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When building a parametric down-conversion photon-pair source with spectrally separable photons, e.g.,
for making high-purity heralded single photons, two practical issues must be accounted for: the design of the
experiment, and its characterization. To address experiment design, we study the impact on spectral separability
of realistic (sech-shaped and chirped) pump fields, realistic nonlinear crystals with fabrication imperfections,
and undesirable PDC generation far from the central PMF peak coming from nonlinearity shaping methods. To
address experiment characterization, we study the effect of discretization and spectral range of the measured
biphoton joint spectrum, the difference between inferring separability from the joint spectral amplitude versus
the joint spectral intensity, and advantages of interference experiments for purity characterization over methods
based on the joint spectral intensity. This study will be of practical interest to researchers building the next
generation of nonlinear sources of separable photon pairs.

DOI: 10.1103/PhysRevA.98.053811

I. INTRODUCTION

Photon pairs generated by parametric down-conversion
(PDC) form the backbone of many quantum optics experi-
ments. Photon pairs can be used directly, or as a resource for
heralded single photons. In either case, the success of such
experiments relies on the quality of the generated PDC photon
pairs.

Of particular importance are the photons’ spectral and
temporal properties, captured by the joint spectral amplitude
(JSA). In some cases, correlations in the JSA are desirable,
but more often than not, they are problematic and ought to be
minimized. For example, in a heralded single-photon source,
a separable JSA ensures high-purity single photons, which are
necessary for high-visibility interference in optical networks.
When both photons of a generated pair are used, either in
interference experiments, or as polarization-entangled qubits,
a separable JSA is also preferred to avoid contamination
during interference.

The PDC process involves shining a classical pump field
onto a nonlinear crystal. Two practical issues must be ac-
counted for when building a source of spectrally separable
photons. The first is the design of the pump and crystal
properties. The second is the characterization of the photons’
joint spectrum. In this paper, we address both the experiment
design and characterization. We focus on practical aspects
that have so far been overlooked or, in some cases, treated
incorrectly.

Quantifying the temporal-spectral correlation in PDC pho-
ton pairs and designing the pump spectrum to reduce them are
well-studied problem [1–15]. In virtually all studies, however,
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the pump laser was taken to have a transform-limited Gaussian
spectral amplitude or delta-function distribution; when in
reality, a pulsed laser has a sech-shaped spectral amplitude
that may not be transform limited [16]. We show how a sech-
shaped pump and a nontransform-limited (chirped) pump
impacts the JSA separability.

The design of crystal properties for generation of uncor-
related photon pairs is also a well-studied problem. This
typically involves matching the group velocities of the fields
inside the crystal [5,9,17,18], as well as shaping the crys-
tal’s nonlinearity profile to approximate a Gaussian function
[19–22]. Previous work on tailoring crystal nonlinearities for
JSA separability assumed ideal crystal fabrication, and for the
most part neglected discussion of undesirable PDC generation
that arises from nonlinearity shaping methods. We show how
fabrication imperfections in nonlinearity shaping impact JSA
separability and pair generation probability, and discuss the
implications of undesired PDC generation.

Finally, we address the question of how PDC photon
sources have been characterized for estimation of properties
such as photon purity. The spectral separability of PDC pho-
tons can be inferred by measuring the JSA at discretized
frequency bins, over finite ranges of signal and idler fre-
quencies. Poor choice of discretization and spectral range can
give incorrect results. To quantify this, we characterize the
effect of discretization and spectral range on inferred spectral
separability.

What’s more, in many situations only the joint spectral
intensity (JSI) can be measured directly. Many papers use
the

√
JSI = |JSA| to get information about the photons’

spectral separability, but this neglects the effect of possible
sign changes, or temporal correlation introduced by, e.g., a
chirped pump. To quantify this, we also characterize the effect
of discretization and spectral range on the inferred photons’
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spectral separability when computed by taking the Schmidt
decomposition of the

√
JSI and the JSI.

II. SPECTRAL PROPERTIES OF THE TWO-PHOTON
DOWN-CONVERTED STATE

We start by reviewing the spectral properties of down-
converted photon pairs and their use for heralded single-
photon generation.

A. Joint spectral amplitude

The PDC process mediates the conversion of high-energy
pump p photons into pairs of lower energy photons, his-
torically known as the signal s and idler i photon. Due to
the spontaneous nature of photon-pair creation, the generated
PDC state |ψpdc〉 is described as a superposition of a large
vacuum term, a term with a single-photon pair, and terms
corresponding to higher-order photon-pair events. The single-
photon term dominates when PDC is used for single-photon
generation in heralded or postselection schemes. In this paper,
we therefore focus on the single-photon pair term and its
spectral properties, neglecting higher photon numbers. The
two-photon term of the full PDC state, assuming Type II
down-conversion in a single-mode one-dimensional propaga-
tion geometry, is [3]

|ψ2〉 ∝
∫∫

dωi dωsf (ωi, ωs ) |ωi〉i |ωs〉s , (1)

where |ωi〉j is a one-photon Fock state of frequency ωi

prepared in mode j . We take f (ωi, ωs ) to be normalized
such that

∫
dωi dωs |f (ωi, ωs )|2 = 1. We consider collinear

single-mode PDC emission (state-of-the-art experimentally),
and we neglect transversal and multimode effects.

PDC photon pairs are characterized by the pump envelope
function (PEF) α(ωp ) (where ωp = ωi + ωs due to energy
conservation), and the material properties of the crystal,
which are captured by the phase-matching function (PMF)
φ(ωi, ωs ):

f (ωs, ωi ) = α(ωi + ωs )φ(ωs, ωi ). (2)

The PMF accounts for the crystal’s dispersion, as well as
longitudinal variations in the crystal’s nonlinearity. We define
the PMF as

φ(ωi, ωs ) =
∫ L

0
g(z) ei�k(ωi,ωs )zdz, (3)

where L is the length of the crystal, �k(ωi, ωs ) =
kp(ωi + ωs ) − ki (ωi ) − ks (ωs ) where kj (ω) = ωnj (ω)/c,
and g(z) = χ (2)(z)/χ (2)

0 is the normalized nonlinearity along
the crystal [22].

To simplify the discussion, we expand the wave
numbers to first order kj (ω) = kj (ω̄j ) + v−1

j �j , where
vj = dω/dkj (ω)|ω=ω̄j

is the group velocity of photon j ,
�j = ωj − ω̄j , and ω̄p = ω̄s + ω̄i . We can ignore quadratic
and higher-order terms corresponding to group velocity dis-
persion if the photons in each mode are not too spread out
around the central frequencies. We can then write

�k = �k0 + (
v−1

p − v−1
i

)
�i + (

v−1
p − v−1

s

)
�s , (4)

where �k0 = kp(ω̄s + ω̄i ) − ks (ω̄s ) − ki (ω̄i ).

FIG. 1. Example of JSAs (right) composed of Gaussian PEFs
(left) and Gaussian PMFs (middle). The top-right JSA is perfectly
separable, while the bottom-right JSA is highly correlated.

Two example JSAs (one perfectly separable, the other
highly correlated) composed from Gaussian pump and phase-
matching functions, with �k0 = 0, are shown in Fig. 1. When
plotted as a function of �i and �s , the PEF is always oriented
along the antidiagonal, while the PMF lies along an axis
defined by the angle θ , which depends on the group velocities
according to

tan θ = −v−1
p − v−1

s

v−1
p − v−1

i

. (5)

Picking group velocities appropriately is known as group
velocity matching (GVM).

The JSA completely characterizes the spectral properties
of a two-photon down-converted state and will be the focus of
this paper.

B. Schmidt decomposition

To simplify calculations, the JSA can be expressed as a sum
of orthogonal modes:

f (ωs, ωi ) =
∑

k

bkqk (ωs )rk (ωi ), (6)

in what is known as the Schmidt decomposition [23,24]. The
Schmidt coefficients {bk} are real numbers such that their ab-
solute values squared sum to unity if f (ωs, ωi ) is normalized,
and the Schmidt modes {qk (ωs )} and {rk (ωi )} are orthonormal
single-photon spectral functions.

Likewise, the two-photon state (1) can be decomposed as

|ψ2〉 =
∑

k

bk |qk〉s |rk〉i , (7)

where

|qk〉s =
∫

dωqk (ω) |ω〉s ; |rk〉i =
∫

dωrk (ω) |ω〉i , (8)

are orthonormal states in the signal and idler subspaces. The
states satisfy the orthonormality conditions 〈qk| qk′ 〉s = δkk′

and 〈rk| rk′ 〉i = δkk′ , which simplifies expressions for many
interesting quantities that can be written just in terms of the
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Schmidt coefficients. We will see an example of this in the
next section.

C. Spectrally pure heralded photons

A drawback of PDC is that photon pairs are generated
spontaneously, making them difficult to interfere in optical
networks. The spontaneous nature of the down-converted
source can be mitigated by placing a photon detector in one
of the down-converted modes. Photon-number correlations
between the two down-converted modes ensure that detection
of a single photon in one mode projects the state in the other
mode into a single photon—a process known as heralding.
The heralded photon can then be stored for future use in a
quantum memory or appropriately delayed so that it arrives in
the experiment at the right time [25].

To calculate the heralded state, in say mode s, we model
single-photon detection with a flat frequency response, in, say,
mode i, by the projector

P̂i =
∫

dω |ω〉i 〈ω|i =
∑

k

|rk〉i 〈rk|i , (9)

expressed in terms of the Schmidt modes |rk〉i for conve-
nience.

The heralded state is then calculated by applying the Born
rule, and tracing out the detected mode:

ρs = Tri[|ψpdc〉 〈ψpdc| (Îs ⊗ P̂i )] (10)

=
∑

k

b2
k |qk〉s 〈qk|s . (11)

This result shows that, after detection of a single photon
in mode i, the state in mode s is a statistical mixture of
single-photon states with orthogonal spectral distributions
qk (ω). The mixed nature of this state is undesirable because
it reduces its interference visibility in an interferometric
network [26].

The degree to which the state is mixed can be quantified by
the purity:

Ps = Tr
[
ρ2

s

] =
∑

k

b4
k, (12)

which ranges from Ps = 1 for a pure state to Ps = 1/N

(where N is the number of Schmidt modes) for a maximally
mixed state.

When b0 = 1 and all other coefficients are zero, ρs =
|q0〉s 〈q0|s is a pure state, and Ps = 1. The JSA that leads
to this is a separable JSA: f (ωs, ωi ) = q0(ωs )r0(ωi ). To
achieve high-purity heralded single photons, the JSA must be
separable.

D. JSA separability in the ideal case

It was well known that, under certain conditions, Gaussian
pump and phase-matching functions can make the JSA sep-
arable [9]. Recently, it was shown that Gaussian functions
are the only functions that make the JSA separable [27].
In this section, we briefly review the conditions for perfect
separability. A detailed study of these conditions can be found
in [9].

We define a Gaussian pump function as

αGauss(ωs, ωi ) = exp

[
− (�s + �i )2

2σ 2
PEF

]
. (13)

We also define the bandwidth (or simply width) of a spectral
(or temporal) distribution as its FWHM: 2

√
2 log 2 σPEF for

a Gaussian PEF. We stress that when defining the bandwidth,
we are working with the spectral amplitude of the pump, while
in other studies the bandwidth was defined differently (either
with reference to the profile of the spectral intensity of the
pump, or by considering the 1/e width instead of the FWHM
[9,12,28,29]).

We define a Gaussian PMF as

φGauss(ωs, ωi ) = exp

[
− sin(θ )�s − cos(θ )�i]2

σ 2
PMF

]
, (14)

where θ defines the orientation of the PMF and depends on
the group velocities according to Eq. (5) [11,13,30].

Perfect separability happens when 0 < θ < π/2 and
2 cos(θ ) sin(θ ) = σ 2

PMF/σ
2
PEF. The examples in Fig. 1 corre-

spond to θ ≈ π/3 (top) and θ = π/4 (bottom). In the example
on top, the photons have different bandwidths and won’t inter-
fere well with each other, but they are suitable in a heralded
configuration because the JSA is separable. At the bottom, the
photons will be indistinguishable (having the same spectral
bandwidth and shape), but they are not spectrally pure because
the JSA is correlated.

For the remainder of the paper, we will focus on the special
case where v−1

p = (v−1
s + v−1

i )/2, i.e., θ = π/4. In this case,
the PMF is perpendicular to the PEF, and perfect separability
happens when σ 2

PMF = σ 2
PEF, such that

φ
sym
Gauss(ωs, ωi ) = exp

[
− (�s − �i )2

2σ 2
PMF

]
. (15)

This regime is known as the symmetric GVM condition,
which, for Gaussian functions, generates separable photons
with equal bandwidths. These photons can be used for her-
alded photon generation, but the photons can also both be fed
into an experiment, as they will exhibit perfect two-photon
interference.

III. EXPERIMENT DESIGN

In this section, we study how realistic pump fields and real-
istic nonlinear crystals with fabrication imperfections impact
spectral separability.

A. Typical pump and phase-matching functions

Many studies of the joint spectral properties of down-
conversion pairs assume either Gaussian or delta PEFs
[2–14]. These functions are convenient to work with analyt-
ically, but often don’t reflect what happens in an experiment.
Most experiments which aim to create more than just one
heralded photon, or multiple photon pairs, are performed with
mode-locked, ultra-short-pulsed lasers whose temporal inten-
sity function can be described by a squared hyperbolic secant
(sech) function, sech2(t/τ ), where τ is a temporal scaling
factor. This yields a PEF represented, up to an irrelevant linear
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FIG. 2. Joint spectral amplitudes in symmetric group velocity
matching condition for four different combinations of pump func-
tions and phase-matching function.

phase, by a sech function

αsech(ωs, ωi ) = sech
[

1
2πτ (�s + �i )

]
, (16)

with a bandwidth of 4 cosh−1 [2]/(πτ ), which we define as
the FWHM of the PEF. The sech and Gaussian PEFs have
equal width when τ ≈ 0.712σPEF.

We also consider realistic PMFs. Most crystals either have
a constant nonlinearity profile or are periodically poled. In
both cases, this leads to a sinc-shaped phase-matching func-
tion [31]. We define a sinc-shaped PMF oriented at θ = 45◦
as

φ
sym
sinc (ωs, ωi ) = sinc[κ (�s − �i )]. (17)

The sinc and Gaussian PMFs have equal width when
σPMF ≈ 1.61/κ . Also, the sech PEF and sinc PMF have equal
width when τ ≈ 0.442κ .

We now analyze how realistic PEFs and PMFs affect JSA
separability. The JSAs given by the four aforementioned PEF
and PMF combinations are shown in Fig. 2. For all four
combinations, the spectral purity of heralded photons depends
on the relative widths of the functions. To maximize the purity,
we define the parameter ξ as the ratio between the widths of
the PMFs and PEFs:

ξ = σPMF

σPEF

≈ 1.40 σPMFτ ≈ 1.61

σPEFκ
≈ 2.26

τ

κ
, (18)

and optimize over ξ . As is well known, the optimal ratio for
a Gaussian-Gaussian combination is ξ = 1, but we show that
for other combinations, this can vary by up to 26%. A sech
PEF reduces the maximum purity only slightly, while a sinc
PMF reduces the maximum purity significantly. Table I shows
maximum purities and corresponding ξ for all four PEF-PMF
combinations.

Figure 3 shows the dependence of the purity on ξ for all
four PEF-PMF combinations.

Clearly, the experimentally very common practice of es-
tablishing a FWHM pulse length, or a spectral bandwidth,

TABLE I. Maximum purities and corresponding ξ for the most
common combinations of pump envelope functions and phase-
matching functions.

PEF PMF Maximum Ps Optimal ξ

Gaussian Gaussian 1 1
sech Gaussian 0.99 1.12
Gaussian sinc 0.80 1.13
sech sinc 0.79 1.26

of an ultrafast pump laser, and then simply converting it to
a supposedly equivalent Gaussian PEF can lead to drastic
miscalculations of required PMF bandwidths and thus crystal
lengths. The correct procedure would be, e.g., to use an
autocorrelator and deconvolve the temporal autocorrelation
trace into the function which most accurately represents the
actual PEF shape. The resulting PEF should be compared to
an accurate spectral bandwidth measurement to make sure
the pulse is transform limited (more on that in Sec. III B).
In some cases, the measured PEF might not be represented
accurately by either one of the analytical functions, in which
case the optimal relation between PMF and PEF widths should
be determined numerically [27].

For unpoled or periodically poled crystals, the crystal
length determines the PMF width (this is not the case for
custom-poled crystals, which will be discussed later). When
designing an experiment, one chooses the crystal length based
on the PEF FWHM (or vice versa). But the exact form of
the relationship between the optimal crystal length and PEF
FWHM differs for different PEF shapes. As a concrete exam-
ple, we consider a periodically poled KTP crystal, pumped
with either Gaussian or sech PEFs centered at 791 nm, in
the symmetric GVM regime. Figure 4 shows that the crystal
length that optimizes JSA separability is different for Gaus-
sian or sech PEFs.

The spectral correlations that arise from non-Gaussian
pump and phase-matching functions can be filtered out. This,
however, comes at a price. Spectral filtering acts at the

FIG. 3. Heralded single-photon spectral purity at different pump
widths for four combinations of PEF and PMF shapes in symmetric
GVM condition. The parameter ξ is the ratio between the widths of
the PMF and PEFs, defined in Eq. (18).
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FIG. 4. Crystal length as a function of pump pulse duration for
periodically poled KTP. Note that the pump duration is defined as
the FWHM of the temporal intensity profile of the pulse (that can
be measured, e.g., via an autocorrelation measurement). The �k

dependence on the pump, signal, and idler frequencies is computed
from the Sellmeier equations in Refs. [32–34].

intensity level and can destroy photon-number correlations
between the two down-converted modes [28,35–37]. This
reduces the photon-number purity of the heralded state. It also
spoils interference between the down-converted modes when
combined in an optical network.

Ideally, the spectrum could be shaped at the amplitude
level. The PEF amplitude can be shaped using optical pulse
shaping [38]. The PMF amplitude can be shaped using nonlin-
earity shaping methods, which will be discussed in Sec. III C.
A combination of optical pulse shaping and nonlinearity
shaping can reduce correlations in the JSA without destroying
photon-number correlations.

B. Chirped pump functions

Establishing group-velocity matching conditions via JSA
simulations and then joint spectral measurements is now
common practice. It’s important to note though that spectral
measurements of, e.g., the pump pulse do not contain any
information about the temporal pulse duration.

Naively, one might think that temporally “long” pulses
in PDC processes lead to photon pairs being generated at
uncertain times. One might therefore conclude that photons
from two independent sources, each pumped by synchronized,
but temporally “long” pulses, would arrive at the beam splitter
at different times and thus not interfere. But this is not so,
because perfect two-photon interference relies only on the
heralded photons being pure and indistinguishable, which
happens if the PEF and PMF bandwidths are matched, regard-
less of the pump’s temporal length (this is the key principle of
the GVM technique for PDC sources).

Other timing uncertainties, however, can still reduce two-
photon interference, e.g., two pulsed lasers pumping separate
heralded photon sources might drift out of sync [39]. Another
common scenario is that a laser pulse might not be transform-
limited, i.e., the temporal duration might exceed the time-
bandwidth product. This is the case we will study here.

So far, we have considered Fourier transform-limited PEFs.
However, when short optical pulses propagate through a
transparent medium whose refractive index is wavelength
dependent, they acquire a phase that depends nonlinearly on
the wavelength, known as frequency chirp. To study how a
linear frequency chirp affects the down-converted photons,
we introduce a quadratic spectral phase to the PEF, i.e., we

FIG. 5. Heralded single-photon spectral purity at different kw2

values for four combinations of PEF and PMF shapes in symmetric
GVM condition. When kw2 = 0, the pulse is transform-limited,
while large values of kw2 correspond to a strongly chirped pulse.

multiply the PEF by e−ik(ω̄p−ωp )2
(or, equivalently, multiply

the JSA by e−ik(�s+�i )2
), where k is equal to half of the group

delay dispersion in the material [16]. This phase delays the
pulse and introduces temporal broadening, which introduces
phase correlations in the JSA, reducing the spectral purity of
heralded photons.

The spectral purity of a chirped JSA can be parametrized
by the dimensionless parameter kw2, where w is the spectral
width of the PEF. This tells us that there is a trade-off between
the pump width and the amount of chirp that can be tolerated,
i.e., increasing the chirp or increasing the square of the width
of the pump will have the same effect on the purity. Our
numerical simulations show that the purity decays almost
exponentially as kw2 increases. This can be seen in Fig. 5,
where we plot the heralded-photon purity as a function of kw2.

To explore the trade-off between k and w2, we model sech
pulses propagating in optical glass N-BK7. For example, a
400 nm, 50 fs sech pulse (where we define the pulse length
as the FWHM of the temporal intensity profile), which is the
pulse length of modern GHz repetition rate Ti:sapph lasers,
passing through 1 cm of the standard optical substrate of
N-BK7 acquires a quadratic phase of kw2 ≈ 2.1, decreasing
the purity from ∼0.99 to ∼0.90 (Gaussian PMF) or from
∼0.80 to ∼0.74 (sinc PMF). But a 200 fs sech pulse traveling
through the same piece of glass acquires a quadratic phase
of only kw2 ≈ 0.13, decreasing the purity by less than 0.1%.
However, if the same 200 fs pulse is sent through 30 cm of
fused-silica single-mode fiber for spatial mode filtering, the
corresponding chirping is kw2 ≈ 3.2 and is therefore not
negligible. This shows that while group delay dispersion, and
therefore spectral chirping, can be neglected for relatively
long pulses (in particular picosecond pulses), it should be
taken into account for short (i.e., subpicosecond) pulses.
Figure 6 shows values of kw2 in N-BK7 for a sech pulse at
different pulse durations and central wavelengths.

While the frequency chirp introduces correlations in the
JSA, these correlations are not visible in the JSI. Therefore,
in the presence of chirp, the

√
JSI is not a good indicator
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FIG. 6. kw2 in N-BK7 for a sech pulse at different pulse duration
and central wavelengths.

of heralded photon spectral purity, as will be discussed in
Sec. IV.

C. Nonlinearity shaping

In previous sections, we saw that a Gaussian PMF is
optimal for JSA separability. While this is true, most standard
crystals have sinc-shaped PMFs. In this section, we discuss
how Gaussian-shaped PMFs can be achieved through inver-
sion of the crystal lattice at appropriate positions within the
material, using, e.g., ferroelectric poling.

The most common type of poling inverts the crystal lat-
tice periodically to induce quasi-phase-matching [40]. This
doesn’t change the shape of the PMF, but shifts its peak in �k

space to allow photon generation at desired frequencies.
PMF shaping requires more complex poling patterns. One

approach introduces domain-width variation to a predefined
poling pattern. The most common case is customizing the
duty-cycle of a periodically poled structure [19,41]. This is
a well-known technique adapted from nonlinear optics appli-
cation in the classical regime: however, it doesn’t yield near-
unity purity [22]. Another approach introduces aperiodicity
to the poling, while keeping the width of the poled domains
fixed [20–22,29]: we refer to these methods collectively as
customized domain-orientation methods. While in the long
crystal limit any of these methods provides nearly separable
JSAs, for short crystal matched with femtosecond lasers,
deterministic subcoherence length domain engineering is re-
quired to achieve spectrally pure heralded photons [22]. Cus-
tomization of domain widths of precustomized poling patterns
has also been proposed [22] and experimentally implemented
[42], demonstrating high visibility in the interference of un-
filtered heralded photons on a BS—an optimal benchmark
for the PDC spectral purity, as shown in Sec. IV B. Figure 7
shows a schematic representation of some of these poling
methods.

For simplicity, we will compare the customized duty-cycle
method proposed in Ref. [19] with the customized domain-
orientation method proposed in Ref. [21].

FIG. 7. Examples of three poling methods. Periodic poling: peri-
odically alternating fixed-width domains shift the PMF. Customized
duty cycle: periodically alternating domains with a customized duty
cycle also shift and shape the PMF. Customized domain orientation:
fixed-width domains with customized orientations shift and shape the
PMF.

1. Modeling customized poling structures

To model the PMF of a customized structure, we consider a
crystal divided into N domains. The shape of the PMF φ(�k)
for such a crystal arises from interference between the PMFs
for individual domains, φj (�k), with relative phase shifts
sj = ±1 introduced by the domains’ relative orientations.
Each domain is just a short crystal with a constant nonlinearity
g(z) = 1, and therefore has a sinc-shaped PMF, with a phase
determined by the domain’s position. The PMF for the crystal
is

φ(�k) =
N∑

j=1

sjφj (�k) (19)

=
N∑

j=1

sjwj sinc

(
�k wj

2

)
ei�kzj , (20)

where wj is the width of the j th domain centered at position
zj . We consider structures with adjacent domains, and for
physical reasons, assume that the domains do not overlap.
From Eq. (20), we see that φ(�k) can be shaped by cus-
tomizing the domains’ relative orientations sj , widths wj and
central positions zj .

2. Fabrication imperfections in nonlinearity shaping
using custom poling

A popular method for generating poled crystals is ferro-
electric poling, in which the spontaneous polarization of a
ferroelectric crystal can be reversed under the influence of
a sufficiently large electric field that is applied using litho-
graphically defined periodic electrodes [43]. This process is
susceptible to various fabrication imperfections: timing errors
in applying the field may systematically over- or underpole
inverted domains, roughness in electrode lithography may in-
troduce random variations in domain walls, and failure of the
crystal to nucleate may prevent inversion, resulting in missed
domains. These imperfections are shown schematically in
Fig. 8(a) for periodic poling.

Impact of imperfections on conversion efficiency was stud-
ied previously for periodically poled crystals (e.g., random
variations in domain walls [44], missed domains [45], and
deviations in duty cycle [46]). Here we study this for custom
poled crystals, and also consider how imperfections affect
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FIG. 8. (a) Examples of imperfection profiles on a periodically
poled structure. (b) Spectral purity and relative amplitude with
random variations in wall positions based on a Gaussian distribution
centered around the expected position of each domain, parameterized
by the standard deviation σRVD. (c) Spectral purity and relative
amplitude with randomly chosen missed domains.

heralded-photon spectral purity. To gain information about
photon pair generation, we compute the peak amplitude of the
|JSA| and compare it with that generated by a periodically
poled crystal.

We consider poled KTP pumped by a pulsed laser, assum-
ing a Gaussian PEF with ω̄p = 2.38 × 1015 Hz and σPEF =
4.5 × 1011 Hz. Our goal was to generate degenerate photons
at ω̄i = ω̄s = 1.16 × 1015 Hz, in the symmetric GVM con-
figuration, which corresponded to a coherence length lc =
23.05 μm (yielding a poling period � = 46.1 μm for peri-
odically poled and custom-duty cycle methods, and a domain
width equal to lc for the custom domain orientation method).
When generating the JSA, we used a discretization of N =
100, and a spectral range of 7.0 × 1012 Hz, centered around
the degenerate frequencies.

For comparison, we fixed the generated photon bandwidth
across all methods. To achieve this, different methods required
different crystal lengths. For our simulations, we used L =
30.5 mm (1320 domains) for periodic poling, L = 36.9 mm
(1600 domains) for custom duty cycle, and L = 46.1 mm
(2000 domains) for custom domain orientation.

Over- and underpoling—Simulations for over- and under-
poling are analogous, we thus restricted our simulations to
overpoling. We systematically increased the widths of flipped
segments while proportionally decreasing the unflipped seg-
ments. We considered up to a 15% change in segment width
and found that the effect was negligible on both purity and
peak amplitude for all methods. Deviations of around 5% were
reported in Ref. [46].

Random variations in wall positions—We ran Monte
Carlo simulations averaged over 100 data points, based on a

Gaussian distribution centered around the expected position
of each domain, parameterized by the standard deviation σRVD.
The effect of this error on purity was negligible for all poling
methods, even for high errors. The effect on peak amplitude
was more pronounced, but consistent across all methods (al-
though, the customized duty-cycle method showed slightly
more spreading across simulations). Figure 8(b) shows those
results.

In our simulations, we considered σRVD to range between 0
and 0.12 × lc. Errors in standard crystals made by established
manufacturers will typically be on the low end of this range,
but others have reported errors of σRVD = 0.08 × lc in two
different experiments involving lithium niobate waveguides
[47,48]. Furthermore, as future experiments push the bound-
aries of what is possible to manufacture, e.g., to implement
methods such as those based on sub-coherence length do-
mains [22], tolerance to relatively high errors will be relevant.

Missed domains—We modeled missed domains by consid-
ering segments pointing in one direction, then flipping the sign
of a randomly selected subset of these. We average over 100
data points for each percentage value. The effect of missed
domains on purity was also negligible for all poling methods,
even for high errors (although, the customized duty-cycle
method showed slightly more spreading across simulations).
The effect on peak amplitude was again more pronounced, but
consistent across all methods. Figure 8(c) shows those results.

In summary, the fabrication imperfections considered here
impact all poling methods equivalently. Errors due to over-
and underpoling have negligible effects. Errors due to random
variations in wall positions and missed domains do impact
peak amplitude, but have negligible effect on heralded photon
spectral purity.

3. Undesirable PDC generation far from the central PMF peak
due to nonlinearity shaping

The nonlinearity shaping techniques discussed in this sec-
tion shape the PMF through interference between the PMFs
of individual domains. The PMF can be shaped as desired
only within a certain spectral range of interest, and outside
this range, the nature of interference can generate undesired
amplitude.

Undesirable PDC generation far from the central PMF peak
arises in all poling techniques, but the nature of that amplitude
differs. Figure 9 shows the undesirable PDC generation for
three poling patterns, compared with an unpoled crystal.
For periodic poling, these regions are concentrated at �k =
±n2π/�. For the customized duty-cycle method introduced
by Dixon et al. [19], there is additional amplitude peaked
at �k = 0. For the customized domain orientation method
introduced by Tambasco et al. [21], the additional amplitude
is more spread out.

For periodic poling and the customized duty-cycle method,
the undesirable PDC generation is typically far outside the
spectral range of the detectors and therefore gets filtered out
automatically. For the customized domain orientation method,
the undesired PDC generation is closer to the spectral range
of interest, and might need to be filtered out deliberately. This
raises the question: if the motivation for nonlinearity shap-
ing was to avoid destruction of photon-number correlations
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FIG. 9. The PMF for an unpoled crystal compared with the PMFs
for three poling methods. We present the PMF as a function of
�k. This representation allows plotting without needing to specify
the material’s dispersion properties. For comparison with previous
results, we note that these plots correspond to a perpendicular cut
of the PMF plotted as a function of (�s ,�i ). Undesirable PDC
generation far from the central PMF peak arises outside of the region
of interest when poling methods are used. Left: Broad �k range
showing undesired and desired PDC generation. Right: �k range of
interest showing only desired PDC generation. The coherence length
lc was the same for all methods (yielding a poling period � = 2lcm
for periodically poled and custom-duty cycle methods, and a domain
width equal to lc for the custom domain orientation method). For
comparison, we fixed the generated photon bandwidth across all
methods. To achieve this, different methods required different crystal
lengths L. n is the number of domains.

caused by filtering, is nonlinearity shaping a good idea when
filtering is required anyway?

The answer lies in the nature of the filtering. Filtering
preserves photon number correlations if the filter is partially
transmissive only at frequencies for which the JSA is negligi-
ble (the special case of this is a filter described by a top-hat
function with unit transmittance, which can be used in any
region of the JSA). If the region containing the undesirable
PDC generation is far enough away from the region of interest,
to ensure no overlap between where the JSA is non-negligible
and where the filter is partially transmissive, then the un-
desired PDC generation can be safely filtered out without
destroying photon-number correlations [28,35–37,49]. So as
long as the undesired PDC generation is sufficiently far away
from the desired PDC generation, nonlinearity shaping is a
good idea.

If the undesired PDC generation is too close to the desired
PDC generation, it might be possible to suppress its genera-
tion by engineering a Bragg grating into the nonlinear material
to induce a photonic stop band [50].

IV. INFERRING THE PURITY OF THE
HERALDED SINGLE PHOTON

In the previous section, we considered the design of a
spectrally pure heralded single-photon source. In this section,
we focus on characterizing the spectral purity of the source
once it is built. While the spectral purity of a heralded photon
cannot be measured directly, it can be inferred from other
measurements, such as those of the JSA, the JSI (in special
cases), or the Hong-Ou-Mandel (HOM) visibility [26].

Any experimental measurement of the JSA or JSI neces-
sarily yields a discretized approximation over a finite spectral
range. In this section, we study how different discretizations
and spectral ranges impact the inferred spectral purity.

We also study the effect of using the square root of the
JSI as a proxy for the JSA (recall that JSI = |JSA|2). This is
important because many methods that measure the photons’
joint spectral properties—such as scanning-monochromators
measurements, fiber-spectroscopy techniques or stimulated
emission tomography [51–56]—lack spectral phase and sign
information. These methods really measure the JSI. We show
that using the square root of the JSI for purity estimation
involves some pitfalls if the JSA has phase-correlations, in-
cluding sign changes.

The only method to reconstruct the JSA directly (including
phase correlations) is the phase-sensitive stimulated emission
tomography [57,58], but this is experimentally hard and is
not a widespread technique. If there is reason to believe
that the JSA has both positive and negative regions, or if it
has additional temporal correlations such as those that come
from chirped pulses—and it is not possible to do phase-
sensitive stimulated emission tomography—then one may do
a two-photon HOM interference experiment. We show that the
visibility of this experiment predicts the spectral purity even
in the case of chirped pulses.

A. Discretization and spectral range

In Sec. II C we saw that the purity can be calculated
from the Schmidt decomposition of the JSA. To do this in
practice, the JSA is discretized into frequency bins, over finite
ranges of signal and idler frequencies, then represented as a
complex-valued matrix. The Schmidt decomposition is then
computed numerically using a singular value decomposition
(SVD) [24,59] of the matrix representation of the JSA.

Whether the discretized JSA is obtained experimentally
using, e.g., phase-sensitive stimulated emission tomography,
or constructed from the analytical form of the JSA, it is crucial
to correctly choose the spectral range of both the signal and
the idler photons and the number of frequency bins used for
the discretization. In this section, we analyze the effects of
discretization and spectral range using a JSA constructed from
a sinc-shaped PMF and sech-shaped pump function in the
symmetric GVM regime (θ = π/4).
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FIG. 10. Dependence of the heralded photon spectral purity on
the spectral range parameter ζ for two different values of discretiza-
tion D. Red points correspond to the inferred purity, while green
squares and blue diamonds correspond to an inferred purity-like pa-
rameter computed from Eq. (12) using the JSI or

√
JSI, respectively,

in place of the JSA.

To study the effect of a finite spectral range, we fix the
discretization (defined as the number of frequency bins) and
construct matrix representations of the JSA for increasing
spectral ranges. We parametrize the spectral range by ζ ,
which is the ratio between the spectral range used in the JSA
calculation and the average PDC photon bandwidth (defined
as the FWHM of the marginal spectral distributions of the
photons). We then find the singular values of each matrix and
use it to compute the purity according to Eq. (12). We find that
for a fixed discretization, there is an optimal value of spectral
range. This can be seen in Fig. 10, where the red dots show
the purity computed from the JSA as a function of spectral
range for discretizations of (D = 30 and D = 150). Initially,
as the spectral range increases, more of the true spectrum is
included in the finite representation of the JSA, and the value
of the purity approaches the true value. But since the number
of frequency bins is fixed, each bin gets larger as the spectral
range continues to increase, and eventually cannot capture
detailed features of the JSA, so the inferred purity diverges
from the true purity.

Mathematically, we know that only the SVD of the
JSA can yield the actual purity. But since others (e.g.,
Refs. [12,18,30,41,56,60]) have used the JSI or the

√
JSI

(|JSA|) to get information about the purity from experiments,
we also construct matrix representations of the JSI and

√
JSI

(|JSA|) and compute a purity-like parameter using the singular
values of these matrices. Figure 10 shows that, using this

FIG. 11. Dependence of the photon purity on the spectral dis-
cretization for two different values of spectral range. Red dots
correspond to the inferred purity, while green squares and blue
diamonds correspond to an inferred purity-like parameter computed
from Eq. (12) using the JSI or

√
JSI, respectively, in place of the JSA.

approach, neither the JSI (green squares) or the
√

JSI (blue
diamonds) provide good estimates of the true purity.

To study the effect of discretization, we fix the spectral
range and construct matrix representations of the JSA for a
range of discretizations. As before, we then find the singular
values of each matrix and use it to compute the purity accord-
ing to Eq. (12). We find that for a fixed spectral range, the
purity converges as the discretization is increased. This can be
seen in Fig. 11 where the red dots show the purity computed
from the JSA as a function of discretization for spectral range
of ζ ≈ 10 and ζ ≈ 40. Indeed, the calculated spectral purities
in the highlighted yellow regions (D < 40 for the smaller
spectral range, D < 100 for the larger) is extremely sensitive
to D, and the corresponding discretizations aren’t suitable
for estimating accurately the spectral properties of the PDC
photons. At higher discretizations (D > 40 and D > 100) the
inferred purities converge to a single value of spectral purity.

As before, we also construct matrix representations of the
JSI and

√
JSI (|JSA|) and compute purity-like parameters

using the singular values, shown in Fig. 11. Both converge,
but to the wrong value, thus neither provide very good es-
timates of the true purity. This discrepancy is due to the
sinc-shaped PMF having both positive and negative amplitude
components. For ideal Gaussian-shaped PEF and PMF, the
purity-like parameter would converge to the true purity.

To study the interplay between the discretization and the
spectral range, and to show in what regimes a purity esti-
mation from a measured JSA can be trusted, we compute
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FIG. 12. Contour plot of the single-photon purity versus spectral
range ζ and discretization D for a sech pulse group-velocity matched
with a sinc-shaped PMF. Different colors correspond to different
ranges of purity respect to its most accurate estimate (0.79, computed
with ζ ≈ 630 and D = 3000). The black dashed line represents the
exact purity value.

the JSA separability at different discretizations and spectral
ranges, and we compare it with a very accurate purity estimate
obtained via SVD from a JSA with ζ ≈ 630 and D = 3000.
We show the results in Fig. 12. The purity is significantly
overestimated for small spectral ranges ζ < 10, while a coarse
discretization (D < 20) leads to noisy results. In general,
reliable purity values are obtained in the top-right corner of
the plot: while there isn’t an optimal recipe for choosing these
parameters (as they also depend on the nonlinear properties of
the material and on the pump pulse properties), it is advisable
to use ζ values larger than 10, and discretization values of at
least 100 for obtaining a good approximation of the real JSA,
and therefore of the purity.

We finally show what happens in an actual experiment
when the JSI is measured with limited statistics, i.e., detecting
a finite number of coincident photons for each frequency
bin according to the spectral probability distribution of the
biphoton state. This is an important detail since biphoton
spectroscopy (via, e.g., scanning-monochromator or fiber-
spectroscopy techniques [56]) can be very lossy and return
very low count rates anywhere but in the central frequency
bin. Again, we analyze the case of a sinc-shaped PMF
matched with a sech pulse in symmetric GVM condition,
we consider a 100 × 100 JSI and ζ ≈ 10. We perform a
Monte Carlo simulation assuming Poissonian distribution of
the detected coincidences. The results are shown in Fig. 13.
We find that the estimated purity-like parameter converges to
the expected value when the average number of PDC pairs
detected in the “brightest” frequency bin is approximatively
1000 (equivalently, for 60 000 overall detected PDC pairs).

We conclude that estimating purity from joint spectral mea-
surements has a number of pitfalls. Measurements based on
the JSA and the JSI are impacted by limited spectral range and
rough discretization because of limited spectral discretization.

FIG. 13. Monte Carlo simulation of the purity-like parameter
computed from Eq. (12) using the

√
JSI in place of the JSA. On the

x axis the maximum number of counts in the “brightest” frequency
bin or, equivalently, the total number of detected PDC pairs. Each
data point is the mean of 1000 simulated samples (enough for the
convergence of the algorithm), while the error bars are the standard
deviations. The dashed lines are the purity simulated from the actual
JSA (red lower line) and the purity-like parameter simulated from
the square root of JSI (blue upper line).

Measurements based on the JSI are further impacted by finite
photon-counting statistics. In the case of the JSI, even if
the characterization is carried out meticulously, the purity-
like parameter inferred from the SVD (which, as discussed
above, can sometimes correspond to the spectral purity) is
at best a rather loose upper bound. Most experiments in the
literature which computed the purity-like parameter from JSI
measurements (e.g., Refs. [12,18,30,41,56,61–67]) therefore
may have overestimated its value. There are, however, also
examples of good (but not yet optimal) practice [37,68,69].

B. Inferring the purity via two-photon interference

A more reliable benchmark for heralded-photon spectral
purity is the beamsplitter (BS) interference visibility between
two identical photons: this can be experimentally achieved by
interfering two heralded photons (either signal with signal or
idler with idler) produced in the same nonlinear crystal at dif-
ferent times, i.e., produced in independent PDC processes and
independently heralded [42]. If the two interfering photons
are pure and indistinguishable they exit the BS from the same
output mode. If they are either not pure or distinguishable (or
both), they don’t interfere perfectly and can exit the BS from
both ports simultaneously. This is quantified by the visibility:

V = 1 − Nmin

Nmax
, (21)

where Nmax is the number of photon pairs that exit the BS
from opposite ports after arriving at the BS simultaneously,
while Nmin is the number of photon pairs that exit the BS
from opposite ports after arriving at the BS at different times
for identical photons. The visibility is equal to the heralded-
photon spectral purity [26].

Figure 14 shows that the two-photon interference is sensi-
tive to the phase information of the JSA: the visibilities of the
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FIG. 14. Two-photon interference patterns for four combinations
of PEF and PMF shapes in symmetric GVM condition. Both a
transform-limited case and a kw2 = 2 case are considered.

interference patterns match the purities obtained via Schmidt
decomposition shown in Fig. 5.

If there is reason to believe that the JSA has both positive
and negative regions, or if it has additional temporal correla-
tions such as those that come from chirped pulses—and it is
not possible to measure the JSA—then a two-photon HOM
interference experiment is a good option to infer the spectral
purity.

V. CONCLUSION

We investigated a number of practical issues relevant to
the design and characterisation of single-photon sources based
on parametric down-conversion in a group-velocity-matched
regime.

We showed that when realistic laser pulses and realistic
nonlinear crystals are used, the pulse laser and PDC band-
widths (i.e., choice of crystal length as a function of pulse
shape and duration) that optimize heralded photon spectral
purity, differ to those previously found for ideal Gaussian
functions. We highlighted the existence of unwanted PDC
generation that arises from different nonlinearity shaping
methods. We also considered fabrication imperfections and

found that while they did impact conversion efficiency, the
impact on heralded photon spectral purity was negligible.

We examined state characterization methods based on the
joint spectrum of biphotons or two-photon interference. We
found that discretization and spectral range of the joint spec-
trum played a large role in correctly inferring the heralded
photon spectral purity. We also showed that in cases where the
joint spectral amplitude changes sign or contains nontrivial
phases, inferring the purity from the joint spectral intensity
leads to incorrect results. We showed that in those cases, if it
is not possible to measure the joint spectral amplitude, then a
two-photon HOM interference experiment is a good option to
infer the spectral purity.

The theory developed in this paper is for PDC in χ (2) mate-
rials, but our analysis on how the PEF shape and chirp impact
the biphoton properties can be extended to Four Wave Mixing
in χ (3) materials, which are a building block of integrated
LOQC. Furthermore, our results on JSA characterization ap-
ply directly to biphotons generated via FWM sources.

The sum of these considerations provide a recipe for the
correct choice of: the experimental parameters for matching
pulse laser to PDC bandwidths; the optimal approach to
nonlinearity tailoring; and the parameters for characterizing
the purity of the resulting photons. Taking these considera-
tions into account will further improve the quality of PDC
photon sources in terms of brightness, spectral purity, and
heralding efficiency. We therefore expect our results to be of
practical interest to researchers building the next generation
of nonlinear sources of separable photon pairs.
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