = 0; ω) (102)

and

IA
‖ (r‖; ω) = [a(r‖; ω) − a∞(r‖; ω)]

[∫
QW

zφ(z)dz

]2

× ∂E0
‖

∂z
(r‖, z = 0; ω). (103)

The effective aperture field stemming from the current density
distribution in Eq. (100) thus is the sum of two parts, i.e.,

EA(r; ω) = EA
ED(r; ω) + EA

EQ-MD(r; ω). (104)

The first, so-called ED part is given by

EA
ED(r; ω) = iμ0ω

∫
A

G(r‖ − r′
‖, z; ω) · IA⊥(r′

‖; ω)d2r ′
‖,

z 
= 0. (105)

The second, named the EQ-MD part,

EA
EQ-MD(r; ω) = iμ0ω

∫ ∞

−∞
G(r‖ − r′

‖, z − z′; ω)

(
−dδ(z′)

dz′

)

· IA‖ (r′
‖; ω)dz′d2r ′

‖, z 
= 0, (106)
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can be rewritten in a simplified form by carrying out first a
partial integration (in z′) and then making use of the fact that

∂

∂z′ G(r − r′; ω) = − ∂

∂z
G(r − r′; ω). (107)

Hence, one obtains

EA
EQ-MD(r; ω) =−iμ0ω

∫
A

∂

∂z
G(r‖ − r′

‖, z; ω) · IA‖ (r′
‖; ω)d2r ′

‖,

z 
= 0. (108)

B. Electric dipole hole

If the size (linear extension) of the effective optical aper-
ture is sufficiently small, the variations of the Green’s tensor
and the incident electric field across A may be neglected
and the effective aperture then behaves as an electric dipole
absorber and radiator source with respect to the coordinates
parallel to the plane of the screen. For such a sheet source it
is physically meaningful only to consider the field outside the
sheet (the field diverges everywhere in the z = 0 plane), as
indicated on the right-hand sides of Eqs. (105) and (108).

In the small-hole limit, where, as mentioned,

G(r‖ − r′
‖, z; ω) = G(r‖, z; ω) (109)

[=G(r; ω)] and

E(r‖, 0; ω) = E(0, 0; ω) (110)

[=E(0; ω)] for a point inside A, the ED part of the aperture
field [Eq. (105)] is simplified to

EA
ED(r; ω) = iμ0ω

[∫
QW

�(z)dz

]2

×
[∫

A
[b̃(r‖; ω) − b̃∞(ω)]d2r‖

]

× G(r; ω) · E0
⊥(0; ω). (111)

Due to the fact that we have made the electric dipole approx-
imation in the coordinates both perpendicular and parallel to
the plane of the screen, it is not surprising to find that the
effective optical aperture behaves like an electric point dipole
radiator for the sheet currents perpendicular to the aperture
plane,

EA
ED(r; ω) = μ0ω

2G(r; ω) · p(ω), (112)

where

p(ω) = α(ω) · E0(0; ω) (113)

is the electric dipole moment induced by the incident elec-
tric field. A comparison of Eqs. (111)–(113) shows that the
(generally anisotropic) ED-polarizability tensor of the optical
aperture is given by

α(ω) = i

ω

[∫
QW

�(z)dz

]2 ∫
A

[b̃(r‖; ω) − b̃∞(ω)]d2r‖ẑẑ

= i

ω
LSF

∞,zz

[∫
QW

�(z)dz

]2

×
∫
A

LSF
zz (r‖; ω)[b(r‖; ω) − b∞(ω)]d2r‖ẑẑ. (114)

It appears from the second term of Eq. (114) that the
space-dependent local-field factor LSF

zz (r‖; ω) only enters
the formalism via a weighted integral [weighting factor
b(r‖; ω) − b∞(ω)] over A. This circumstance softens the
possible spatially local resonance enhancements associated
with LSF

zz (r‖; ω) itself. In the small-hole limit one may expect
therefore that the most pronounced frequency resonance in
α(ω) is associated with the resonance condition for the screen
without a hole [LSF

∞,zz appears in Eq. (114)].
In the framework of our heuristic approach, α(ω) only

has a nonvanishing zz component. In consequence, the in-
duced electric dipole is oriented perpendicular to the plane
of the screen. Although the same conclusion is reached in the
classical Bethe-Bouwkamp theory for a circular hole [1–3],
this does not mean that the microscopic theory (here for a
two-level QW jellium screen) justifies a classical approach
(cf. the general analysis in Ref. [16]). In the Bethe-Bouwkamp
theory the ED polarizability has no frequency dependence.
This fact is obvious from the fact that the screen in the Bethe-
Bouwkamp theory is taken as infinitely thin and has infinite
conductivity. The frequency dependence of α(ω), given in
Eq. (114), reflects the microscopic electrodynamics of our
two-level QW jellium screen.

Our calculation of the internal electrodynamics of the
screen has resulted in a quite complicated result for the
frequency dependence of α(ω). Since the complications origi-
nates in the local-field factors LSF

zz (r‖; ω) and LSF
∞,zz(ω), it may

be useful to give a few remarks on the expression obtained
for the induced polarizability when local-field corrections are
neglected [LSF

zz (r‖; ω) = LSF
∞,zz(ω) = 1]. From Eqs. (55), (57),

and (114) one immediately gets

α(ω) = KNeffẑẑ

ω2 − ω2
B

, (115)

where

K = 1

2

(
eh̄

m

)2 1

ε2 − ε1

[∫
QW

�(z)dz

]2

(116)

is a frequency-independent quantity and

Neff =
∫
A

[
N 0

∞ − N 0(r‖)
]
d2r‖ (117)

is the total number of mobil electrons in the effective optical
aperture. In the absence of the local-field effects these elec-
trons move independently of each other in the external field,
thus making α(ω) proportional to Neff (>0). Furthermore, the
resonance frequency of α(ω) is at the Bohr transition fre-
quency (in the absence of irreversible damping mechanisms).

The independent field-induced motion of the electrons in
the optical aperture in the absence of local-field corrections
means that the formula given in Eq. (115) for the polarizability
must be identical to the standard result obtained in the electric
dipole approximation on the basis of one-electron theory. As
shown in Appendix B, the expression for K can be written as

K = 2ωB

h̄
d1→2

z d2→1
z , (118)

where d1→2
z (d2→1

z ) is the z component of the matrix element
of the dipole moment operator d = −er̂ (e > 0) belonging to
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the transition 1 → 2 (2 → 1). Thus,

d1→2
z = ẑ · 〈ψ2| − er̂|ψ1〉 = d2→1

z . (119)

In the last equality of Eq. (119) we have made use of the
fact that lower- and upper-state wave functions are (taken as)
real. In general, d1→2

z = (d2→1
z )∗. With K given by Eq. (118),

αzz(ω) takes the standard (textbook) form [32]

αzz(ω) = 2ωB

h̄

Neff

ω2 − ω2
B

d1→2
z d2→1

z . (120)

In the literature one will see the denominator ω2 − ω2
B

replaced by ω2
B − ω2, corresponding to the replacement

Neff/(ω2 − ω2
B ) ⇒ −Neff/(ω2

B − ω2). The negative sign in
front of Neff relates to the fact that in our analysis we subtract
JS

∞(r‖; ω) from JS (r‖; ω) to obtain what we define as the
aperture current density JA

S (r‖; ω) [see Eqs. (39) and (62)].
To comply with this one might have used the new definition
Nnew

eff = −Neff < 0 [cf. Eq. (117)].

C. Electric quadrupole–magnetic dipole hole

Let us return to Eq. (108) and make the small-hole approx-
imation for the Green’s tensor [Eq. (109)] and the incident
electric field [Eq. (110)] across A. With these approximations
the EQ-MD aperture field becomes

EA
EQ-MD(r; ω) = − iμ0ω

[∫
QW

zφ(z)dz

]2

×
[∫

A
[a(r‖; ω) − a∞(ω)]d2r‖

]

× ∂G(r; ω)

∂z
· ∂E0

‖(0; ω)

∂z
. (121)

At this stage the reader may note the structural similarity
between the ED [Eq. (111)] and EQ-MD [Eq. (121)] parts of
the aperture field.

V. DISCUSSION OF KEY RESULTS

In the now classical Bethe-Bouwkamp theory of diffraction
from a small circular hole (of radius a) it was concluded
that the diffracted far field of the hole is equivalent to the
coherent superposition of the radiations from induced electric
and magnetic dipoles of moments (in SI units)

p(ω) = 4ε0

3
a3E∞

⊥ (0−; ω), m(ω) = − 8

3μ0
a3B∞

‖ (0−; ω),

(122)

where E∞
⊥ (0−; ω) and B∞

‖ (0−; ω) are the fields which would
be present on the z = 0− side of the screen in the absence
of the hole. In the Bethe-Bouwkamp approach it was assumed
that the screen is infinitely thin and an ideal (σ → ∞) conduc-
tor. In the half space z > 0 the electromagnetic fields hence
vanish identically if there is no hole. It appears from the
expressions above that the electric (4ε0a

3/3) and magnetic
(−8a3/3μ) polarizabilities are dispersion-free (frequency in-
dependent) and equal to those obtained from static (stationary)
calculations (see Ref. [21], Secs. 3.13, 5.13, and 9.5).

To make the bridge from our analysis to the Bethe-
Bouwkamp theory, we note that b̃(r‖; ω) = b̃(|r‖|; ω) for a
circular hole. In consequence, μ(ω) = 0, since the integral
over A in Eq. (97) now has an integrand which is uneven in x

(and y). The reduced dipole moments become

p(ω) = α⊥(ω)E0
⊥(0; ω), m(ω) = iωη(ω)B0

‖(0; ω). (123)

It follows from Eqs. (96), (114), and (123) that the polariz-
abilities are frequency dependent and determined by the elec-
tron dynamics perpendicular [α(ω) = α⊥(ω)ẑẑ] and parallel
[η(ω)] to the plane of the screen in the present theory. Instead
of the assumed known fields (E∞

⊥ and B∞
‖ ) in the Bethe-

Bouwkamp theory, the prescribed incident fields (E0
⊥ and B0

‖)
appear in our theory. The consequence of the replacement
E∞

⊥ (B∞
‖ ) ⇒ E0

⊥ (B0
‖) is that it is necessary to solve a quite

complicated local-field problem [b∞(ω) ⇒ b̃∞(ω)], for the
screen without a hole, and suggest a partly heuristic general-
ization [b(r‖; ω) ⇒ b̃(r‖; ω)]. For a circular hole [μ(ω) = 0]
the quadrupole moment tensor is given by

Q(ω) = η(ω)[ẑB0
‖(0; ω) × ẑ + B0

‖(0; ω) × ẑẑ]. (124)

It appears from our analysis that the local-field effects
solely are associated with the self-consistent electron motion
perpendicular to the plane of the screen. Hence, these ef-
fects always are present in the electric dipole moment [see
Eqs. (113) and (114)] and they may show up in both the mag-
netic dipole moment [Eq. (89)] and the electric quadrupole
moment [Eq. (95)]. In the expressions for m(ω) and Q(ω) the
local-field phenomenon is contained in the terms containing
μ(ω) [cf. Eq. (97)]. In all cases the phenomenon stems from
a correction of the incident electric field component E0

⊥.
Pronounced local-field resonances may occur in the two-level
electron dynamics in a certain frequency range. At (or near)
resonance it may be reasonable to keep only terms involving
E0

⊥. In this case

m(ω) � −iωμ(ω) × E0
⊥(0; ω) (125)

and

Q(ω) � μ(ω)E0
⊥(0; ω) + E0

⊥(0; ω)μ(ω). (126)

However, the reader should note that local-field effects do not
occur in m(ω) and Q(ω) for a circular hole [cf. Eqs. (123)
and (124)].

If one writes the unit tensor in the dyadic (sum) form

U = B̂0
‖B̂0

‖ + B̂0
‖,T B̂0

‖,T + ẑẑ, (127)

where B̂0
‖,T ≡ ẑ × B̂0

‖ is a vector transverse (subscript T ) to
B0

‖ in the plane of the screen, one obtains [via Eq. (98)]

U × m(ω) = iω{η(ω)[ẑẑ × B0
‖(0; ω) − ẑ × B0

‖(0; ω)ẑ]

+ μ(ω)E0
⊥(0; ω) − E0

⊥(0; ω)μ(ω)}. (128)

With Q(ω) taken from Eq. (95), it appears that the first-order
moment of the aperture current density distribution distribu-
tion is given by the tensor

JA(ω|EQ-MD) = U × m(ω) − iωQ(ω)

= 2[iωη(ω)B0
‖(0; ω) × ẑẑ − E0

⊥(0; ω)μ(ω)].
(129)
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The key results for a small hole are shown as follows: In
general,

p = α⊥E0
⊥,

m = iω[ηB0
‖ − μ × E0

⊥],

Q = ηẑẑ × B0
‖ + μE0

⊥ + T;

for JA
⊥ = 0,

p = 0,

m = iωηB0
‖,

Q = ηẑẑ × B0
‖ + T;

near resonance,

p � α⊥E0
⊥,

m � −iωμ × E0
⊥,

Q � μE0
⊥ + T;

and for a circular (c) hole,

p = αc
⊥E0

⊥,

m = iωηcB0
‖,

Q = ηcẑẑ × B0
‖ + T

for ED (p), MD (m), and EQ (Q) moments of a small hole.
The frequency-dependent coefficients α⊥(ω), η(ω), and μ(ω)
(⊥ẑ) are determined by quantum-mechanical response theory.
If the electron motion perpendicular to the plane of the hole
is neglected (JA

⊥ = 0), only terms with β are present and
thus p = 0. Near frequency resonance terms with α⊥ and μ

dominate. For a circular hole (of radius a), the Bethe theory
is recovered if (i) Q = 0 (unjustified), (ii) frequency dis-
persion is neglected, αc

⊥ = 4ε0a
3/3, and iωηc = −8a3/3μ0,

and (iii) the prescribed incident field (E0
⊥, B0

‖) is replaced
by the assumed known fields for a screen without a hole
(E∞

⊥ , B∞
‖ ).

APPENDIX A: LONG-WAVELENGTH CONDUCTIVITY
TENSOR σ∞(z, z′; q‖ → 0, ω)

1. Calculation of b∞(ω)

For a closed system with spin degeneracy the linear one-
electron conductivity tensor is in usual notation given by
[19,26–28]

σ∞(r, r′; ω) = 2h̄

i

∑
i,j (i 
=j )

fj − fi

Ej − Ei

1

h̄ω + Ej − Ei

× Ji→j (r)Jj→i (r′) (A1)

for an infinitely extended screen. In the jellium approxima-
tion, where σ∞(r, r′; ω) = σ∞(r‖ − r′

‖, z, z
′; ω), the eigen-

states belonging to the motion in the plane of the screen
may be taken as plane-wave states (2π )−1 exp(ik‖ · r), and
the wave vectors (double set of quantum numbers) k‖ form
a continuum. The 2D Fourier transform of σ∞ we denote
by σ∞(z, z′; q‖, ω), as in Sec. II A. In the long-wavelength

limit (q‖ → 0) all in-plane quantum transitions entering
σ∞(z, z′; q‖ → 0, ω) are vertical [see Eq. (10)]. If we denote
pairs of the discrete quantum numbers for the eigenstates
perpendicular to the plane of the screen by n, n′ and the
related wave functions and energies by ψn(z), ψ ′

n(z) and
εn, ε

′
n, respectively, one obtains [19,27–29]

σ∞(z, z′; q‖ → 0, ω)

= 2h̄

i

∫ ∞

−∞

∑
n,n′

f
(
εn + h̄2

2m
k2
‖
) − f

(
ε′
n + h̄2

2m
k2
‖
)

(εn − ε′
n)(h̄ω + εn − ε′

n)

× Jn→n′ (z; k‖)Jn′→n(z′; k‖)
d2k‖
(2π )2

, (A2)

where f is the Fermi-Dirac distribution function (in ther-
mal equilibrium). The transition current densities entering
Eq. (A2) are given by

Jn→n′ (z; k‖) = − eh̄

2im

{
2ik‖ψn(z)ψ∗

n′ (z)

+ ẑ
[
ψn′ (z)

dψn(z)

dz
− ψn(z)

dψn′ (z)

dz

]}
,

(A3)

with an analogous expression for Jn′→n(z′; k‖) [making the
replacements n ⇒ n′, n′ ⇒ n, and z ⇒ z′ in Eq. (A3)].

For a two-level system [(n, n′) = (1, 2) or (2,1)] we have

J1→2(z; k‖) = − eh̄

2im
[2ik‖φ(z) − ẑ�(z)] (A4)

and

J2→1(z′; k‖) = − eh̄

2im
[2ik‖φ(z′) + ẑ�(z′)], (A5)

where φ(u) and �(u) (with u = z, z′) are the functions given
in Eqs. (12) and (13). If we decompose k‖ into Cartesian
components

k‖ = k‖,x x̂ + k‖,y ŷ, (A6)

a moment of reflection shows that σ∞(z, z′; q‖ → 0, ω) for
a two-level QW system must have the dyadic form given in
Eq. (11). This reason originates in the fact that all integrals
uneven in k‖,x or k‖,y will vanish upon integration over the k‖
coordinates.

Since the quantity

ẑ · J1→2(z; k‖)J2→1(z′; k‖) · ẑ

= ẑ · J2→1(z; k‖)J1→2(z′; k‖) · ẑ

= −
(

− eh̄

2im

)2

�(z)�(z′) (A7)

is independent of k‖, it appears from Eq. (A2), applied
to a two-level QW screen, that the zz component of the
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conductivity tensor in a first step is given by

σ∞,zz(z, z′; q‖ → 0, ω) = 2h̄

i

(
− eh̄

2im

)2

(−1)�(z)�(z′)
1

ε1 − ε2

(
1

h̄ω + ε1 − ε2
+ 1

h̄ω + ε2 − ε1

)

×
∫ ∞

−∞

[
f

(
ε1 + h̄2k2

‖
2m

)
− f

(
ε2 + h̄2k2

‖
2m

)]
d2k‖
(2π )2

. (A8)

In the low-temperature limit and with ε1 < εF < ε2, f (ε2 +
h̄2k2

‖/2m) = 0. The integral over the k‖ plane in Eq. (A8)
therefore becomes∫ ∞

−∞
f

(
ε1 + h̄2k2

‖
2m

)
d2k‖
(2π )2

=
∫ ∞

0
f

(
ε1 + h̄2k2

‖
2m

)
d(k2

‖ )

4π

= m

2πh̄2

∫ ∞

0
f (ε1 + x)dx = m

2πh̄2 (εF − ε1). (A9)

After a little algebra one reaches the result

σ∞,zz(z, z′; q‖ → 0, ω) = b∞(ω)�(z)�(z′), (A10)

where

b∞(ω) = ie2h̄2ω

2πm

(
εF − ε1

ε2 − ε1

)
1

(h̄ω)2 − (ε2 − ε1)2
, (A11)

as cited in Eq. (46).

2. Diamagnetic contribution bD
∞(ω)

It is known [19] that the diamagnetic part σ D
∞(r, r′; ω) of

the conductivity tensor σ∞(r, r′; ω) is given by

σ D
∞(r, r′; ω) = 2

iω

∑
i,j (i 
=j )

fj − fi

Ej − Ei

Ji→j (r)Jj→i (r′). (A12)

This result was used in our extinction-theorem approach to
the quantum-mechanical diffraction theory of light from a
small hole [17]. Note in Eq. (5) of Ref. [17] that a factor of
2 (typographical error) is missing (but present in subsequent
equations).

Having gone through the various steps in the calculation of
σ∞(z, z′; q‖ → 0, ω) it is pretty clear that

σ D
∞,zz(z, z′; q‖ → 0, ω)

= 2

iω

(
− eh̄

2im

)2

(−1)�(z)�(z′)
2

ε1 − ε2

×
∫ ∞

−∞

[
f

(
ε1 + h̄2k2

‖
2m

)
− f

(
ε2 + h̄2k2

‖
2m

)]
d2k‖
(2π )2

(A13)

and hence in the low-temperature limit

σ D
∞,zz(z, z′; q‖ → 0, ω) = bD

∞(ω)�(z)�(z′), (A14)

where

bD
∞(ω) = ie2

2πmω

εF − ε1

ε2 − ε1
. (A15)

A brief glance at Eqs. (A14) and (A15) seems to indicate
that we have reached an unusual (and unsatisfactory) result
because the universal diamagnetic effect basically is structure

independent [19] and local and thus only depends on the
particle number density (and the frequency ω). In a three-
dimensional scenario

σ D
∞,zz(r, r′; ω) = ie2

mω
n0(r), (A16)

where n0(r) is the field-unperturbed charge particle (electron
density) [19]. The result in Eqs. (A14) and (A15) which is
structure dependent (via ε1, ε2, εF , and �) originates in the
fact that we have reduced the general diamagnetic formalism
by taking into account only two levels in the z dynamics. This
becomes apparent if one uses Eq. (53) to eliminate εF − ε1

in favor of the surface electron density N 0
∞ in Eq. (A15). For

σ D
∞,zz we then get

σ D
∞,zz(z, z′; q‖ → 0, ω) = ie2

mω
N 0

∞
h̄2

2m(ε2 − ε1)
�(z)�(z′).

(A17)

The factor ie2N 0
∞/mω obviously is the two-dimensional ver-

sion of Eq. (A16) for a homogenous density distribution.

3. Paramagnetic contribution bP
∞(ω)

From the paramagnetic part σ P
∞(r, r′; ω) of the conductiv-

ity tensor σ∞(r, r′; ω), viz.,

σ P
∞(r, r′; ω) = σ∞(r, r′; ω) − σ D

∞(r, r′; ω), (A18)

one immediately obtains by subtracting Eq. (A14) from
Eq. (A10) the result

σ P
∞,zz(z, z′; q‖ → 0, ω) = bP

∞(ω)�(z)�(z′), (A19)

where

bP
∞(ω) = b∞(ω) − bD

∞(ω) = ie2

2πmω

(ε2 − ε1)(εF − ε1)

(h̄ω)2 − (ε2 − ε1)2
.

(A20)

The ratio between the zz components of the paramagnetic and
the total conductivities is particularly simple:

σ P
∞,zz(z, z′; q‖ → 0, ω)

σ∞,zz(z, z′; q‖ → 0, ω)
= bP

∞(ω)

b∞(ω)
=

(
ε2 − ε1

h̄ω

)2

. (A21)

Both bP
∞(ω) and bD

∞(ω) diverge in the low-frequency limit
(ω → 0), whereas b∞(ω → 0) = 0. This underlines the im-
portance of keeping the often neglected [32] gauge-invariant
diamagnetic part of the conductivity tensor in linear electro-
dynamics analyses.

4. Calculation of a∞(ω)

It appears from Eq. (11) that the quantity a∞(ω) relates
to the components of the conductivity tensor σ∞(z, z′; q‖, ω)
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which lie in the plane of the screen. To determine the explicit
expression for a∞(ω), we follow the procedure used above to
calculate b∞(ω). We already know that the conductivity tensor
in the long-wavelength limit has the diagonal form

σ∞ =
⎛
⎝σ

‖
∞ 0 0

0 σ
‖
∞ 0

0 0 σ⊥
∞

⎞
⎠ (A22)

in the chosen Cartesian coordinate system (σ⊥
∞ =

σ∞,zz, σ
‖
∞ = σ∞,xx = σ∞,yy ). From Eqs. (A2), (A4), and

(A5) one sees that the important combination of transition
current densities for a calculation of σ

‖
∞ is

(U − ẑẑ) · J1→2(z; k‖)J2→1(z′; k‖) · (U − ẑẑ)

=
(

− eh̄

2im

)2

(2i)2φ(z)φ(z′)[k2
‖,x x̂x̂ + k2

‖,y ŷŷ

+ k‖,xk‖,y (x̂ŷ + ŷx̂)]. (A23)

Since the off-diagonal components disappear upon integration
over the k‖ plane, it readily appears that the only integral
necessary to calculate is∫ ∞

−∞
f

(
ε1 + h̄2k2

‖
2m

)
k2
‖,x

d2k‖
(2π )2

=
∫ ∞

−∞
f

(
ε1 + h̄2k2

‖
2m

)
k2
‖,y

d2k‖
(2π )2

= 1

2

∫ ∞

−∞
f

(
ε1 + h̄2k2

‖
2m

)
k2
‖

d2k‖
(2π )2

, (A24)

recalling that f (ε2 + h̄2k2
‖/2m) = 0 in the low-temperature

limit. As the readers may show to themselves, one obtains in
the T → 0 K limit

1

2

∫ ∞

−∞
f

(
ε1 + h̄2k2

‖
2m

)
k2
‖

d2k‖
(2π )2

= m2

2πh̄4 (εF − ε1)2. (A25)

Gathering now the various factors [as in Eq. (A8)], one gets

σ ‖
∞(z, z′; q‖ → 0, ω) ≡ σ ‖

∞(z, z′; q‖ → 0, ω)(U − ẑẑ),

(A26)

where

σ ‖
∞(z, z′; q‖ → 0, ω) = a∞(ω)φ(z)φ(z′), (A27)

with the following explicit expression for a∞(ω):

a∞(ω) = ie2ω

π

(εF − ε1)2

ε2 − ε1

1

(h̄ω)2 − (ε2 − ε1)2
. (A28)

The paramagnetic part of a∞(ω), denoted by aP
∞(ω), is given

in Refs. [18,26] and the expression for the diamagnetic part of
the a∞(ω) coefficient aD

∞(ω) is easily obtained from aD
∞(ω) =

a∞(ω) − aP
∞(ω). The reader may note that

aP
∞(ω)

a∞(ω)
=

(
ε2 − ε1

h̄ω

)2

. (A29)

This ratio is the same as for bP
∞(ω)/b∞(ω) [see Eq. (A21)].

APPENDIX B: SMALL-HOLE POLARIZABILITY
WRITTEN IN STANDARD FORM

In the small-hole (ED-ED) limit the aperture field EA(r; ω)
becomes identical to that of an electric dipole oriented per-
pendicular to the plane of the screen. Due to the pres-
ence of local-field effects the dipolar polarizability α(ω) =
αzz(ω)ẑẑ exhibits a quite complicated frequency dependence
[see Eq. (114)]. If local-field corrections can be neglected,
the frequency dependence of αzz(ω) takes the simple form
(ω2 − ω2

B )−1 [see Eq. (115)]. In the standard quantum theory
for the electric dipole polarizability of an atomic point dipole
local-field corrections are neglected and the polarizability
tensor also exhibits the frequency dependence (ω2 − ω2

B,ij )−1

in the part related to the i → j transition: ωB,ij = |εi − εj |/h̄.
Although the expression derived for the hole (optical aperture)
polarizability in this paper was obtained on the basis of the
fundamental interaction (I ) Hamiltonian

ĤI = e

2m
[p̂ · A(r, t ) + A(r, t ) · p̂] + e2

2m
A(r, t ) · A(r, t ),

(B1)

p̂ = (h̄/i)∇ being the electron momentum operator (in the r
representation), it is well known [19] that ĤI is equivalent to
the electric dipole interaction Hamiltonian

ĤI = er̂ · E(r, t ) (B2)

in the long-wavelength (ED) limit where the vector poten-
tial A(r, t ) does not vary in space across the given object
(atom, small hole, etc.), i.e., A(r, t ) � A(0, t ) (with the object
centered at the origin of our coordinate system). In the r
representation the electron position operator is r̂ = r. The
considerations above indicate that it should be possible to
rewrite the small-hole expression given in Eq. (115) for αzz(ω)
of a two-level QW screen in a form formally identical to that
of αzz(ω) for a two-level pointlike atom.

To achieve the aforementioned goal let us consider the
integral

∫
QW �(z)dz appearing in the expression for K

[Eq. (116)]. A partial integration of either the first or the
second term in �(z) [Eq. (13)] gives [ψ1(z) and ψ2(z) vanish
asymptotically]

h̄

i

∫
QW

�(z)dz = 2
∫

QW
ψ1(z)

h̄

i

dψ2(z)

dz
dz

= −2
∫

QW
ψ2(z)

h̄

i

dψ1(z)

dz
dz. (B3)

Hence, recalling that ψ1(z) and ψ2(z) are real, one has

h̄

i

∫
QW

�(z)dz = 2p2→1
z = −2p1→2

z , (B4)

where

pi→j
z = 〈ψj |p̂z|ψi〉, (i, j ) = (1, 2) or (2, 1), (B5)

is the matrix element of the momentum operator relating to
the transition from i to j . From Eq. (B4) we obtain[∫

QW
�(z)dz

]2

= 4

h̄2 p2→1
z p1→2

z . (B6)
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If we denote the (assumed local [17]) QW potential by V⊥(z),
the (well-known) commutator relation

[ẑ, Ĥ0] =
[
ẑ,

p̂2
z

2m
+ V⊥(z)

]
= ih̄

m
p̂z (B7)

allows one to rewrite the matrix element in Eq. (B5) as

〈ψj |p̂z|ψi〉 = m

ih̄
〈ψj |[ẑ, Ĥ0|ψi〉

= m

ih̄
(εi − εj )〈ψj |ẑ|ψi〉, (B8)

where εi and εj are the eigenenergies belonging to the station-
ary QW states i and j . Since

di→j
z = 〈ψj | − eẑ|ψi〉, e > 0, (B9)

is just the z component of the transition (i → j ) matrix
element of the electric dipole moment operator d̂ = −er̂, we
have

pi→j
z = m

ih̄e
(εj − εi )d

i→j
z . (B10)

By combining Eqs. (116), (B6), and (B10) one obtains the
result cited for K in Eq. (118). With this expression one is led
to the standard formula [32] for αzz(ω) [Eq. (120)]. Q.E.D.

APPENDIX C: ELECTRIC QUADRUPOLE AND
MAGNETIC DIPOLE DIFFRACTION

In Sec. IV we discussed the scattering from a small hole on
the basis of a one-dimensional moment expansion of the aper-
ture current density in the direction perpendicular to the plane
of the screen [Sec. III, Eq. (69)]. Although this expansion may
dure the essential part of the physics related to the diffraction
from a two-level QW screen, not least near the electronic
(h̄ω ≈ ε2 − ε1) and local-field resonances [see Eqs. (65),
(73), and (74), with the a’s and b’s given by Eqs. (54)–
(57)], a division of the second-order aperture current density
JA

‖ (r‖, z; ω|EQ-MD) into its electric quadrupole and magnetic
dipole parts requires a three-dimensional moment expansion.

1. Symmetric and antisymmetric tensorial moments of the
aperture current density: Scattered EQ and MD fields

The electric field radiated from a prevailing aperture cur-
rent density JA(r; ω) is given by Eq. (100). The combined
electric quadrupole and magnetic dipole contribution to the
aperture field is obtained from Eq. (100) by replacing JA(r; ω)
by the first [superscript (1)] -moment expression [19]

JA
(1)(r; ω) = −

[∫ ∞

−∞
JA(r; ω)rd3r

]
· ∇δ(r). (C1)

This equation is the 3D generalization of the second term
on the right-hand side of Eq. (69). The symmetric and anti-
symmetric parts of the second-rank tensor integral in front of
∇δ(r), viz.,

JA
EQ(ω) = 1

2

∫ ∞

−∞
[JA(r; ω)r + rJA(r; ω)]d3r (C2)

and

JA
MD(ω) = 1

2

∫ ∞

−∞
[JA(r; ω)r − rJA(r; ω)]d3r, (C3)

relate to the source of the electric quadrupole and magnetic
dipole radiation, as indicated by the subscripts. In Eqs. (C1)–
(C3) dyadic notation has been used.

In order to determine JA
EQ(ω)JA

MD(ω) we start from the
tensor∫ ∞

−∞
JA(r; ω)r d3r =

∫ ∞

−∞
[JA

‖ (r; ω) + JA
⊥(r; ω)]r d3r,

(C4)

where the explicit formulas for JA
‖ and JA

⊥ are given in
Eqs. (67) and (68) in our two-level QW approximation. The
tensor (integral) associated with the aperture current density’s
component perpendicular to the plane of the screen takes the
dyadic form∫ ∞

−∞
JA

⊥(r; ω)r d3r =
∫ ∞

−∞
JA

⊥ (r; ω)ẑr d3r

=
∫ ∞

−∞
JA

⊥ (r; ω)ẑ(xx̂ + yŷ)d3r. (C5)

The last term of Eq. (C5) is obtained from the fact that the
integral of JA

⊥ (r; ω)zẑ over z vanishes because of the parity
condition in Eq. (72). The tensor (integral) related to the in-
plane component of JA(r; ω) becomes∫ ∞

−∞
JA

‖ (r; ω)r d3r

=
∫ ∞

−∞

[
JA

‖,x (r; ω)x̂ + JA
‖,y (r; ω)ŷ

]
(xx̂ + yŷ + zẑ)d3r

=
∫ ∞

−∞
z
[
JA

‖,x (r; ω)x̂ẑ + JA
‖,y (r; ω)ŷẑ

]
d3r, (C6)

where the last term follows by use of the wave-function
orthogonality [Eq. (71)]. The symmetric and antisymmetric
parts of∫ ∞

−∞
JA(r; ω)r d3r =

∫ ∞

−∞

[
zJA

‖,x (r; ω)x̂ + ẑ + zJA
‖,y (r; ω)ŷẑ

+ xJA
⊥ (r; ω)ẑx̂ + yJA

⊥ (r; ω)ẑŷ
]
d3r

(C7)

hence are given by

JA
EQ(ω) = 1

2

∫ ∞

−∞

{[
zJA

‖,x (r; ω) + xJA
⊥ (r; ω)

]
(x̂ẑ + ẑx̂)

+ [
zJA

‖,y (r; ω) + yJA
⊥ (r; ω)

]
(ŷẑ + ẑŷ)

}
d3r

= 1

2

∫ ∞

−∞
[JA

‖ (r; ω)z + zJA
‖ (r; ω)

+ r‖JA
⊥(r; ω) + JA

⊥(r; ω)r‖]d3r (C8)

and

JA
MD(ω) = 1

2

∫ ∞

−∞

{[
zJA

‖,x (r; ω) − xJA
⊥ (r; ω)

]
(x̂ẑ − ẑx̂)

+ [
zJA

‖,y (r; ω) − yJA
⊥ (r; ω)

]
(ŷẑ − ẑŷ)

}
d3r

= 1

2

∫ ∞

−∞
[JA

‖ (r; ω)z − zJA
‖ (r; ω)

+ JA
⊥(r; ω)r‖ − r‖JA

⊥(r; ω)]d3r. (C9)
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In the general 3D analysis the diffracted electric quadrupole
field from the effective aperture therefore is given by

EA
EQ(r; ω) = − iμ0ω

∫ ∞

−∞
G(r − r′; ω) · JA

EQ(ω)

· ∇′δ(r′)d3r ′ (C10)

and the magnetic dipole field by

EA
MD(r; ω) = − iμ0ω

∫ ∞

−∞
G(r − r′; ω) · JA

MD(ω)

· ∇′δ(r′)d3r ′. (C11)

At this point we note that the zeroth [subscript (0)] moment
of the aperture current density, namely,

JA
(0)(r; ω) = δ(r)

∫ ∞

−∞
JA(r; ω)d3r

= δ(r)
∫ ∞

−∞
JA

⊥(r; ω)d3r, (C12)

readily leads to the result obtained for the electric dipole
hole in Sec. IV B. The last term in Eq. (C12) follows from
the fact that the integral of JA

‖ (r; ω) [Eq. (67)] vanishes due
to the wave-function orthogonality [Eq. (71)]. Thus, with
JA(r; ω) = JA

(0)(r; ω) one has

EA
ED(r; ω) = iμ0ωG(r; ω) ·

[∫ ∞

−∞
JA

⊥(r; ω)d3r

]
, (C13)

and thereafter, by means of the explicit expression for
JA

⊥(r; ω) [Eq. (68)] and the small-hole approximation for the
incoming field [Eq. (110)], one regains the result in Eq. (111).

2. Aperture fields in the one-dimensional moment expansion

In order to make a connection with the analysis in Sec. III C
we neglect the δ-function derivatives in the plane of the
screen. Thus, with

∇δ(r) ≈ ẑ
∂δ(r)

∂z
= ẑδ(r‖)

dδ(z)

dz
, (C14)

Eq. (C10) is reduced to

EA
EQ(r; ω)

= −iμ0ω

∫ ∞

−∞
G(r‖, z − z′; ω) · JA

EQ(ω) · ẑ
∂δ(z′)
∂z′ dz′

= −iμ0ω
∂G(r; ω)

∂z
· JA

EQ(ω) · ẑ. (C15)

The last term of Eq. (C15) is obtained upon a partial integra-
tion and use of Eq. (107). By means of the explicit expression
for JA

EQ(ω) [Eq. (C8)] one obtains

EA
EQ(r; ω) = − iμ0ω

2

∂G(r; ω)

∂z

·
[∫ ∞

−∞
[zJA

‖ (r; ω) + r‖JA
⊥ (r; ω)]d3r

]
.

(C16)

An analogous calculation leads to the following formula for
the magnetic dipole field:

EA
MD(r; ω) = − iμ0ω

2

∂G(r; ω)

∂z

·
[∫ ∞

−∞
[zJA

‖ (r; ω) − r‖JA
⊥ (r; ω)]d3r

]
.

(C17)

If one adds the EQ and MD aperture fields one obtains a result
which only depends on the integral of zJA

‖ (r; ω), i.e.,

EA
EQ-MD(r; ω) = EA

EQ(r; ω) + EA
MD(r; ω)

= −iμ0ω
∂G(r; ω)

∂z
·
[∫ ∞

−∞
zJA

‖ (r; ω)d3r

]
.

(C18)

For the one-dimensional model we can conclude that, al-
though the combined EQ-MD aperture field EA

EQ/MD(r; ω)
depends solely on the current density parallel to the plane of
the screen [JA

‖ (r; ω)], the current density perpendicular to the
screen [JA

⊥(r; ω)] is needed in order to divide the aperture field
into its electric quadrupole [EA

EQ(r; ω)] and magnetic dipole
[EA

MD(r; ω)] components.
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