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Recovery of nonseparability in self-healing vector Bessel beams
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One of the most captivating properties of diffraction-free optical fields is their ability to reconstruct upon
propagation in the presence of an obstacle, both classically and in the quantum regime. Here we demonstrate
that the local entanglement, or nonseparability, between the spatial and polarization degrees of freedom also
experience self-healing. We measured and quantified the degree of nonseparability between the two degrees of
freedom when propagating behind various obstructions, which were generated digitally. Experimental results
show that even though the degree of nonseparability reduces after the obstruction, it recovers to its maximum
value within the classical self-healing distance. To confirm our findings, we performed a Clauser-Horne-
Shimony-Holt Bell-like inequality measurement, proving the self-reconstruction of nonseparability. These
results indicate that local entanglement between internal degrees of freedom of a photon, can be recovered
by suitable choice of the enveloping wave function.
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I. INTRODUCTION

Self-healing is one of the most fascinating properties of
diffraction-free optical fields [1]. These fields have the ability
to reconstruct if they are partially disturbed by an obstruction
placed in their propagation path. Diffraction-free beams have
found applications in fields such as imaging [2–4], optical
trapping [5–8], laser material processing [9], among many
others. Arguably, the most well-known propagation invariant
(self-healing) fields are Bessel modes of light, first introduced
in 1987 by Durin [1,10]. However, the self-healing property
is not limited to so-called nondiffracting beams, but also
appears in helico-conical [11], caustic, or self-similar fields,
namely Airy [12], Pearcey [13], Laguerre-Gaussian [14,15],
and even standard Gaussian beams [16]. Furthermore, within
recent years, it has been shown that self-healing can also
be observed at the quantum level, for example, McLaren
et al. demonstrated experimentally the self-reconstruction of
quantum entanglement [17]. Importantly, self-healing is not
only an attribute of scalar fields but it can also apply to beams
with spatially variant polarization [18–20].

Bessel beams also appear as complex vector light fields,
where polarization and spatial shape can be coupled in a
nonseparable way [21–23]. This property has fueled a wide
variety of applications, from industrial processes, such as
drilling or cutting [9,24,25], to optical trapping [26–31], high
resolution microscopy [32], quantum and classical commu-
nication [33–35], among many others. Controversially, such
nonseparable states of classical light are sometimes referred
to as classically or nonquantum entangled [36]. This stems
from the fact that the quintessential property of quantum en-
tanglement is nonseparability, which is not limited to quantum
systems. Indeed, the equivalence has been shown to be more
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than just a mathematical construct [34]. While such classical
nonseparable fields do not exhibit nonlocality, they manifest
all other properties of local entangled states.

Here, we demonstrate that the decay in such local entan-
glement after an obstruction can be counteracted if the carried
field is Bessel. We create higher-order vector Bessel beams
that are nonseparable in orbital angular momentum (the az-
imuthal component of the spatial mode) and polarization, and
show that self-healing also comprises the nonseparability of
the beams. This is at a first glance surprising since self-healing
is traditionally attributed to the radial component of the spa-
tial mode, which in our field is entirely separable. In order
to demonstrate the far-reaching concept of self-healing, we
unambiguously quantify the degree of nonseparability in dif-
ferent scenarios ranging from fully to partially reconstructed
fields by performing a state tomography on the classical field
[37,38]. We show both theoretically and experimentally that
even though the nonseparability reduces after the obstruction,
it recovers again upon propagation, proportionally to the level
of self-reconstruction. Further, we confirm our findings by
a Bell-like inequality measurement [39] in its most com-
monly used version for optics, namely, the Clauser-Horne-
Shimony-Holt (CHSH) inequality [40], confirming that the
nonseparability of vector Bessel beams also features self-
healing properties. Although our tests are exerted on purely
classical fields, the results are expected to be identical for
the local entanglement of internal degrees of freedom of a
single photon, and may be beneficial where such entangle-
ment preservation is needed, e.g., transporting single photons
through nanoapertures for plasmonic interactions.

II. VECTOR BESSEL MODES

A. Bessel-Gaussian beams

Over finite distances, a valid approximation of Bessel
beams is given by the so-called Bessel-Gaussian (BG)
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modes [41]. Besides other properties, these BG fields have
the same ability of self-reconstruction in amplitude and
phase [6,42]. In polar coordinates (r, ϕ, z), BG modes are
defined as

EBG
� (r, ϕ, z) =

√
2

π
J�

(
zRkrr

zR − iz

)
exp (i�ϕ − ikzz)

× exp

(
ik2

r zw0 − 2kr2

4(zR − iz)

)
, (1)

whereby � represents the azimuthal index (topological
charge), and kr and kz are the radial and longitudinal wave
numbers, respectively. Further, J�(·) defines the Bessel func-
tion, whereas the Gaussian information is encoded in the last
factor with the initial beam waist w0 of the Gaussian profile
and the Rayleigh range zR = πw2

0/λ, λ being the wavelength.
The finite propagation distance of BG modes (“nondiffracting
length”) is limited by zmax. This distance describes the length
of a rhombus-shaped region created by the superposition of
plane waves with wave vectors lying on a cone described
by the angle α = kr/k (wave number k = 2π/λ) [41], as
indicated in Fig. 1(a). The center of the rhombus-shaped
region is positioned at z0. For small α, i.e., sin α ≈ α, the
nondiffracting distance is given by zmax = 2πw0/λkr [5]. If
an obstruction is included within the nondiffracting distance,
a shadow region is formed of length zmin ≈ R/α ≈ 2πR

krλ
[43]

[Fig. 1(a)]. Here, R describes the radius of the obstruction.
After this distance zmin, the beam starts to recover due to the
plane waves passing the obstruction [6,42]. A fully recon-
structed BG beam will be observed at 2zmin, as visualized in
Fig. 1(a).

B. Realization of obstructed BG modes

An established tool for the realization of complex beams
are spatial light modulators (SLMs). These modulators allow
for an on-demand dynamic modulation of structured beams
by computer generated holograms [44]. For the formation of
BG modes, we choose a binary Bessel function as phase-only
hologram, defined by the transmission function,

T (r, ϕ) = sgn{J�(krr )} exp(i�ϕ), (2)

with the sign function sgn{·} [45,46]. This approach has
the advantage of generating a BG beam immediately after
the SLM. An example of this function is shown in Fig. 1(b1).
Note that for encoding this hologram we use a blazed grating
[see Fig. 1(b2)], so that the desired beam is generated in the
first diffraction order of the grating [47].

Here, we set kr = 18 rad mm−1 and � = 0 for the funda-
mental Bessel mode. Furthermore, we multiply the hologram
by a Gaussian aperture function for the realization of a Gaus-
sian envelope with w0 = 0.89 mm [see Eq. (1), Fig. 1(b2)].
These settings result in a BG beam with zmax = 49.16 cm for
a wavelength of λ = 633 nm, whose intensity profile in the z0

plane is depicted in Fig. 1(c).
Beyond the generation of BG modes, the SLM can also

be used for the realization of obstructions within the z0 plane
[see Fig. 1(d1)]: Absorbing obstacles are created by including
a circular central cut in the hologram, such that within this
area no blazed grating is applied. This means the respective

information of the BG mode is deleted in the first diffraction
order. Furthermore, phase obstructions can be realized by
adding the chosen phase object to the hologram. Hence, this
artificial generation of obstructions facilitates the realization
of any chosen kind of obstacle of defined radius R in the
z0 plane. Moreover, the relation zmin ≈ 2πR

krλ
shows that a

decrease in the radius R of the circular obstruction at z0 results
in a decrease in the length zmin of the shadow region, which is
equivalent to moving the detection plane in the ±z direction
[see Fig. 1(d2)], in order to analyze the evolution from a
partially to a fully reconstructed beam.

C. Self-healing vector Bessel modes

In order to investigate the relation between the self-healing
of propagation invariant beams and the nonseparability of
light modes, we apply vector Bessel beams, or, more precisely,
vector Bessel-Gaussian (vBG) modes. These modes are clas-
sically entangled in their spatial and polarization degrees of
freedom (DoF) as explained in the next section. As illustrated
in Fig. 1(d1), these beams are generated by a suitable combi-
nation of an SLM (SLM1), half wave plates ( λ

2 ) and a q-plate
(q), a device capable of correlating the polarization and spatial
DoFs [48]. First, we create the fundamental scalar BG mode
(linearly polarized in the horizontal direction) by encoding
the binary Bessel hologram [Fig. 1(b2)] on SLM1. Within a
4f system we filter the first diffraction order with an aperture
(A). If we now position, for example, a half wave plate, whose
fast axis is oriented in a 45◦ (π/4) angle with respect to
the incoming horizontal polarization, in combination with a
q-plate (q = 1/2) in the beam path, an azimuthally polarized
vBG mode is created in the image plane of SLM1 [see
Fig. 1(d1)]. The desired mode is generated from the q-plate
by coupling the polarization DoF with the orbital angular
momentum (OAM) via a geometric phase control, imprinting
an OAM charge of ±2q per circular polarization basis to the
passing beam [48]. Note that wave and q-plate(s) do not need
to be placed within the nondiffracting distance as we work
in the paraxial regime (sin α ≈ α). The plates could even be
located within the Fourier plane of SLM1 [18]. Moreover, we
are of course not limited to azimuthally polarized vBG modes.
Depending on the chosen number and orientation of wave
plates, different polarization structures are accessible [49]
as depicted in Fig. 2. Here, we demonstrate the intensity
distribution of different vBG beams in the z0 plane analyzed
by a polarizer (orientation indicated by white arrows).

In Fig. 1(e1) we present the experimentally measured prop-
agation invariant properties of these modes by the example of
the azimuthal vBG beam [cf. Fig. 2(a)]. The transverse in-
tensity profile is shown for different positions z ∈ [z0, zmax].
Consider that the outer rings of the vBG mode disappear with
increasing z due to the rhombus shape of the nondiffracting
region.

As explained above, SLM1 enables the inclusion of an
obstruction within the holographically created scalar BG field.
Following this, we are also able to apply the SLM for im-
parting an obstruction within the vBG mode: As SLM1 is
imaged by a 4f system to the z0 plane of the vBG beam, an
obstacle created by SLM1 is also imaged to the z0 plane of
the formed vector mode [cf. Fig. 1(d1)]. As an example, we
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FIG. 1. (a) Formation of Bessel beams by off-axis interfering plane waves. If obstacles are included (radius R) a shadow region is formed.
Scalar BG modes [intensity profile at z0 in (c)] are realized by applying the binary Bessel function (b1) in combination with a blazed grating and
Gaussian aperture (b2). (d) Concept of the realization and analysis of nonseparable vBG modes (SLM, spatial light modulator; L(F ), (Fourier)
lens with focal distance f ; A, aperture; λ/n, n = {2, 4}, wave plates; q, q-plate; CCD, camera). (e) Propagation behavior of azimuthal vBG
mode (e1) without obstruction and (e2) obstructed by on-axis absorbing object with R = 200μm, indicated by white circle.

investigated the propagation properties of the azimuthal vBG
mode if obstructed by an absorbing object with R = 200μm
created by SLM1. Here, we included an additional horizon-
tally oriented polarizer to analyze the polarization properties
simultaneously. Results are shown in Fig. 1(e2). For the
programmed obstacle we calculate a self-healing distance
of zmin = 11.02 cm. The shown intensity distributions reveal
a self-reconstruction of the beam including its polarization
properties after approximately 2zmin, as expected.

III. LOCAL ENTANGLEMENT IN SELF-HEALING
OPTICAL BEAMS

A. Local entanglement in classical optics

For the benefit of the reader, in this section we briefly
introduce the notion of local entanglement in classical optics

and its relevance to this study. Entanglement is commonly
regarded as a property of quantum systems. However, in
recent time several works have demonstrated that entangle-
ment is of a more general nature that also includes classical
systems[50–55]. Entanglement can happen in two different
ways: between systems that are spatially separated from each
other or between the internal DoF of a system, denoted as
nonlocal or local, respectively. While the first one can only be
used in a quantum context, the second, local entanglement,
applies as well to classical systems, for example, to the
nonseparability between polarization and spatial DoF in
vector beams, an example of a bipartite system [56–61]. In this
context, two systems A and B are nonseparable or classically
entangled if they cannot be represented as a factorizable
product of the two subsystems, i.e., |�AB〉 �= |A〉 ⊗ |B〉. Here,
the symbol ⊗ denotes the tensor product of the two DoF.
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FIG. 2. Examples of nonseparable vBG modes with respective
polarization analysis. The normalized intensity distribution in the z0

plane for different orientations of a polarizer are shown. The respec-
tive orientation is indicated by white arrows in (a). The according
polarization distribution is highlighted by black arrows.

In a similar way to quantum systems, local classical entan-
glement or nonseparability can be quantified by the level of
crosstalk when decomposed into a basis of observables with
maximal nonseparability [37,62]. To show this, let us take the
example of a vector beam, expressed using Dirac’s notation
[23,37,63],

|ψ〉 = √
a|uR〉 ⊗ |R〉 +

√
(1 − a)|uL〉 ⊗ |L〉, (3)

where the ket |uR〉 and |uL〉 represents the spatial DoF, the kets
|R〉 and |L〉 represent the polarization DoF in the right-left
circular basis. The weighting factors

√
a and

√
1 − a, with

a ∈ [0, 1], determine the degree of local entanglement, rang-
ing from 0 for separable (nonentangled) to 1 for nonseparable
(entangled) states.

According to quantum mechanics, the degree of entangle-
ment of a pure state of bipartite systems can be quantified
through the entanglement entropy [64]. More explicitly, this
is given by the von Neumann entropy of the reduced density
matrix of the polarization DoF, obtained by tracing over the
spatial DoF, as [37,65]

E(|ψ〉) = −Tr[ρp log(ρp )], ρp = Trs[|ψ〉〈ψ |]. (4)

This expression provides us with a means to measure en-
tanglement with respect to the degree of mixedness of the
polarization DoF. Physically, the reduced density matrix,

ρp =
⎛
⎝ a

√
a(1 − a)|uL〉〈uR|

√
a(1 − a)|uR〉〈uL| (1 − a)

⎞
⎠, (5)

determines the average polarization of the classically entan-
gled state and can be determined by measuring the compo-
nents si = Tr[σiρp], i = {1, 2, 3}, of the Bloch vector s. The
terms ρp = (1 + ∑

i siσi )/2 correspond to the Stokes param-
eters, and σi are the traceless Pauli operators spanning the so-
called higher-order Poincaré sphere (HOPS; see Fig. 3) [66].

FIG. 3. Higher-order Poincaré spheres of self-healing BG beams
spanned by the Stokes parameters (a) S+1

1,2,3 for H2,σ,�=1 and (b) S−1
1,2,3

for H2,σ,�=−1. The poles represent separable BG states with circular
polarization and � = ±1, while nonseparable vBG states are found
on the equator (i.e., the plane intersecting the S±1

1,2 plane).

These operators are given by

σ1 = |H 〉〈H | − |V 〉〈V |,

σ2 = 1

2
(|H + V 〉〈H + V | − |H − V 〉〈H − V |),

σ3 = |R〉〈R| − |L〉〈L|. (6)

The classical entanglement is thus calculated as

E = −
(

1 + s

2

)
log

(
1 + s

2

)
−

(
1 − s

2

)
log

(
1 − s

2

)
,

(7)

where s is the length of the Bloch vector and is given by

s(ρP ) = (
Tr

[
ρ2

P

])1/2 =
(

3∑
i=1

〈σi〉
)1/2

. (8)
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To quantify the degree of classical entanglement or nonsep-
arability, we can rely on the closely related concurrence C

and define its real part as the vector quality factor (VQF) or
vectornes [62], namely

VQF = Re(C) = Re(
√

1 − s2). (9)

In the following, we employ the VQF measure as a figure
of merit for determining the nonseparability of partially ob-
structed and consequently self-healing vBG modes.

B. Vector quality factor of obstructed beams

Following the description in Eq. (3), we consider an arbi-
trary self-healing vBG field with each photon described by the
following state:

|�〉kr � = cos(θ )|ukr ,�〉|R〉 + sin(θ )|ukr ,−�〉|L〉, (10)

where polarizations |R〉 and |L〉 span the qubit Hilbert space
H2. The infinite dimensional state vectors |ukr ,±�〉 ∈ H∞ rep-
resent the self-healing transverse eigenstates, namely scalar
Bessel or BG modes of light [cf. Eq. (1)], characterized by
the continuous radial wave number kr and the topological
charge �. Equivalently to a in Eq. (3), the parameter θ de-
termines whether |�〉kr �

is purely vector (nonseparable; θ =
(2n + 1)π/4, n ∈ Z), scalar (separable; θ = nπ/2, n ∈ Z),
or some intermediate state. Accordingly, the respective VQF
is given by

VQF = | sin(2θ )|. (11)

From wave optics, it is well known that an obstructed beam
can be modified in both phase and amplitude due to the inter-
action between the beam and the outer edges of an obstruction,
resulting in diffraction. At the single photon level, this can
be understood as modal coupling [67]. That is, if some field
with a transverse profile given by |ukr1 ,�1〉 interacts with an
obstruction, the state evolves following the mapping,

∣∣ukr1 ,�1

〉 →
∫ ∑

�

α�(kr )
∣∣ukr ,�

〉
dkr, (12)

where the input mode spreads over all eigenmodes |ukr ,�〉.
The coefficients |α�(kr )|2 represent the probability of the
state |ukr1 ,�1〉 scattering into the eigenstates |ukr ,�〉 with the
property that

∫ ∑
� |α�(kr )|2dkr = 1. Applying the mapping

of Eq. (12) to the scattering of the self-healing vBG mode
presented in Eq. (10) and post-selecting particular kr and �

values yields the state,

|�kr ,�〉 = a|ukr ,�〉|R〉 + b|ukr ,−�〉|R〉
+ c|ukr ,〉|L〉 + d|ukr ,�〉|L〉, (13)

where |a|2 + |b|2 + |c|2 + |d|2 = 1. Consequently, |�kr ,�〉 re-
stricts the measurement of the photons to the four-dimensional
Hilbert space H4 = span({|R〉, |L〉} ⊗ {|ukr ,�〉, |ukr ,−�〉})
which can be written as the direct sum,

H4 = H2,σ,� ⊕ H2,σ,−�. (14)

The subspaces H2,σ,±� = span(|ukr ,±�〉|R〉, |ukr ,∓�〉|L〉) are
topological unit spheres for spin-orbit coupled beams belong-
ing to the family of HOPS [66].

Invoking the equivalence between VQF and concurrence
enables us to exploit the definition of concurrence with C =√

(1 − Tr(
√

ρp )) for a given density matrix ρψ where ρp is
the reduced density matrix. In quantum mechanics, if the state
of a two-qubit system written in the logical computation basis
is given by the pure state,

|�〉 = c1|0〉|0〉 + c2|0〉|1〉 + c3|1〉|0〉 + c4|1〉|1〉, (15)

satisfying the normalization condition
∑4

j=1 |cj |2 = 1, the
concurrence is C = 2|c1c4 − c3c2|. By replacing the two-
qubit logical basis with the H4 basis from the two HOPSs,
we can equivalently write the VQF as

VQF = 2|ad − cb|, (16)

following Eq. (13).
As an illustrative example, consider the azimuthally polar-

ized vBG mode given by

|ψ〉kr ,1 = 1√
2

(|ukr ,1〉|R〉 − |ukr ,−1〉|L〉). (17)

Upon diffracting off the edges of an obstruction, one
expects the mode coupling profiled in Eq. (13) to occur (by
restricting |�| = 1). However, since the radial profile of BG
modes enables the transverse structure to self-heal, cb → 0
and ad → − 1

2 , and therefore VQF → 1 giving rise to the
self-healing of the nonseparability. This behavior is predi-
cated to occur best after twice of the minimum self-healing
distance zmin.

To experimentally quantify the characteristics of vector-
ness, i.e., classical entanglement, in relation to the self-
healing properties of vGB modes, we apply a configuration
as indicated in Fig. 1(d2). By this configuration, consisting
of a quarter wave plate ( λ

n
, n = 4), a polarization sensitive

SLM (SLM2), a Fourier lens (LF ), and a CCD camera, we
determine the expectation values of the Pauli operators 〈σi〉,
i = {1, 2, 3} by 12 on-axis intensity measurements or six
identical measurements for two different basis states [37,38].
These values are used to determine the VQF according to
Eq. (9).

If circular polarization is chosen as basis |R〉, |L〉, the
projection measurements represent two OAM modes of topo-
logical charge � and −�, namely |ukr ,±�〉 = EBG

±� , as well as
four superposition states |ukr ,�〉 + exp(iγ )|ukr ,−�〉 with γ =
{0, π�/2, π�, 3π�/2}. As we use a q-plate with q = 1/2, our
measurements are performed for � = 1. Following Table I, we
calculate expectation values 〈σi〉 from

〈σ1〉 = I13 + I23 − (I15 + I25),

〈σ2〉 = I14 + I24 − (I16 + I26),

〈σ3〉 = I11 + I21 − (I12 + I22).

TABLE I. Normalized intensity measurements Iuv for the deter-
mination of expectation values 〈σi〉.

Basis states � = 1 −1 γ = 0 π/2 π 3π/2

Left circular |L〉 I11 I12 I13 I14 I15 I16

Right circular |R〉 I21 I22 I23 I24 I25 I26
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FIG. 4. Vector quality analysis of self-healing vBG mode (azimuthally polarized) without obstacle (a), with absorbing obstacles of radius
(b) R = 150μm, (c) R = 200μm, (e) R = 500μm, and (f) R = 600μm, as well as (d) phase obstacle (homogeneous phase shift of π ) of
radius R = 200μm. Results for beams which (do not) fully self-heal before the analysis are marked (blue) red with respective VQF within the
measured normalized matrices of on-axis intensity values arranged according to Table I.

On-axis intensity values Iuv , u = {1, 2}, v = {1, 2, ..., 6},
are normalized by I11 + I12 + I21 + I22. The respective
polarization projections are performed by inserting a quarter
wave plate, set to ±45◦, in combination with the polarization
selective SLM2. Further, SLM2 is responsible for the OAM
projections. For this purpose, we encode the OAM as well
as superposition states as phase-only holograms according
to the binary Bessel function in Eq. (2). Finally, the on-axis
intensity is measured in the focal plane of a Fourier lens by
means of a CCD camera.

Crucially, the decoding SLM2 is placed at an adequately
chosen distance �z = 23 cm from the z0 plane so that we are
able to access different levels of self-healing without the need
to move the detection system. That is, by changing the radius
R of the digitally created obstruction, the vBG mode can fully
self-heal in front of (2zmin < �z) or behind (2zmin > �z) this
SLM2, as indicated in Fig. 1(d2) by the black shadow region
or the green and yellow dashed lines, respectively.

C. Experimental quantification of vectorness

First, we prove that pure undisturbed vBG modes show
the maximum degree of nonseparability. This is exemplified
by the analysis of an azimuthally polarized vBG beam.
The experimentally measured on-axis intensity values are
visualized in Fig. 4(a), arranged according to Table I.
The measurements result in a VQF of 0.99, verifying our
expectation. In a next step, we digitally impart different
obstacles and determine the respective VQF. On the one hand,
we chose obstacles allowing the beam to self-reconstruct
within �z = 23 cm, namely absorbing obstructions with R =
150μm (2zmin = 2 × 8.27 cm = 16.54 cm) or R = 200μm
(2zmin = 2 × 11.03 cm = 22.06 cm) and a phase obstacle
with R = 200μm creating a homogeneous phase shift of π

[Figs. 4(b)–4(d)]. On the other hand, we program absorbing
obstructions with R = 500μm (2zmin = 2 × 27.57 cm =
55.14 cm) and R = 600μm (2zmin = 2 × 33.03 cm =
66.06 cm), for which 2zmin > �z and even zmin > �z

[Figs. 4(e) and 4(f)]. The respective measured VQFs are
shown within each subfigure.

Obviously, the degree of nonseparability, i.e., the VQF, de-
creases with increasing absorbing obstacle size R (Fig. 4). For
self-healed beams with absorbing obstacles [Figs. 4(b) and
4(c)], the VQF differs only minimally from the nonobstructed

case (a). Note that a phase obstruction of the same radius (d)
results in a slightly larger deviation. In contrast to absorbing
obstacles, causing a loss of information, phase obstructions do
not cut but vary information. Since in the case of absorbing
obstacles the cut information is also included within the pass-
ing plane waves, the loss can be compensated within 2zmin. In
the phase obstruction case, the varied information represents
additional information, i.e., noise, within the nondiffracting
beam, which is not eliminated when being decoded by the
SLM. Hence, the beam stays disturbed and, as a consequence,
the VQF decreases.

Further, if the beam cannot fully reconstruct before being
decoded by SLM2, thus, if we analyze the degree of entan-
glement within the self-healing distance [Figs. 4(e) and 4(f)],
the decrease in VQF is relatively large in comparison to the
self-healed versions in Figs. 4(b) and 4(c). However, note
that in both cases, the self-reconstructed and nonreconstructed
beams, the VQF is � 0.88. Consequently, the beams are closer
to being vector or nonseparable (VQF = 1) than scalar or sep-
arable (VQF = 0). This is due to the fact that there is always
undisturbed information reaching the SLM2, and only little
scattering into other modes, i.e., little modal coupling. We
thus may conclude that the beam is always nonseparable, but
due to noise caused by the obstacle the measurement shows
deviations from pure nonseparability. As the noise is annihi-
lated with propagation distance (for absorbing obstacles), the
quantitative value for nonseparability, namely VQF, recovers.
This effect is similar to what we call “self-healing” in the
case of amplitude, phase, and polarization of vBG modes:
Obstacles add noise to the information on these degrees of
freedom. Upon propagation, these perturbations vanish and
the pure vBG mode information is left so that the beam and
its properties seem to self-reconstruct.

Consequently, we conclude that the lower the level of
self-healing, i.e., the larger the obstacle, the smaller the VQF.
This means, not only amplitude, phase, and polarization prop-
erties of the vBG mode reconstruct with distance behind an
obstruction, but also the degree of nonseparability.

D. CHSH Bell-like inequality violation

To confirm our results with respect to the VQF, we per-
formed an additional investigation of the degree of entan-
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FIG. 5. Bell-type curves for azimuthal vBG mode with four different orientations 2θA of the half wave plate to determine the Bell parameter
|S|. The investigations were performed undisturbed (a) as well as for differently sized obstacles (radii R = {150, 200, 500, 600}μm in (b)–(f))
and a π -phase obstacle (R = 200μm) (d). Shown on-axis intensity measurements I ′(θA, θB ) for (a)–(f) are normalized according to the
maximum intensity measured without obstacle (a). Dashed curves represent cos2 fits used to determine S.

glement or nonseparability using the Bell parameter [37,61].
More specifically, we perform a Clauser-Horne-Shimony-Holt
(CHSH) inequality measurement [40], the most commonly
used Bell-like inequality for optical systems, to demonstrate
the degree of entanglement between polarization and spatial
DoFs. Instead of measuring a single DoF, e.g., polarization or
OAM, nonlocally, we analyze two DoF locally on the same
classical light field [37]. The veracity of this procedure for the
study at hand is based on the analogy of local entanglement
between classical and quantum systems [37,53,55,59,61,68],
as outlined in Sec. III A. Importantly, classical and local non-
separability (entanglement) by definition cannot be nonlocal,
so this aspect cannot be tested, but nor do we need to as all
our measurements are local. For the respective measurement,
we placed a half wave plate ( λ

n
, n = 2) in front of SLM2

[see Fig. 1(d2)] and measured the on-axis intensity I (θA, θB )
for different angles 2θA = {0, π/8, π/4, 3π/4} of the half
wave plate. Here, θB ∈ [0, π ] represents the rotation angle of
the hologram encoded on SLM2 by |ukr ,�〉 + exp(i2θB )|ukr ,−�〉
(� = 1, kr = 18 rad mm−1).

We define the CHSH-Bell parameter S as

S = E(θA, θB ) − E(θA, θ ′
B ) + E(θ ′

A, θB ) + E(θ ′
A, θ ′

B ),
(18)

with E(θA, θB ) being calculated from measured on-axis inten-
sity according to [37]

E(θA, θB ) = A(θA, θB ) − B(θA, θB )

A(θA, θB ) + B(θA, θB )
.

A(θA, θB ) = I (θA, θB ) + I
(
θA + π

2
, θB + π

2

)
,

B(θA, θB ) = I
(
θA + π

2
, θB

)
+ I

(
θA, θB + π

2

)
. (19)

The values of S ranges from |S| � 2 for separable states, up
to |S| = 2

√
2 for entangled or nonseparable states, which is

known as Tsirelson’s bound [69]. Our experimental results
with according Bell parameters |S| are presented in Fig. 5. As
before, we performed our investigation without obstacle [Fig.
5(a)] as well as with different absorbing obstacles of radii
R = {150, 200, 500, 600}μm [Figs. 5(b)–5(f)], or Fig. 5(d)
phase obstructing. Note that the intensity values (mean of
seven neighboring CCD pixel values) are normalized with
respect to the maximum value measured in the unobstructed
case (I ′(θA, θB )). Considering the standard deviation as well
as systematic and technical errors within the experiment,
an error of ±7% of the maximum intensity in each graph
Figs. 5(a)–5(f) (I ′

max(R)) is assumed. Obviously, the ratio of
measurable maximum intensity I ′

max(R) decreases dramati-
cally depending on the size of the obstruction, as it can be seen
on the I ′(θA, θB ) axis (vertical) of Fig. 5. However, the Bell
parameter does not change significantly if we measure in the
fully reconstructed regime [2zmin < �z for Figs. 5(b)–5(d)]
compared to the undisturbed vBG mode (a). In accordance
with our VQF analysis, |S| reveals bigger changes if the beam
is not fully self-healed when it is analyzed in Figs. 5(e) and
5(f). In total, even if the intensity lowers to some percentage
[Fig. 5(f)] of the original maximum value [Fig. 5(a)], all mea-
surements validate a violation of the Bell inequality, matching
our nonseparability analysis results based on vectorness.

E. The relation of self-healing and nonseparability

In Table II we summarize our results emphasizing the
dependence of the VQF, the maximum intensity I ′

max as well
as Bell parameter |S| on the size R of included obstructions,
i.e., on the self-healing level. The maximum intensity I ′

max(R)
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TABLE II. Quantification of nonseparability properties of self-
reconstructing vBG modes as a function of the self-healing level,
given by the obstacle radius R.

R in µm 0 150 200 200, π obst. 500 600

VQF 0.99 0.98 0.97 0.95 0.94 0.88
|S| 2.81 2.81 2.79 2.79 2.74 2.75
I ′

max 1 0.93 0.82 0.53 0.09 0.03

reveals an approximately Gaussian decrease with increasing
obstacle size which reflects the Gaussian envelope of inves-
tigated vBG mode. Simultaneously to the intensity, the VQF
as well as |S| decrease as demonstrated in previous sections.
However, only small changes are observed as only minor
noise is disturbing vBG modes if obstructions are included.
In short, both vector quality as well as Bell analysis reveal
a similar behavior of nonseparability with respect to changes
in the obstruction size, demonstrating the self-healing of the
degree of entanglement within obstructed vBG beams.

IV. CONCLUSION AND DISCUSSION

It is well known that the phase and amplitude of vector
Bessel beams self-heal in the presence of an obstacle that par-
tially blocks its path. However, there are no reports about the
effect of this on the coupling between phase and polarization,
known as classical entanglement. In this work, we presented
for the first time to our knowledge experimental evidence
that even though the coupling between these two degrees of
freedom decreases after passing an obstruction, it eventually
restores itself to its maximum value. For this purpose, we
dynamically realized vector Bessel Gaussian (vBG) modes
with digital obstructions by combining holography-based
generation of structured light with a q-plate. We quantified
the degree of nonseparability between the spatial shape and
polarization using two different means: the vector quality
factor (VQF) and a classical version of the CHSH Bell-like

inequality. By a specific design of our detection system com-
bined with digital variation of the obstruction size, different
levels of self-healing were accessible, which enabled the
relation between degree of nonseparability and self-healing
level to be analyzed. The measured VQF values showed that
the degree of classical entanglement increases as a function of
decreasing object size. Analogously, the measured CHSH S

parameter values show a similar dependence on the object size
or self-healing level of the vBG beam, showing in all cases a
clear violation of the CHSH inequality. This behavior can be
interpreted as self-healing in the degree of nonseparability as
a function of the distance from an obstacle since a decrease
in obstacle size is comparable to placing the detector farther
from the object. Physically, our findings can be described
by the annihilation of perturbation with propagation distance
within a nonseparable beam: Even though an obstacle cuts
or adds noise to the light field, there is always undisturbed
information kept in passing plane waves. Upon propagation,
the loss of information is compensated or the noise is canceled
by these waves so that quantitative values for nonseparability
recover.

The complex fields used in this study were separable in
radial profile, defined by the kr vector of the conical waves,
but nonseparable in the azimuthal profile and polarization,
the latter being defined by the OAM of each polarization
component. Intriguingly, it is the radial profile that leads to
the self-healing of the nonseparability, despite itself being
separable. Thus the local entanglement in angular momentum
(spin and OAM) can be made more resilient to decay from
obstructions by engineering the unused degree of freedom in
a judicious manner.
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