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We identify a type of periodic evolution that appears in driven quantum systems. Provided that the
instantaneous (adiabatic) energies are equidistant we show how such systems can be mapped to (time-dependent)
tilted single-band lattice models. Having established this mapping, the dynamics can be understood in terms of
Bloch oscillations in the instantaneous energy basis. In our lattice model the site-localized states are the adiabatic
ones, and the Bloch oscillations manifest as a periodic repopulation among these states, or equivalently a periodic
change in the system’s instantaneous energy. Our predictions are confirmed by considering two different models:
a driven harmonic oscillator and a Landau-Zener grid model. To strengthen the link between our energy Bloch
oscillations and the original spatial Bloch oscillations we add a random disorder that breaks the translational
invariance of the spectrum. This verifies that the oscillating evolution breaks down and instead turns into a
diffusive spreading. Finally, we consider a trapped ion setup and demonstrate how the mechanism can be utilized
to prepare motional cat state of the ion.
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I. INTRODUCTION

Periodic driving of closed quantum systems typically leads
to heating [1] and, in some cases, that the steady state
approaches infinite temperature. The time-dependent drive
induces a coupling between nearby energy eigenstates, and
consequently the system shows an energy diffusion. Such
behavior is especially expected in quantum many-body sys-
tems, or for systems showing large anharmonicities in its
spectrum. However, for some integrable systems a periodical
driving may not lead to an infinite temperature steady state,
but a periodical solution. A prime example is the driven
harmonic oscillator when employing the rotating wave ap-
proximation [2].

The harmonic oscillator is also the text-book example of
a closed (undriven) quantum system showing periodic evolu-
tion. After multiples of the classical period 2π/ω (with ω the
oscillator frequency) we regain perfect revivals of the initial
state. This is the result of the equidistant energy spectrum; all
probability amplitudes return back in phase at these instances.
A less-known example of a closed system with an equidistant
spectrum is that of a tilted single-band lattice model. The
spectrum forms a so-called Wannier-Stark ladder, unbounded
from below and above [3]. A particle in such a tilted lattice
will not continuously accelerate (as it would classically), but
rather show a periodic motion called Bloch oscillation. By
now, Bloch oscillations have been demonstrated in numerous
systems [4]. In real experimental systems, however, the single-
band assumption is not strictly true, and the Bloch oscillations
will eventually die out.

In this work we discuss a type of periodic evolution that we
term “energy Bloch oscillations.” Instead of displaying a real-
space oscillating behavior, in our case the system’s energy will
be oscillating. Thus, we consider a time-dependent system
where energy is not conserved. If the spectrum of the undriven
system is equidistant, then by expressing the full Hamiltonian

in the adiabatic basis we find a “tilted” single-band model.
The site localized states of the original Bloch Hamiltonian
have been replaced by energy localized adiabatic states, and
thereby the manifestation of oscillations in the system’s en-
ergy. The difference compared to the original lattice Bloch
model is that we have time-dependent parameters. As we
show, despite this we still find perfect periodic evolution.
However, the oscillations may, in some cases, be more rem-
iniscent of “super Bloch oscillations” that appear in driven
tilted lattices [5,6]. To verify our predictions we consider
two different models, the driven harmonic oscillator [7] and
a Landau-Zener grid [8–10]. In both examples we find clear
evidence of energy Bloch oscillations. We also show how the
oscillations break down when we relax the assumption of an
equidistant spectrum. This leads to diffusive spreading among
the adiabatic energy states. As an application of our results we
imagine a trapped ion system and demonstrate how motional
cat states can be prepared.

The outline of the paper is as follows. Section II is devoted
to the general theory, starting with recapitulating the basics
of Bloch oscillations and super Bloch oscillations in the
single-band model, and then presenting the formal description
of energy Bloch oscillations. Section III discusses the two
examples, the driven harmonic oscillator in Sec. III A and
the Landau-Zener grid model in Sec. III B. In Sec. IV it is
shown how the method is used to prepare nonclassical states.
Finally, we summarize in Sec. V and give a discussion about
experimental relevance.

II. GENERAL THEORY

A. Prelude—Bloch oscillations

Traditionally there are two different approaches for under-
standing the dynamics of a particle in a periodic potential
and exposed to a constant force. The acceleration theorem
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says that in the adiabatic regime the quasimomentum k grows
linearly in time; k(t ) = k0 + F t . We may thereby think in
terms of the untilted model with a time-dependent quasimo-
mentum. For a single band, the energy is given by a band
ε(k) defined within the first Brillouin zone, and the dynamics
is then explained via the substitution ε(k) → ε(k0 + F t ). If
the initial state is localized in momentum, the wave-packet
evolves with a group velocity vg (t ) = ∂ε(k)/∂k|k=k0+F t .
Since quasimomentum is defined over the periodic Brillouin
zone, the oscillating evolution follows [11]. The other ap-
proach is by introducing so-called Wannier-Stark ladders (one
ladder for each band), which are complex equidistant ener-
gies [3]. The decay of the Bloch oscillations stems from Zener
tunneling between different energy bands—in the language of
the acceleration theorem it marks the breakdown of adiabatic-
ity, while in the Wannier-Stark approach the decay is reflected
in the size of the imaginary parts of the spectrum. Then, for
a single-band model there are no additional bands generating
Zener tunnelings, and the oscillations will sustain indefinitely.
For a tight-binding model we let J denote the tunneling
amplitude between adjacent sites, and ω the onsite energy
shift representing the applied force, i.e. (h̄ = 1 throughout),

Ĥsb = −J

+∞∑
n=−∞

(|n〉〈n + 1| + |n + 1〉〈n|) + ω

+∞∑
n=−∞

n|n〉〈n|.

(1)

Here |n〉 represents the Wannier state localized at site n. The
energies are [12]

Em = mω, m ∈ Z, (2)

which form the Wannier-Stark ladder (the vanishing imagi-
nary part implies that the oscillations do not decay, as ex-
pected in this single band model). Note that the energies are
independent of J in the limit of an infinite lattice as considered
here. The eigenstates depend, however, on J [13]

|ψm〉 =
+∞∑

n=−∞
Jn−m(2J/ω)|n〉, (3)

where Jn−m(2J/ω) is the Bessel function of the first kind.
Jn−m(2J/ω) quickly vanishes for |n − m| � 2J/ω. Hence,
the eigenstates are localized in contrast to the extended Bloch
states (the localization length diverges as 1/ω though).

With the equidistant spectrum Eq. (2) it is clear that after
a period TBloch = 2π/ω, all energy eigenstates have regained
their original phase and there is a perfect revival of the initial
state. We may typically envision two types of initial states:
those localized in real space or those localized in momentum
space. In the latter case we regain the typical oscillating
behavior of the wave-packet in real space, while in the other
case we get the so called breathing modes. Examples of both
the breathing and the oscillating modes for the single-band
tight-binding model Eq. (1) are presented in Fig. 1. Shown is
the density

Pn(t ) = |〈n|ψ (t )〉|2, (4)

with the initial condition |ψ (0)〉 = |0〉 for Fig. 1(a) and
a Gaussian centered around n = 0 with width σ = 10 for
Fig. 1(b).

FIG. 1. Time-evolution of the probability density
√

Pn(t ) for the
model Eq. (1). Shown is the breathing mode (a) and the oscillating
mode (b). The reason for plotting the square-root of Pn(t ) is to better
visualize the weakly populated sites. For the breathing mode the
initial state populates only the site n = 0, while for the oscillating
mode the initial state is a Gaussian with a width σ = 10 (i.e.,
it populates ∼40 sites). The revivals at multiples of the Bloch
period TBloch = 2π/ω is evident. The width of the wave packet for
the breathing mode and the amplitude for the oscillating mode is
determined by 4J

ω
| sin(t/TBloch )| [12]. The dimensionless parameters

used for this figure are J = 10 and ω = 1.

Phenomena arise when the lattice, apart from being tilted,
is periodically driven. For an untilted lattice the tunneling J

is renormalized by a Bessel function [14]. The argument of
the Bessel function depends on the parameters of the drive,
and if these are tuned such that the Bessel function is zero,
the tunneling is fully suppressed leading to a so called Bloch
band collapse [15]. Thus, the particle transport may be greatly
influenced by the drive. When the lattice is tilted, there occur
resonances between the drive frequency � and corresponding
frequencies between the Wannier-Stark energies Eq. (2), i.e.,

δ�n = � − nω, n = 1, 2, 3, ... . (5)

This is similar to the red/blue sideband driving in trapped
ion physics [16]. For the tilted lattice a beating between the
involved frequencies takes place which may result in extended
motion in the lattice [5,6]. In particular, super Bloch oscilla-
tions describe oscillating motion that may cover hundreds of
lattice sites provided that δ�n is small for some integer n. The
period for the super Bloch oscillation then becomes TsBloch =
2π/δ�n and the amplitude scales as ∼J/δ�n (instead of
∼J/ω for regular Bloch oscillations).

B. Periodically driven quantum systems

We consider some driven system

Ĥ (t ) = Ĥ0 + V̂ (t ), (6)

where the drive is periodic with a period T , V̂ (t ) = V̂ (t +
T ), and the two terms of the Hamiltonian in general do not
commute, i.e., [Ĥ0, V̂ (t )] 
= 0. Furthermore, the spectrum of
the bare Hamiltonian Ĥ0 has the equidistant form En = nω

with n ∈ Z (we take n to run over both positive and negative
integers, but we could impose a lower bound n = 0 as in
the example of the driven oscillator in the next section). The

053820-2



BLOCH-LIKE ENERGY OSCILLATIONS PHYSICAL REVIEW A 98, 053820 (2018)

adiabatic states are the instantaneous eigenstates of Ĥ (t ),

Ĥ (t )
∣∣ψ (ad)

n (t )
〉 = E(ad)

n (t )
∣∣ψ (ad)

n (t )
〉
, (7)

and E(ad)
n (t ) are the adiabatic energies. With the state

|ψ (ad)
n (t )〉 we may form a time-dependent unitary Û (t ) that

diagonalizes Ĥ (t ). This defines a change of basis |ψ̃ (t )〉 =
Û (t )|ψ (t )〉, but since Û (t ) is time-dependent it will induce a
‘gauge term’ Â(t ) in the transformed Schrödinger equation,

i∂t |ψ̃ (t )〉 = [D̂(t ) − Â(t )]|ψ̃ (t )〉. (8)

Here the diagonal

D̂(t ) = diag
[
E(ad)

m (t )
]
, (9)

and the gauge potential

Â(t ) = iÛ (t )∂t Û
†(t ). (10)

This last term is also called the nonadiabatic coupling term or
the Berry connection [17,18] depending on the community. Its
matrix elements expressed in the adiabatic basis are

[Â(t )]mn = i
〈
ψ (ad)

m (t )
∣∣∂t

∣∣ψ (ad)
n (t )

〉 ≡ �mn(t ). (11)

We can choose a gauge (the adiabatic states are defined up
to an overall time-dependent phase factor [17,18]) such that
�nn(t ) = 0. It should be clear that Â(t ) is responsible for the
coupling of different adiabatic states, and that the adiabatic
approximation consists in setting Â(t ) = 0.

The driving V̂ (t ) is chosen such that the adiabatic energies
fulfill (up to a possible overall constant shift)

εn ≡ 1

T

∫ T

0
E(ad)

n (t )dt = nω. (12)

Hence, the driving constitutes a “dressing” of the bare en-
ergies Em that averages to zero over one period. Given this
property we see that (for n 
= m)

�mn(t ) = i
〈
ψ (ad)

m (t )
∣∣∂t

∣∣ψ (ad)
n (t )

〉

=
〈
ψ (ad)

m (t )
∣∣(∂t V̂ (t ))

∣∣ψ (ad)
n (t )

〉
E

(ad)
m (t ) − E

(ad)
n (t )

∼ 1

m − n
, (13)

i.e., the nonadiabatic coupling typically falls off as (m − n)−1.
In general, we also have �mn(t ) = �m−n(t ). In other words,
the element �1(t ) will dominate the nonadiabatic term Â(t ).
Using the above, the Hamiltonian can be written as

Ĥ (t ) =
∞∑
l=1

+∞∑
n=−∞

�l (t )
(∣∣ψ (ad)

n (t )
〉〈
ψ

(ad)
n+l (t )

∣∣ + H.c.
)

+
+∞∑

n=−∞
E(ad)

n (t )
∣∣ψ (ad)

n (t )
〉〈
ψ (ad)

n (t )
∣∣, (14)

where H.c. stands for Hermitian conjugate. When restricting
the nonadiabatic couplings to �1(t ) the adiabatic Hamiltonian
becomes

Ĥ (t ) ≈ �1(t )
+∞∑

n=−∞

(∣∣ψ (ad)
n (t )

〉〈
ψ

(ad)
n+1(t )

∣∣ + H.c.
)

+
+∞∑

n=−∞
E(ad)

n (t )
∣∣ψ (ad)

n (t )
〉〈
ψ (ad)

n (t )
∣∣. (15)

By comparing this expression to the Hamiltonian Eq. (1) a
mapping between the two models is evident via the following
correspondence:

|n〉 ↔ ∣∣ψ (ad)
n (t )

〉
, J ↔ �1(t ), nω ↔ E(ad)

n (t ). (16)

And similarly, Eq. (4) takes the form

Pn(t ) = ∣∣〈ψ (ad)
n (t )

∣∣ψ (t )
〉∣∣2

. (17)

What we have found is that in the periodically driven model
the site localized Wannier states |n〉 have been replaced by the
adiabatic states |ψ (ad)

n (t )〉, which instead are perfectly local-
ized in energy. Without the time-dependence the mapping is
exact.

Note that the fact that we neglected couplings beyond
“nearest neighbors” does not change our argument, indeed
the Bloch oscillations still persist with higher-order terms as
these would only affect the actual shape and amplitudes of the
oscillations. The time-averaged energy gap δn = εn+1 − εn

(= ω) is clearly translational invariant in the subscript n. This
property suggests, just as for the Wannier-Stark ladder, that
we should find a revival in the system state after a time
TEBloch = 2π/ω (where the subscript EBloch denotes that the
period occurs in the energy space and not in the real space).
The resulting periodic evolution defines the energy Bloch
oscillations. Since the Hamiltonian is periodic with period
T , we must have E(ad)

n (t ) = E(ad)
n (t + T ) and �l (t ) = �l (t +

T ). Hence, if TEBloch � T we may expect that the evolution
implies an inherent averaging of the parameters such that
the Bloch oscillations should be almost perfect as in Fig. 1.
However, the time-dependence of the parameters could in
principle give rise to some sort of super Bloch oscillations
due to beating of different characteristic frequencies. In this
respect, our model bears similarities with the driven Bloch
oscillation problem discussed in the previous subsection.

Let us give a final comment on the link between the
two models defined by the Hamiltonian Eqs. (1) and (15).
We pointed out in the previous subsection that Bloch oscil-
lations may be understood from the acceleration theorem,
which states that the quasimomentum k grows linearly in
time, and since the quasimomentum can be restricted to the
first Brillouin zone a periodic motion results (every time the
quasimomentum hits the end of the Brillouin zone it reenters
on the opposite side). Now what would be the counterpart of
this behavior in our model? The answer is that the Floquet
quasienergy εn, bounded to (ω/2, ω/2] (corresponding Bril-
louin zone), replaces the quasimomentum [19].

III. EXAMPLES

A. Driven harmonic oscillator

The first system that comes to mind having an equidistant
spectrum is the harmonic oscillator. The Hamiltonian for the
periodically driven oscillator is taken as

ĤdHO(t ) = ωâ†â + J
â† + â√

2
sin(�t ), (18)

where the creation and annihilation operators obey the regular
Bosonic commutation [â, â†] = 1, and act on the n-Boson
Fock states as â†|n〉 = √

n + 1|n + 1〉 and â|n〉 = √
n|n − 1〉.
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The first part corresponds to Ĥ0 and the second term to V̂ (t )
of Eq. (6). Alternatively, we may consider the quadrature rep-
resentation defined by x̂ = â+â†√

2
and p̂ = −i â−â†√

2
, for which

the Hamiltonian takes the form

ĤdHO(t ) = ω
p̂2 + x̂2

2
+ J x̂ sin(�t ), (19)

Even though the full time-dependent problem is analyti-
cally solvable [7], here we are more interested in expressing
the Hamiltonian in the adiabatic basis. Nevertheless, one
important general observation is that since the Hamiltonian
is quadratic in the Boson operators any initial Gaussian state
will stay Gaussian when evolved with this Hamiltonian. In
particular, a coherent state remains coherent for all times. This
is certainly also true when one would apply the rotating wave
approximation to the above model [20]. However, contrary
to that situation, without the rotating wave approximation
the amplitude of the coherent state will not stay constant—a
necessity to observe the energy Bloch oscillations.

By noticing that the ĤdHO(t ) is nothing but a displaced os-
cillator it is convenient to introduce the displacement operator,

D̂[J sin(�t )/ω] = exp[−ip̂J sin(�t )/ω], (20)

which transforms the Hamiltonian into

Ĥ ′
dHO(t ) = D̂[J sin(�t )/ω]ĤdHO(t )D̂†[J sin(�t )/ω]

= ω
p̂2 + [x̂ + J sin(�t )]2

2
− J 2

2ω
sin2(�t ). (21)

Thus, the adiabatic energies are just

E(ad)
n (t ) = ωn − J 2 sin2(�t )

2ω
, (22)

and the adiabatic states are |ψ (ad)
n (t )〉 = D̂(J sin(�t )/ω)|n〉

(i.e., displaced Fock states [21]). Using the second identity of
Eq. (13) it is straightforward to also evaluate the nonadiabatic
coupling terms

�mn(t )=
〈
ψ (ad)

m (t )
∣∣[∂t V̂ (t )]

∣∣ψ (ad)
n (t )

〉
E

(ad)
m (t ) − E

(ad)
n (t )

=J� cos(�t )
〈m|D̂†[J sin(�t )/ω]x̂D̂[J sin(�t )/ω]|n〉

(m − n)ω

=J� cos(�t )
〈m|[x̂ − J sin(�t )/ω]|n〉

(m − n)ω

= J� cos(�t )

(m − n)ω

√
nδm,n−1 + √

n + 1δm,n+1√
2

, (23)

where we have used that m 
= n. We note that in this special
case only �1(t ) is nonzero, i.e., all couplings beyond “near-
est neighbors” vanish. Summing up, the Hamiltonian in the
adiabatic basis becomes

ĤdHO(t ) = J� cos(�t )

ω

∞∑
n=0

(∣∣ψ (ad)
n (t )

〉〈
ψ

(ad)
n+1(t )

∣∣ + H.c.
)

+
∞∑

n=0

ωn
∣∣ψ (ad)

n (t )
〉〈
ψ (ad)

n (t )
∣∣ (24)

FIG. 2. The upper two plots, (a) and (b), display the probabilities√
Pn(t ) for, respectively, an initial Fock state |ψ (0)〉 = |200〉 and an

initial coherent state |ψ (0)〉 = |α〉 with an amplitude α = √
200. The

two cases correspond, respectively, to the breathing and oscillating
modes. The appearance of Bloch oscillations is strikingly clear. In
fact, for this model we regain perfect revivals. In the lower plot (c)
we instead show the importance of the “translational invariance.”
A random shift ξn of the bare energies En = ωn have been in-
cluded, with the random variable drawn from a Gaussian distribution
centered around 0 and with a variance π/50. The initial state is
the same as in (b), and we have averaged over 10 ξn-realizations.
We can see traces of the Bloch oscillating motion at early times,
but at later times the wave-packet spreads out indicating a heating.
The dimensionless parameters are ω = 1, � = 1.2 (giving a Bloch
period TsEBloch = 2π/|ω − �| = 10π ), and J = 0.5.

up to an overall constant −J 2 sin2(�t )/2. Note that the sum
does not run over negative n’s since the harmonic oscillator is
bounded from below. This “edge” of our lattice should not
be a problem as long as we consider localized states with
〈â†â〉� 1.

At first sight, Eq. (24) seems to suggest that we should
envision energy Bloch oscillations with a period TEBloch =
2π/ω. However, the time-dependent tunneling amplitude re-
sults in that we instead find super Bloch oscillations with
a period TsEBloch = 2π/δ� = 2π/|ω − �|. This is demon-
strated in Figs. 2(a) and 2(b). These plots are the counterparts
of those of Fig. 1, i.e., (a) shows the breathing mode and
(b) the oscillating mode. For the oscillating mode we consider
an initial coherent state |α〉 (i.e., an eigenstate of the annihi-
lation operator, â|α〉 = α|α〉). The advantage with coherent
states is that they are easy to prepare experimentally, in
comparison to highly excited Fock states which was used for
demonstrating the breathing mode.

Translational invariance is a necessity for Bloch oscilla-
tions to occur. In the original setting it gives rise to the
quasimomentum restricted to the first Brillouin zone. For the
energy Bloch oscillations, the translational invariance appears
as the equidistant spectrum (and in a strict sense also in the
(m − n)-dependence of the coupling terms �(m−n)(t )). If we
break the translational invariance we expect also a breakdown
of the energy Bloch oscillations. There are numerous ways
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we can imagine to do this, for example by considering an
anharmonic spectrum. Here we randomly shift the undriven
harmonic oscillator energy levels

Ĥ0 =
∞∑

n=0

(ωn + ξn)|n〉〈n|, (25)

where ξn is a random variable drawn from a Gaussian distri-
bution with zero mean and variance taken to be σ = π/50.
The results are shown in Fig. 2(c), where we used the same
initial coherent state and parameters as for plot (b) of the
same figure. For short times we still see remnants of the Bloch
oscillations. However, as time progresses the destructive in-
terference between the different paths become evident and we
see a spreading of the initially localized wave-packet such that
more and more adiabatic states get populated. Numerically,
we find a

√
t-broadening, which one can expect due to the

loss of constructive interferences.

B. Landau-Zener grid

After the celebrated Landau-Zener model [22] there
have been numerous generalizations of it to multilevel sys-
tems [8,9,23]. The one we consider forms a grid of Landau-
Zener transitions in the energy-time plane, i.e., the adiabatic
or diabatic energies forms a lattice as shown in Fig. 3(a). Such
a structure is obtained from the Landau-Zener grid model
defined by the Hamiltonian [8,9]

Ĥ
(d)
LZg (t ) = ω(Ŝz ⊗ I) + λt (I ⊗ σ̂z) + J (A ⊗ σ̂x ), (26)

FIG. 3. Diabatic (dotted black lines) and adiabatic (solid red lies)
energies. The upper plot (a) demonstrates the Landau-Zener grid in
the energy-time plane, while the avoided crossings is more evident
from the lower plot (b) that zooms in on two energies over one
period τper.

where σ̂x and σ̂z are the regular Pauli matrices, Ŝz is a diagonal
matrix with elements ...,−2,−1, 0,+1,+2, ..., and A is a
matrix with all elements equal to one. The superscript d that
labels the Hamiltonian is written in the diabatic basis (see
below). Explicitly in the σ̂z eigenbasis we have

Ĥ
(d)
LZg (t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

. . .
...

...
...

. . . +ω + λt 0 0 . . . . . . J J J . . .

. . . 0 +λt 0 . . . . . . J J J . . .

. . . 0 0 −ω + λt . . . . . . J J J . . .
...

...
...

. . .
...

...
...

. . .
. . .

...
...

...
. . .

...
...

...
. . . J J J . . . . . . +ω − λt 0 0 . . .

. . . J J J . . . . . . 0 −λt 0 . . .

. . . J J J . . . . . . 0 0 −ω − λt . . .
...

...
...

. . .
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

For a zero coupling J , the Hamiltonian is diagonal with
the time-dependent eigenvalues E

(d)
m±(t ) = mω ± λt and the

corresponding eigenstates are the diabatic states |ψ (d)
m±〉. The

analytical expressions for the adiabatic states |ψ (ad)
m± (t )〉 are

complicated [9], but the expressions for the adiabatic energies
are rather simple,

E
(ad)
m± (t ) = ± ω

2π
cos−1

(
ω2 − π2J 2

ω2 + π2J 2
cos

2πλt

ω

)
+ mω.

(28)

The diabatic energies forms a grid in the E-t plane
with repeated exact crossings at the instants tj = jτper/2 for

integers j and the period τper = ω/λ. A nonzero J couples
every positive diabatic state to every negative diabatic state
with equal strengths. This implies that every crossing becomes
avoided with a gap ∼2J . These form the adiabatic energies
which are shown in Fig. 3 together with the diabatic energies.
It is convenient to relabel the adiabatic states with a collective
index l such that m+ ↔ 2l and m− ↔ 2l + 1.

There are a few interesting observations to be made re-
garding the adiabatic energies Eq. (28): (i) for J = ω/π the
energies become E

(ad)
l (t ) = ω

2 (l + 1
2 ) (using the relabeling

of the adiabatic states/energies), i.e., time-independent and
forming a (Wannier-Stark–like) ladder, and (ii) a grid structure
emerges also for strong coupling |J | > ω/π that is very
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similar to that of the figure apart from that it is shifted
by half a period. A consequence of the second property
is that the evolution becomes highly nonadiabatic also for
J � ω.

Another important property of the model is its periodicity,
which is somewhat hidden. It is clear that the adiabatic spec-
trum is periodic with the period τper, but the diabatic energies
have a linear time-dependence and does not seem periodic.
The periodicity in the diabatic representation translates into
E

(d)
(m∓1)±(t ) = E

(d)
m±(t + τper ). Thus, if time is shifted by τper

simultaneously as the energy index is shifted by −1 the
spectrum is invariant. This is a true identity since the spectrum
is assumed unbounded both from below and above.

If we assume that the avoided crossings are well separated
it is justified to consider nonadiabatic transitions only between
neighboring adiabatic states. We may then approximate a sin-
gle crossing by a two-level Landau-Zener model [22]. Given
that the system resides in a single diabatic state before the
crossing the Landau-Zener formula PD = exp (πJ 2/λ) gives
the probability for population transfer to the other diabatic
state. The full time-evolution of the system can be seen as
a grid of repeated Landau-Zener crossings. If initially, say, the
system is prepared in a single diabatic or adiabatic state, as
the system goes through repeated crossings, one would expect
continued broadening of the energy uncertainty �E(t ) =√

〈ψ (t )|(Ĥ (d)
LZg(t ))

2|ψ (t )〉 − 〈ψ (t )|Ĥ (d)
LZg(t )|ψ (t )〉2. However,

interferences between the different “paths” that the system
takes through the grid should somehow influence the overall
dynamics. In fact, the system is a sort of multistate Landau-
Zener-Stückelberg interferometer [24]. Thus, the evolution is
reminiscent of a discrete quantum walk [25]: the nonadiabatic
transitions play the role of moving the walker to the right/left
(for us up/down in energy). For a discrete quantum walk the
spreading is super-diffusive (ballistic), �E ∼ t , in contrast to
a classical walker that is diffusive, �E ∼ √

t . The difference
with a standard discrete quantum walk is that the different
paths result in different dynamical phases, which we know
is the reason for the Bloch revival. So the constructive in-
terference that causes the state to relocalize will counteract
the spreading of the wave-packet. Indeed, for short times we
do find a super-diffusive spreading like in a quantum walk,
and also the probability distribution Eq. (17) resembles that of
a discrete quantum walk [25]. But over longer times we see
instead the Bloch oscillations.

On average the distance between the adiabatic energies
is ω/2 which should reproduce a Bloch period of TEBloch =
4π/ω. To see the Bloch oscillations clearly, we require that
this period is larger than the period τper = ω/λ of our model;
see Fig. 3. As discussed in the previous section, when this
is true we may time-average E(ad)

n (t ) and �1(t ) to get an
exact mapping between our model and the single-band Bloch
Hamiltonian Eq. (1). Figure 4(a) displays the results for a
numerical simulation of our model in this parameter regime.
We indeed see energy Bloch oscillations with the correct
period, even though the revival is not perfect. Furthermore,
the shape of this breathing mode is not exactly like that of
Fig. 1(a). This can be ascribed to the explicit time-dependence
of the system parameters together with coupling terms beyond
nearest neighboring adiabatic states.

FIG. 4. Demonstration of the energy Bloch oscillations (a) and
super energy Bloch oscillations (b) in the Landau-Zener grid model.
In both cases we show the breathing mode, the oscillating mode
does not show as clear oscillating structures. As for Fig. 2, the plots
show

√
Pn(t ), see Eq. (17), for the different adiabatic states, and

with the initial state only populating the middlemost adiabatic state.
The periodic evolution is evident even though there are differences
compared to Fig. 1. Especially interesting is that for the energy Bloch
oscillations, the structure of the breathing model is more diamond-
shaped than for regular Bloch oscillation [see Fig. 1 (a)]. In (a) it
is evident that some population is “leaking out” causing incomplete
revivals (even though it should be remembered that we plot

√
Pn(t )

for visibility and not Pn(t ) such that the weakly populated states
get “magnified”). The energy Bloch period is simply TEBloch = 4π/ω

(4π since the level spacing is ω/2 and not ω), while the super energy
Bloch oscillation period is found numerically to TsEBloch ≈ 2300/ω.
In both plots λ = 1, while the other dimension parameters are ω =
0.5 and J = 0.2 in (a), and ω = 5 and J = 0.5 in (b).

The fact that the parameters have a periodic time-
dependence suggests that our model is like a driven tilted
lattice, and hence, it should also be possible to see super
Bloch oscillations. Those should occur with a period typically
much larger than TEBloch and τper. By increasing ω we are
no longer in the Bloch oscillating regime TEBloch � τper, and
we then find breathing modes with much larger periods; see
Fig. 4(b). To compare the different timescales in our system
is harder than for a driven tight-binding Bloch model, and as
a consequence it is not as easy to identify the period. Never-
theless, we find a beating between TsEBloch and τper – perfect
revivals only occurs when the TsEBloch/τper is an integer. In
addition, we have verified numerically that TsEBloch ∼ 1/ω

(the proportionality constant for the example of Fig. 4(b) is
roughly 2300, which can be compared to 4π for the regular
Bloch oscillations).

IV. PREPARATION OF CAT STATES

Returning to the Sec. II A of the single-band tight-binding
model. According to the acceleration theorem, the motion of
the wave-packet, when localized in momentum, is determined
by the group velocity. We note that if the tunneling amplitude
J swaps sign, so will the group velocity since the band ε(k) is
flipped up-side-down. This fact is used in the following where
we propose how to prepare motional cat states in a trapped ion
system [16].
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An advantage with the trapped ion setup is the flexibility
in monitoring desirable Hamiltonians by driving different
motional sidebands [16]. In particular, a two-level ion in
a harmonic trap is illuminated with a coherent laser. The
laser drives the transition between the two internal states
|±〉. Simultaneously, the momentum carried by absorbed and
emitted photons may induce creation or annihilation of ionic
vibration excitations. To avoid internal transitions between
the states |±〉, the laser is assumed to be far detuned from
these transitions. Due to the internal ionic transitions being far
detuned from the applied laser, it is implied that we consider
the generalized driven harmonic oscillator Hamiltonian

ĤIon(t ) = ωâ†â + J
â† + â√

2
sin(�t )σ̂z, (29)

where σ̂z|±〉 = ±|±〉. Thus, whether the ion is in the lower
|−〉 or upper |+〉 internal state will determine the sign of
the driving term. From Eq. (24) we have that such a sign
change will also flip the sign of the tunneling amplitude in the
corresponding lattice model. Accordingly, we expect opposite
group velocities depending on the internal |±〉 states.

Before demonstrating the outcome of having opposite
signs of J , we briefly mention what we mean by a “cat
state” [26]. The superposition of “dead” and “alive” im-
plies that the corresponding states, |ψ+〉 and |ψ−〉, should
not only be orthogonal but also well separated in a phase
space sense. In the seminal work on preparing cat states
in cavity QED [27], the cat comprises a superposition of
two photonic coherent states with equal amplitude but dif-
ferent phases. The resulting cat state has the form |ψ〉 =

1√
N

(|αeiφ〉|+〉 + |αe−iφ〉|−〉), where N is a normalization
constant, α is the coherent state amplitude, φ the coherent
state phase, and |±〉 the two internal atomic states which are
used to prepare the cat. To call this state a cat one should have
|α|2 � 1 and 〈αeiφ|αe−iφ〉 ≈ 0. We note that the atom is then
approximately maximally entangled with the photon field.

Returning to our system, we consider the initial state

|ψ〉 = |ϕ〉 1√
2

(|+〉 + |−〉), (30)

where |ϕ〉 is some initial motional state, and propagate it for a
time t = TsEBloch/2 with the Hamiltonian Eq. (29), leading to a
state |ψ (TsEBloch/2)〉 = 1√

N
(|ϕ+〉|+〉 + |ϕ−.〉|−〉). The result

for a coherent state |ϕ〉 = |β〉 is presented in Fig. 5(a) by
showing the Husimi Q-function defined as

Q(α) = 1

π
〈α|ρ̂phon|α〉, (31)

with ρ̂phon = 1
N

(|ϕ+〉〈ϕ+| + |ϕ−〉〈ϕ−|) the reduced density
operator for the ion’s motional state and |α〉 a coherent state
with complex amplitude α = x + ip. The splitting between
the two states |ϕ±〉〈ϕ±| is evident, as is the fact that the two
states have different amplitudes (i.e., the average number of
phonons differ for the two states, which follows since one of
the states climbs up the energy ladder while the other climbs
down). Note further that the two-phase space blobs are Gaus-
sian. In fact, the resulting cat is composed of two coherent
states since under time-evolution of the corresponding driven
harmonic oscillator an initial coherent remains coherent [7].

FIG. 5. The motional Q-function Eq. (31) at half the super Bloch
period TsEBloch/2 for the initial state Eq. (30) with either a coherent
state, |ϕ〉 = |β〉 (a), or a Fock state, |ϕ〉 = |n〉 (b). By considering
an initial coherent state we regain Bloch oscillating evolution as
in Fig. 2(b), while an initial Fock state generates the breathing
motion evolution as in Fig. 2(a). Interestingly, the characteristic
phase space features of the two states, Gaussian for a coherent state
and ring-shaped for a Fock state, survive the evolution. In both cases
the two states are well separated with approximately zero overlap
〈ϕ+|ϕ−〉 ≈ 0. The parameters are as in Figs. 2(a) and 2(b) except
� = 1.05, which results in a larger Bloch oscillating amplitude and
thereby larger phase space separation between the two states.

The other scenario when we initialize the ion in a Fock
state is also interesting in terms of state preparation. In the
standard Bloch oscillation setup this corresponds to pop-
ulating all quasimomentum states of the band. The group
velocity argument above does not make sense in this situation.
Nevertheless, the motional states still split up in two parts in
phase space, as depicted in Fig. 5(b). It suggests that the two
states |ϕ±〉〈ϕ±| are now displaced Fock states [21], i.e., the
characteristic ring shape of the Q-function for a Fock state
persists but has been displaced from the origin. However, a
closer analysis shows that this observation is not exact, even
though many of the properties of displaced Fock states are also
carried by the states |ϕ±〉〈ϕ±|. By changing the parameters in
the simulation it is possible to make the two “rings” of the
Q-function in Fig. 5(b) to not overlap at all. Whether this state
should be called a cat state is questionable; on the one hand,
the two parts can be well separated in phase space, but on
the other hand, the two constituting parts are nonclassical in
nature (contrary to large amplitude coherent states).

V. CONCLUDING REMARKS AND DISCUSSIONS

By considering a class of periodically driven quantum
systems we have shown how perfect oscillating dynamics
can emerge. There is a mapping from these systems to the
tilted single-band model, which identifies the periodic be-
havior as Bloch oscillations. This type of Bloch oscillations
appear in the space of adiabatic states. Hence, the system’s
instantaneous energy oscillates in time. This phenomenon
was verified by exploring two different models. The first is
a trivial driven harmonic oscillator, and the periodic evolution
is perfect in this case. In a strict sense, the obtained Bloch
oscillations are super Bloch oscillations which appear in
driven tilted Bloch oscillating systems as a beating mech-
anism between different frequencies. The second model, a
Landau-Zener grid, consists in repeated Landau-Zener cross-
ings which forms a grid in the energy-time plane. When given
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in the diabatic basis this model is not manifestly periodic in
time, but rather describe a linear quench. However, this is
only true in this particular basis. In the adiabatic basis, for
example, the periodicity becomes clear. For this model, the
energy Bloch oscillations are not as perfect, but they still
dominate the evolution. When the “translational invariance”,
imposed by the instantaneous equidistant spectrum, is broken
by a random “disorder” we saw a breakdown of the energy
Bloch oscillations and a buildup of diffusive spreading.

Using trapped ion physics we proposed how to employ the
energy Bloch oscillations to prepare Schrödinger cat states,
i.e., superpositions of states well separated in phase space.
In particular, with an initial coherent vibrational state of the
ion, after half a Bloch period the ion’s motional state is in a
superposition of two coherent states. Similar ideas should be
applicable also in cavity (circuit) QED setups.

The energy Bloch oscillations should be fairly straightfor-
ward to verify experimentally in various realizations of driven
harmonic oscillators. We already in the text suggested trapped
ion systems for this purpose [16]. The trapping potential is
to a good approximation harmonic up to hundreds of phonons
and the periodic driving is rather straightforward by tuning the
laser frequency to the correct sidebands. Naturally, the Bloch
period TEBloch should be considerably smaller than the char-
acteristic timescales for possible dissipation of decoherence
regardless of system considered. As a coherent interference
phenomenon, any decoherence will demolish the oscillations.
For trapped ions the characteristic frequency is on the MHz
scale, while motional heating rate and ionic spontaneous
emission rate of the excited state |+〉 are both on the Hz scale
such that they can be completely ignored [28]. Some decoher-
ence arises also from fluctuations in the trap parameters, but

these are assumed small on the interesting timescales. Another
property of trapped ions is that it is possible to initialize
highly excited Fock states [29] needed if one studies the
breathing modes. For a driven high-Q cavity photon losses are
inevitably present, but by considering realistic experimental
parameters one finds that this should not cause any problems.
The lifetime for a microwave cavity photon can be as large
as tenth of ms, and the photon frequency ω ∼ 50 GHz [30].
Thus, it should be enough to drive the cavity with a detuning
δ� = � − ω around MHz. In the cavity setup is should be
especially easy to detect the energy Bloch oscillations by
simply detecting the characteristics of the cavity output field.
Already the field intensity 〈n̂out〉 will be oscillating with the
Bloch period.

To experimentally realize the Landau-Zener grid model
would require a bit more work. As expressed in Eq. (26) we
have a large spin coupled to a qubit. We can alternatively
replace the large spin with a harmonic oscillator, and the
model is sort of a generalized quantum Rabi model [31] with a
very special “light-matter” coupling. The system with maybe
the largest freedom in engineering such a coupling is that
of trapped ions [16]. The desired coupling according to the
Hamiltonian Eq. (26) should include every possible phonon
transition; single phonon, two phonons, and so on. This is
certainly challenging, but we do not rule it out.
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