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Space-time duality and quantum temporal imaging
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Using the space-time analogy, we compare the performance of quantum temporal imaging with its classical
counterpart. We consider a temporal imaging scheme, based on the sum-frequency generation time lens, but our
results can be applied to other temporal imaging schemes such as, for instance, four-wave mixing. Extending
the theory presented in our previous publications, in this paper we take into account the finite time aperture
of the imaging system, characterized by its pupil function. Using the quantum theory, we obtain a unitary
transformation of the quantum field from the input to the output of the imaging scheme and identify the
contribution of the vacuum fluctuations missing in the classical theory. This contribution plays a key role in
the quantum temporal imaging of nonclassical temporal waveforms, characterized by nonclassical fluctuations
of the electromagnetic field. As an example, we consider quantum temporal imaging of broadband squeezed
light and formulate the criteria for conservation of its squeezing properties at the output of the system.
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I. INTRODUCTION

Optical temporal imaging is a technique for manipulating
temporal waveforms similar to manipulating spatial transverse
wave surfaces using a space-time analogy [1,2]. Temporal
imaging was first discovered in the mid-1960s with purely
electrical systems, then extended to optics [3], and later
converted into all-optical technology using the development
of nonlinear optics and ultrashort-pulse lasers [4]. Nowadays,
temporal imaging has become a mature area of modern optics
with various applications. One of the typical applications of
temporal imaging is stretching of ultrafast temporal wave-
forms with bandwidths of tens and hundreds of terahertz by
several orders of magnitude in order to make them detectable
by ordinary photodetectors with bandwidths of the order of
tens of gigahertz. Another example is the compression of
waveforms created by electro-optical devices to picosecond
and subpicosecond timescales for increasing the rate of their
transmission.

The key element of a temporal imaging system is a time
lens, which introduces a quadratic temporal phase modu-
lation into an input waveform, similar to quadratic phase
modulation in the transverse dimension, introduced by its
spatial counterpart into an input wave surface. Optical time
lenses presently are based on electro-optical phase modulation
[5–9], sum-frequency generation (SFG) [10–16], or four-wave
mixing (FWM) [17–20] and provide a temporal magnification
up to 100 times.

The classical theory of temporal imaging considers the
electromagnetic field in a framework of classical electrody-
namics. At the same time, temporal imaging has many poten-
tial applications in quantum optics and quantum information
and could lead to the establishment of a whole new branch,
quantum temporal imaging, similar to its spatial analog:
quantum imaging [21–23]. Quantum temporal imaging should
allow for manipulation of nonclassical temporal waveforms in
a noiseless fashion, i.e., without destruction of their nonclassi-

cal properties such as squeezing, entanglement, or nonclassi-
cal photon statistics. Such a technique may find numerous ap-
plications in optical implementations of quantum information
protocols with discrete and continuous variables. In particular,
quantum temporal stretching provides a method of decoding
quantum information, conveyed by ultrabroadband squeezed
light, generated in chirped quasi-phase-matched crystals
[24–26]. The primary goal of the theory of quantum temporal
imaging is to establish the physical conditions for such a
noiseless performance of temporal imaging devices. Several
papers have addressed the subject of temporal imaging at
the single-photon level [27–30]. In our previous publications
[31–33] we have considered quantum temporal imaging with
broadband squeezed light and have formulated the appropriate
conditions for the imaging scheme and the parameters of the
light source, which allow for maintaining the squeezing at the
output of the scheme.

In the present paper we are extending the quantum theory
of temporal imaging, formulated in our previous publications,
in order to take into account the finite time aperture of the
imaging system, characterized by its pupil function. In classi-
cal temporal imaging the role of the finite time aperture was
investigated in Ref. [4]. Precisely, it was demonstrated that,
similar to conventional spatial imaging, a finite time aperture
determines the resolution of the temporal imaging system. In-
deed, the finite size of the pupil function in a temporal imaging
system imposes the upper limit of temporal frequencies that
can be transmitted through the system. The frequencies above
this limit are lost and, therefore, are not present in the image
at its output. In quantum theory all losses are accompanied by
the fluctuations in order to preserve the unitarity of the field
transformation. Therefore, the primary task of the quantum
temporal imaging theory is to find out a unitary transformation
of the field from the input to the output of the imaging system
with the finite pupil, and determine the contribution of the
quantum fluctuations missing in the classical theory. In this
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paper we present such unitary transformation described by
two corresponding impulse response functions. The first one
is identical to the impulse response function in the classical
temporal imaging, while the second one is introduced in this
paper for the first time and is absent in the classical theory.
This impulse response function describes quantum temporal
imaging of the quantum vacuum fluctuations always present
at the input of the imaging scheme.

The paper is organized as follows. In Sec. II we formulate
the quantum theory of temporal imaging with an SFG time
lens and a finite time window, we make a detailed comparison
between the quantum theory and its classical counterpart and
explain the difference between them. In Sec. III we apply our
quantum theory to quantum temporal imaging with nonclassi-
cal light, taking as an example a broadband squeezed light. In
Sec. IV we provide a conclusion and give an outlook for the
future.

II. QUANTUM TEMPORAL IMAGING
WITH AN SFG TIME LENS

A. Description of the scheme

We consider a simple temporal imaging system shown in
Fig. 1. It consists of the first dispersive medium followed
by a time lens and the second dispersive medium. In the
following we refer to the first (second) medium as the input
(output) dispersive medium. The time lens is implemented by
a nonlinear process that can be either a SFG or a FWM. In this
paper we consider the SFG time lens. The case of the FWM
time lens was considered in Refs. [33,34]. In the SFG process
a strong pump wave of frequency ωp interacts with a signal
wave of frequency ωs to produce an idler wave of frequency
ωi such that ωs + ωp = ωi .

We use the plane-wave approximation and describe each
field by its positive-frequency amplitude E(+)

μ (t, z) at the time
t and the longitudinal position z, where the index μ = {s, i, p}
identifies the signal, the idler, or the pump waves, respectively.
We consider the signal and the idler waves as quantum-
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FIG. 1. Temporal imaging system with a single time lens. ξ is
the propagation distance measured in total group delay dispersion
from the object plane, and τ is the local time relative to the group
delay. Red arrows are temporal rays [12,13] corresponding to dif-
ferent spectral components of the input signal. Image formation is
completely analogous to that of a spatial imaging system.

mechanical operators and the pump wave as a classical func-
tion. All waves are assumed to be narrow band with the
carrier frequencies ωμ. Each wave passing through a medium
experiences dispersion, characterized by the dependence of its
wave vector kμ(ω) on the frequency ω, which we decompose
around the carrier frequency in � = ω − ωμ and limit the
Taylor series to the first three terms:

kμ(ω) ≈ kμ(ωμ) + β (1)
μ � + β (2)

μ �2/2, (1)

where β (1)
μ = (dkμ/d�)ωμ

is the inverse group velocity, and
β (2)

μ = (d2kμ/d�2)ωμ
is the group velocity dispersion of the

medium at the carrier frequency ωμ.
We introduce a frame of reference traveling with the wave

at the group velocity, possibly different in each medium. Thus,
for each point z we introduce the delayed time τ = t − τμ(z),
where τμ(z) is the total delay for the wave E(+)

μ (t, z) from
the object plane at z = zin to the point z, between zin and
the image plane z = zout. A delay in a medium of length L

with the inverse group velocity β (1)
μ is β (1)

μ L, and the total
delay τμ(z) can be found by summing the delays of all media
between zin and z. In this reference frame we can write

Ê(+)
μ (t, z) = Eμei(kμz−ωμt )Âμ(τ, z), (2)

where Eμ is the single-photon field amplitude, kμ(ωμ) = kμ,
and the field envelope Aμ(τ, z) is given by

Âμ(τ, z) = 1

2π

∫ ∞

−∞
ε̂μ(�, z)eiβ (2)

μ �2(z−z0 )/2−i�τ d�, (3)

with ε̂μ(�, z) being the slowly varying quantum ampli-
tude [35,36] for the given medium with the entrance point at
z0.

In a linear dispersive medium the slowly varying amplitude
ε̂μ(�, z) does not change during the propagation. Hence, the
envelope field of Âμ(τ, z) at the end of the input dispersive
medium, z1, can be written as

Âμ(τ, z1) =
∫ ∞

−∞
Gin(τ − τ ′)Âμ(τ ′, zin )dτ ′, (4)

where

Gin(τ ) = e−iτ 2/2Din

√−2πiDin
, (5)

with Din = β (2)
s (z1 − zin ) being the group delay dispersion

(GDD) of the medium. Equation (4) describes a unitary
transformation of the field operators, which follows from the
identity∫ ∞

−∞
Gin(τ − τ ′′)G∗

in(τ ′ − τ ′′)dτ ′′ = δ(τ − τ ′), (6)

and hence it preserves the commutator for the field operators,
as it should for a dispersive propagation without losses.

Assuming perfect phase matching and the undepleted
pump, the SFG time lens can be described by the following
unitary transformation from the point z1 (time lens input) to
the point z2 (time lens output) [31]:

Âs (τ, z2) = c(τ ) Âs (τ, z1) − s(τ )e−iφ(τ ) Âi (τ, z1),

Âi (τ, z2) = s(τ )eiφ(τ )Âs (τ, z1) + c(τ )Âi (τ, z1), (7)
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with

c(τ ) = cos[gAp(τ )L],

s(τ ) = sin[gAp(τ )L]. (8)

Here L = z2 − z1 is the length of the nonlinear medium, while
Ap(τ ) and φ(τ ) are the modulus and the phase of the pump
pulse. Note, that in the SFG medium we assume equal group
velocity for all three waves, so that their reference frames
coinside. For the implementation of a time lens, a short Gaus-
sian pulse of duration τp is propagated through a dispersive
medium of length Lp and group velocity dispersion β (2)

p at the
carrier frequency ωp. At the output of the medium the pump
pulse is stretched to the duration T � τp and acquires a phase
that is quadratic in time, φ(τ ) = τ 2/2Df , with Df = −β (2)

p Lp

known as the focal GDD [13,14]. In the present work we
consider only the case of a negatively chirped pump, β (2)

p < 0,
for definiteness. As a consequence, Df > 0. We also assume
that the signal and the idler beams pass through the media with
positive dispersion, so that both Din and Dout are positive.

Equations (7) describe a unitary transformation of the
photon annihilation operators of the signal and the idler waves
from the input of the SFG crystal to its output preserving
the canonical commutation relations. As follows from their
definitions, the coefficients c(τ ) and s(τ ) satisfy the condition

|c(τ )|2 + |s(τ )|2 = 1. (9)

Therefore, they can be interpreted as the reflection and the
transmission coefficients of an equivalent beam splitter. For
time lens applications the signal port is injected with an input
state while the input idler port is empty. As a consequence, the
vacuum fluctuations enter into the process through this port
and mix with the input state. Since these vacuum fluctuations
are detrimental for the nonclassical input states, they need to
be avoided. They can be eliminated by setting experimental
conditions such that the conversion efficiency |s(τ )|2 = 1.
This condition can be obtained by requiring gAp(τ )L = π/2.
However, since the pump pulses have a finite duration, the
previous conditions cannot be satisfied for all τ . The conse-
quence is that the time lens presents a finite temporal aperture
that lets in the vacuum fluctuations.

The transformation of the envelope field Âi (τ, z) in the
output dispersive medium is given by an equation analogous
to that of the input medium,

Âi (τ, zout ) =
∫ ∞

−∞
Gout (τ − τ ′)Âi (τ

′, z2)dτ ′, (10)

where

Gout (τ ) = e−iτ 2/2Dout

√−2πiDout
, (11)

with Dout = β
(2)
i (zout − z2) being the GDD of the output

medium.

B. Impulse response functions for quantum temporal imaging

Combining Eqs. (4), (7), and (10), we obtain the transfor-
mation of the quantum field operators from the object to the

image plane,

Âout (τ ) = i√|M| exp

(
− iτ 2

2|M|Df

)

×
{∫ ∞

−∞
p̃(τ, τ ′)Âin

(
τ ′

M

)
dτ ′

+
∫ ∞

−∞
q̃(τ, τ ′)B̂in

(
τ ′

M

)
dτ ′

}
, (12)

where we have denoted Âout (τ ) = Âi (τ, zout ), Âin(τ ) =
Âs (τ, zin ), and B̂in(τ ) = Âi (τ, zin ). The last operator de-
scribes the vacuum field of the idler in the object plane and is
absent in the classical temporal imaging theory. The impulse
response functions p̃(τ, τ ′) and q̃(τ, τ ′) in Eq. (12) have the
following forms:

p̃(τ, τ ′) = p(τ − τ ′)eiθ (τ,τ ′ ), (13)

q̃(τ, τ ′) = q(τ − τ ′)eiθ (τ,τ ′ ), (14)

where the function p(τ ) is the point-spread function of the
classical imaging transformation [4],

p(τ ) = 1

2π

∫ ∞

−∞
d�eiτ�s(Dout�), (15)

and the function q(τ ) is the second point-spread function
necessary for quantum description of our temporal imaging
scheme. It describes the temporal imaging of the quantum
fluctuations of the field B̂in(τ ) and is absent in the classical
theory of temporal imaging because such fluctuations do not
exist in the classical theory. This point-spread function is
given by the following Fourier transform of the coefficient
c(τ ) from Eq. (8), properly scaled and phase adjusted as
follows:

q(τ ) = 1

2π

∫ ∞

−∞
d�eiτ�c′(Dout�), (16)

with c′(τ ) = c(τ ) exp{−iτ 2/2Df}. The phase appearing in
Eqs. (13) and (14) is defined as

θ (τ, τ ′) = τ 2 − τ ′2

2|M|Dout
, (17)

and in their derivation we have applied the time lens equation
[4]

1

Din
+ 1

Dout
= 1

Df
(18)

and the definition of the magnification M = −Dout/Din.
The impulse response functions p̃(τ, τ ′) and q̃(τ, τ ′) sat-

isfy the relation∫ ∞

−∞
p̃(τ, s)p̃∗(τ ′, s)ds +

∫ ∞

−∞
q̃(τ, s)q̃∗(τ ′, s)ds

= δ(τ − τ ′), (19)

required by the unitarity of Eq. (12).
While the impulse response function p̃(τ, τ ′) is well

known in the classical temporal imaging theory [4,13,14],
the second function q̃(τ, τ ′) has not been yet considered to
the best of our knowledge. Introduction of this function in
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the quantum theory together with the corresponding opera-
tor B̂in(τ ) in Eq. (12) is necessary for conservation of the
canonical commutation relations of the field operators and the
unitarity of the transformation from the input to the output
plane.

The impulse response functions p̃(τ, τ ′) and q̃(τ, τ ′) in
Eqs. (13) and (14) are the products of two factors. The first
factor is given by the time-invariant point-spread functions
p(τ − τ ′) and q(τ − τ ′), while the second is a time-variant
phase factor. Below, we formulate the conditions when one
can neglect the second factor and use the time-invariant ap-
proximation for the impulse response functions. Our analysis
follows closely the equivalent approximation in the classical
spatial imaging [37,38]. We start with the classical field
transformation, given by the quantum averages. We show that
in the classical temporal imaging the phase θ (τ, τ ′) can be
neglected if the object field is restricted to an interval of du-
ration T0 much shorter than the time lens aperture T , T0 �T .
Indeed, the classical transformation can be obtained by quan-
tum averaging of Eq. (12) and taking into account that the
quantum field B̂in(τ ) is in the vacuum state, 〈B̂in(τ )〉 = 0. On
the one hand, if we assume that the modulus of the pump pulse
is an even function of time (which is a typical experimental
situation) of duration T , then the point-spread function p(τ )
is a real even function of width approximately 2πDout/T . It
means that the integrand of the right-hand side of Eq. (12)
is substantially nonzero only for |τ − τ ′| � πDout/T . On the
other hand, if the object is restricted to |τ ′| � T0/2, then

|τ + τ ′| � 2|τ ′| + |τ − τ ′| � |M|T0 + πDout/T . (20)

Combining these two conditions we obtain, from Eq. (17) for
the area where the integrand is nonzero,

|θ (τ, τ ′)| � πT0

2T
+ π2Dout

2T 2|M| . (21)

The phase θ (τ, τ ′) can be neglected if in the considered area
it is small compared to π/2, which requires

T0

T
+ πDout

T 2|M| � 1, (22)

implying the condition T0 � T . An additional condition
πDf (1 + |M|) � T 2|M| is imposed on the aperture. Both
conditions have their analogs in the spatial imaging which
can be found in Ref. [38]. In the limit of high magnification,
|M| � 1, the last condition reads Tr � T , where Tr is the
temporal resolution of the imaging system, defined as [4]

Tr = 2πDf

T
. (23)

Now we pass to the full quantum treatment of the field
transformation in a temporal imaging system. In distinct
contrast to the classical field amplitude, the quantum field
operator Âin(τ ′) is not equal to zero even outside the interval
|τ ′| � T0/2. Therefore, the justification of the approximation
θ ≈ 0 should be modified in the quantum formalism. In the
quantum case a condition is imposed on the state of the field
rather than the field operator. We demand that the state of the
object field at |τ ′| > T0/2 is a vacuum state. Additionally, we
demand that the field in the image plane is measured, either by
direct or homodyne detection, rather than used for subsequent

optical processing. Under these two conditions the operator
Âin(τ ′)eiθ corresponds to a vacuum field with a shifted phase.
Since the phase of the vacuum has no physical significance,
it can be omitted, which justifies the approximation θ ≈ 0 for
the first summand in the right-hand side of Eq. (12). A similar
argument applies to the second summand under the condition
that the field B̂in(τ ′) is in the vacuum state for all τ ′.

Under the above conditions the phase θ (τ, τ ′) can be ne-
glected and Eq. (12) can be rewritten in the following simple
form:

Âout (τ ) = i√|M| exp

(
− iτ 2

2|M|Df

)

×
{∫ ∞

−∞
p(τ − τ ′)Âin

(
τ ′

M

)
dτ ′

+
∫ ∞

−∞
q(τ − τ ′)B̂in

(
τ ′

M

)
dτ ′

}
. (24)

The overall transformation, Eq. (24), consists of three ele-
mentary transformations for each input field: (i) scaling of
time with the factor M , (ii) temporal convolution with a
time-invariant transfer function, and (iii) multiplication by a
quadratic-in-time phase factor. In the next section we show
that such evolution corresponds to a simple transformation of
the spectrum observed in a homodyne measurement with a
properly chosen local oscillator.

In the limiting case of infinitely long temporal aperture,
T → ∞, and the conversion efficiency equal to unity, we have
s(τ ) = 1 and, as a consequence, p(τ ) = δ(τ ) and q(τ ) = 0,
wherefrom

Âout (τ ) = i√|M| exp

(
− iτ 2

2|M|Df

)
Âin

(
τ

M

)
, (25)

which reproduces the result of Ref. [31].

C. Homodyne measurement in the output plane

Let us assume that the mean field at the input of the
temporal imaging system has one spectral component at the
frequency �0: 〈Âs(τ, zin )〉 = E0e

−i�0τ . Then from Eq. (25)
we obtain

〈Âi(τ, zout )〉 = iE0√|M|e
−i�0τ/M− iτ2

2|M|Df , (26)

that is, the output field has one spectral component at the fre-
quency �0/|M| and an additional chirp. For successful detec-
tion of this component one can employ a homodyne measure-

ment with a chirped local oscillator ELO (τ ) = Ee
−iωiτ− iτ2

2|M|Df .
In this case the detector photocurrent gives the quadrature of
the operator:

ÂD (τ ) = Âi(τ, zout )e
iτ2

2|M|Df . (27)

A local oscillator shaped in this way allows one to measure the
spectrum of the quadratures of AD (τ ). The required chirp in
the local oscillator can be obtained, for instance, by mixing
a coherent monochromatic wave at the signal wavelength
with the dispersed signal before the time lens [36,39]. After
having passed through the time lens with the signal, the local
oscillator will acquire the same chirp as the latter.
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Substituting Eq. (24) into Eq. (27) and taking the Fourier
transform of both sides we arrive at the following relation:

âD (�) =
√

|M|s(Dout�)âs(|M|�, zin )

+
√

|M|c′(Dout�)âi(|M|�, zin ), (28)

where the Fourier components for all fields are defined as

âμ(�) =
∫ ∞

−∞
dτeiτ�Âμ(τ ). (29)

The measured quadrature is X̂D (�) = âD (�)e−iϕ +
â
†
D (−�)eiϕ , where ϕ is the phase of the local oscilla-

tor. The spectrum SD (�) of this quadrature is defined as
〈X̂†

D (�)X̂D (�′)〉 = 2πSD (�)δ(� + �′) and can be obtained
from Eq. (28) as

SD (�) = |s(Dout�)|2Sin(|M|�) + |c(Dout�)|2, (30)

where Sin(�) of the spectrum of the quadrature X̂in(�) =
âs(�, zin )e−iϕ + â

†
s (−�, zin )eiϕ , and we have applied the

commutation relation [â(�), â†(�′)] = 2πδ(� − �′).
Equation (30) represents the general rule of the quadrature

spectrum transformation in a time-invariant temporal imaging
system and is the main result of the present work. In the next
section we illustrate it by an example, where a broadband
squeezed vacuum is transformed by a temporal imaging sys-
tem.

III. QUANTUM TEMPORAL IMAGING
WITH BROADBAND SQUEEZED LIGHT

Here we consider an application of the theory developed
above to the case where a temporally broadband squeezed
state is injected into the input port of a temporal imaging
scheme. Such a state of light can be generated in a traveling-
wave optical parametric amplifier (OPA) based on a second-
order nonlinear crystal [36]. The broadband squeezing pro-
duced by such an OPA is given by a Bogoliubov transfor-
mation of the photon annihilation operator âs(�, z) from the
input (z = 0) to the output (z = l) of the OPA:

âs(�, l) = U (�)âs(�, 0) + V (�)â†
s (−�, 0). (31)

Here l is the length of the OPA crystal, and U (�) and V (�)
are the following complex coefficients [36]:

U (�) = ei(ko (�)−kl−�(�)/2)l

×
[

cosh(�l) + i�(�)

2�
sinh(�l)

]
,

V (�) = ei(ko (�)−kl−�(�)/2)l σ

�
sinh(�l), (32)

where ko(�) is the wave vector of the signal in the OPA
medium, kl = ko(0), σ is the coefficient of nonlinear cou-
pling, proportional to the nonlinear susceptibility of the
OPA medium and the pump amplitude, �(�) = ko(�) +
ko(−�) − 2kl is the phase mismatch function, and � =√

|σ |2 − �(�)2/4. For the sake of simplicity we apply
a quadratic approximation to the dispersion law of the
OPA crystal, similar to Eq. (1), which gives the following

approximation for the phase mismatch function:

�(�) ≈ 2

l

�2

�2
c

, (33)

where �c = (β (2)
o l/2)−1/2 is the characteristic frequency of

the squeezed light at the OPA output.
The balanced homodyne photodetection at the output of the

OPA returns the photocurrent noise spectrum normalized to
the shot noise, (δi)2

�/〈i〉, which gives the spectrum of the field
quadrature corresponding to the local oscillator phase ϕ, and
which we call the spectrum of squeezing and denote S(�). For
the unit photodetection efficiency, we can write the spectrum
of squeezing as follows:

S(�) = cos2 [ψ (�) − ϕ]e2r (�) + sin2 [ψ (�) − ϕ]e−2r (�),

(34)

where r (�) = ln (|U (�)| + |V (�)|) is the degree of squeez-
ing and ψ (�) = arg[U (�)V (−�)]/2 is the angle of squeez-
ing at given frequency �. In the examples considered below
we put ϕ = π/2, which corresponds to the observation of
maximal squeezing at the degeneracy, � = 0.

The major part of the spectrum of squeezing occupies
the frequency band below the frequency �q = �c(|σ |2l2 +
π2)1/4, which is the first zero of V (�), corresponding to the
second intersection of S(�) with 1. The light generated by
the OPA in this band is squeezed, but its angle of squeezing
varies with the frequency � due to the dispersion in the OPA
crystal. If the phase ϕ of the local oscillator is tuned to the
observation of squeezing at the degeneracy, � = 0, then at
the higher frequencies the observed spectrum corresponds
to the stretched quadrature component and is above unity.
The observation of squeezing at all frequencies below �q is
possible with the help of quadratic dispersion compensation
[31]. We call the frequency �q the squeezing bandwidth of
the broadband squeezed light. It always surpasses the charac-
teristic frequency �c, �q > �c, which roughly corresponds
to the observed squeezing bandwidth without dispersion com-
pensation.

When the imaging condition, Eq. (18), is met, the ideal
point-spread function, p(τ ) = δ(τ ) (with infinitely long pump
and unit conversion efficiency), induces a rescaling of the
noise spectrum at the output [31]:

Sout (�) = Sin(|M|�). (35)

This result shows that the squeezing spectrum at the output of
the imaging system will be the same as that at the output of
the OPA in terms of the scaled frequency �′ = |M|� for any
magnification factor M . This corresponds, in the time domain,
to the scaled time τ ′ = τ/M . This magnification factor gives
us a possibility of matching the quantum correlation time τq =
2π/�q of the broadband squeezed light to the response time
of the photodetector.

For a nonideal situation the squeezing spectrum Sout (�)
for the output field can be obtained by using the unitary
transformation (28). We assume that the local oscillator is
shaped such that the residual quadratic phase impressed onto
the output field by the imaging scheme is compensated. Then
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FIG. 2. Pupil functions P (τ/T ) for an SFG-based time lens: one
corresponding to a Gaussian pump envelope (thick blue line) and
one corresponding to a rectangular pump envelope (thin black line).
The normalized Gaussian pump envelope with unit full width at half
maximum is shown by the dashed orange line.

from Eqs. (30) and (9) the output squeezing spectrum is

Sout (�) = η P 2(|M − 1|�/�r )Sin(|M|�)

+ 1 − η P 2(|M − 1|�/�r ), (36)

where η = |s(0)|2 is the conversion efficiency at the center
of the pump pulse, and P (τ/T ) = |s(τ )/s(0)| is the pupil
function of a time lens with the temporal aperture T . Com-
parison of this expression with Eq. (35) shows that, as in
the case of infinite aperture, the output spectrum is rescaled
by a factor |M|−1. Hence, as discussed above, the output
squeezing bandwidth results in �′

q = �q/|M|. An additional
effect of the finite time lens aperture consists in a filtering that
is characterized by the bandwidth �r , given by the inverse
of the resolution time of the imaging system, Tr = 2π/�r =
2πDf/T .

Below we illustrate the transformation of the spectrum
of squeezing in an SFG-based temporal imaging system
for a Gaussian pump. We define a Gaussian pump en-
velope with unit full width at half maximum, Ap(τ ) =
Ap(0) exp{−4 ln 2(τ/T )2}. We assume for simplicity the
ideal case of unit conversion efficiency, η = 1. In this case
the pupil function is

P (τ/T ) = sin

(
π

2
exp{−4 ln 2(τ/T )2}

)
, (37)

and it corresponds to using a dispersed Gaussian pulse for
pumping the SFG crystal. Another interesting example is a
rectangular pump envelope Ap(τ ) = Ap(0) rect(τ/T ), which
results in a rectangular pupil function P (τ/T ) = rect(τ/T ).
Such a pulse corresponds exactly to the aperture of a con-
ventional lens and can be produced with certain precision by
cutting out the central part of a dispersed Gaussian pulse by
means of a pulse shaper. The examples of transformation of
spectra of squeezing for this type of pupil function can be
found in Ref. [40]. Both pupil shapes are shown in Fig. 2.

The spectra of squeezing before and after the temporal
imaging system with Gaussian pump are shown in Fig. 3 for
magnification M = −3 and the conversion efficiency η = 1.

FIG. 3. Transformation of the spectrum of squeezing in an SFG-
based temporal imaging system with magnification M = −3. The
spectrum of squeezing of the image field (solid red line) is a scaled
and filtered version of the spectrum of squeezing of the object field
(dot-dashed blue line). All spectra are normalized to the shot-noise
level (horizontal thin black line). The temporal aperture of the
time lens is chosen so that (a) �r = 10�c, where the filtering is
unnoticeable, and (b) �r = 4�c, where the filtering is noticeable.

The squeezing is 10 dB at � = 0, corresponding to r (0) =
1.15.

As follows from Fig. 3, the spectrum of squeezing of the
image field is a scaled and filtered version of the spectrum of
squeezing of the object field. In the regime of magnification,
|M| > 1, the spectrum is compressed. In Fig. 3(a) the filter
bandwidth is so wide compared to the squeezing bandwidth
�q = 1.8�c that its effect is negligible, and the transforma-
tion can be described by Eq. (35). In Fig. 3(b) the effect
of filtering is visible in the decreased first maximum in the
image spectrum compared to the first maximum of the object
spectrum.

The filtering can be described as cutting off the image
spectrum above the cutoff frequency

�cutoff = �r

2|M − 1| = T

2|M − 1|Df
. (38)

The cutoff frequency of a temporal imaging system is propor-
tional to the temporal aperture T and can be made sufficiently
large by increasing the latter. In the limit of high magni-
fication, |M| � 1, the filtering bandwidth scales as |M|−1,
similar to the correlation time of the system. Thus, if the
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FIG. 4. Transformation of the spectrum of squeezing in an SFG-
based temporal imaging system with magnification M = −1/3. The
spectrum of squeezing of the image field (dot-dashed red line) is a
scaled and filtered version of the spectrum of squeezing of the object
field (solid blue line). All spectra are normalized to the shot-noise
level (horizontal thin black line). The temporal aperture of the time
lens is chosen so that (a) �r = 30�c, where the filtering is unnotice-
able, and (b) �r = 10�c, where the filtering is well noticeable.

object squeezing bandwidth �q is below �r/2, then the image
squeezing bandwidth �′

q is below �cutoff , and the important
nonclassical part of the squeezing spectrum does not suffer
from the filtering. In the opposite limit of high reduction
factor, |M| � 1, the situation is more complicated. Indeed,
the cutoff frequency in this limit is �r/2 for any |M|, while
the image squeezing bandwidth is increased |M|−1 times. As
a consequence, for any given time lens aperture there is such a
reduction factor |M| < 1 for which the squeezing in the image
field is significantly modified by filtering.

This situation is illustrated in Fig. 4 for reduction factor
M = −1/3 and other parameters as in Fig. 3. In Fig. 4(a) the
cutoff frequency �cutoff = 11.25�c is so high compared to the
squeezing bandwidth �′

q = 5.4�c that its effect is negligible,
and the transformation can be described by Eq. (35). In
Fig. 4(b) the effect of filtering is visible in the decreased first
maximum in the image spectrum and complete suppression of
oscillations beyond it, which are well above �cutoff = 3.75�c.

In Fig. 5 we show the squeezing spectra for even larger re-
duction factor M = −0.1 and the other parameters as before.
In Fig. 5(a) the cutoff frequency �cutoff = 30�c is so high

FIG. 5. Transformation of the spectrum of squeezing in an SFG-
based temporal imaging system with magnification M = −0.1. The
spectrum of squeezing of the image field (dot-dashed red line) is
a scaled and filtered version of the spectrum of squeezing of the
object field (solid blue line). All spectra are normalized to the shot-
noise level (horizontal thin black line). The temporal aperture of
the time lens is chosen so that (a) �r = 60�c, (b) �r = 25�c, and
(c) �r = 3�c. In the last case the effect of filtering is detrimental for
the squeezing bandwidth.

compared to the squeezing bandwidth �′
q = 18�c that the

filtering effect is negligible, and the transformation can be de-
scribed by Eq. (35). In Fig. 5(b) the effect of filtering is visible
in the decreased first maximum in the image spectrum. Note
that in this case the filter bandwidth is one order of magnitude
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higher than the object bandwidth, �q = 1.8�c. However, this
is not sufficient for preserving the quantum features of the
light above the cutoff frequency �cutoff = 12.5�c. In Fig. 5(c)
only a small part of the stretched squeezing spectrum remains
unchanged, while the rest of the squeezing has been lost.
Because of the strong filtering, the image squeezing band-
width �cutoff = 1.5�c is lower than that of the object, even
if the spectrum was intended to be “stretched.”

With these examples we have demonstrated that the res-
olution time Tr is a key parameter of the time lens, limiting
the performance of a temporal imaging system, especially at
the high reduction factor, |M| � 1. Let us clarify the practical
condition for decreasing Tr . When the SFG pump is obtained
by dispersing a Fourier-limited Gaussian pulse of duration τp

through a medium with a GDD equal to −Df , the chirped
pump pulse has a duration T = 2πDf/τp. In this case the
temporal resolution of the time lens is given by the duration
of the initial pulse Tr = τp. Therefore, shorter pump pulses
produce time lenses with better resolution.

IV. CONCLUSIONS

We have extended the quantum theory of temporal imaging
formulated in our previous works in order to take into account
the effect of finite duration of a chirped pump pulse used in a
nonlinear SFG time lens. This problem has been considered in
the classical temporal imaging theory [4,12–15], where it was
demonstrated that this effect can be described by a finite tem-
poral pupil function and impulse response function imposing
a finite resolution of the imaging scheme. We have demon-

strated that in the framework of the quantum theory such a
classical description is insufficient because it contradicts the
conservation of the commutation relations of the quantum
field operators at the output of the imaging scheme. In order
to restore these commutation relations, we have found the
part of the electromagnetic field, missing in classical theory,
describing the contribution of the vacuum fluctuations into the
output of the imaging scheme. We have also determined a sec-
ond impulse response function describing the transformation
of these vacuum fluctuations from the input to the output of
the imaging scheme. These vacuum fluctuations are neglected
in the classical temporal imaging but have to be taken into
account for imaging of nonclassical states of light such as
squeezed, entangled, or sub-Poissonian states. As an example
of application of our theory, we have considered illumination
of our imaging scheme by broadband squeezed light. We have
demonstrated that the squeezing spectrum at the output of the
scheme is a rescaled and filtered copy of the input squeezing
spectrum. We have formulated the criteria for preservation of
squeezing at the output of the scheme for different values
of the magnification and the bandwidth of the squeezing
spectrum vs the width of the temporal pupil function. Our
results can find numerous application for temporal imaging
of nonclassical states of light in quantum optics and quantum
information.
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