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Born-Kuhn model for magnetochiral effects

Hiroyuki Kurosawa* and Shin-ichiro Inoue
Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Hyogo 651-2492, Japan

(Received 8 August 2018; published 5 November 2018)

This study focuses on theoretical and numerical investigations of the magnetochiral (MCh) effect in the optical
region. Electrodynamics in a medium with broken time and space inversions is described by two orthogonal
coupled oscillators, in what is known as the Born-Kuhn model, subject to an external static magnetic field.
Constitutive equations and the refractive index of the medium are theoretically derived. The results show that
the MCh effect is induced even in the absence of an intrinsic interaction between the magneto-optical effect and
the optical activity. The study also numerically investigates the electromagnetic response in a metamaterial with
magnetism and chirality in the deep ultraviolet region. The results agree well with the main results of our theory.
This paper paves the way to realizing MCh metamaterials in the optical region.
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I. INTRODUCTION

Symmetry is a key feature in physics. Among various kinds
of symmetries, space and time inversion symmetries are im-
portant for controlling the polarization state of light. Breaking
of space inversion symmetry gives rise to reciprocal polariza-
tion rotation known as optical activity (OA), which originates
from electromagnetic induction in a chiral structure. Breaking
of time inversion symmetry gives rise to nonreciprocal polar-
ization rotation known as Faraday rotation. Faraday rotation
is a magneto-optical (MO) effect, which originates from the
Lorentz force on electrons in a material. Both the OA and
the MO effects give rise to similar phenomena such as polar-
ization rotation, but the physical origins of these phenomena
are different. Therefore, interaction between the OA and the
MO effects is expected to be not just a superposition but a
product of those phenomena, resulting in a different effect.
In a system with simultaneous breaking of space and time
inversion symmetries, the absorption coefficient of a material
irradiated with unpolarized light depends on the propagation
direction of the light: directional birefringence is induced
in the system. This effect is known as the magnetochiral
(MCh) effect [1–4]. Owing to directional birefringence of
unpolarized light, this effect is applicable to optical isolators.
In particular, it may allow one-way mirrors to be realized. The
MCh effect is also important in fundamental physics because
it is key to realizing an artificial gauge field for light [5,6].
The MCh effect has been investigated in natural materials
such as CuFe1−xGaxO2 [7] and CuB2O4 [8] exposed to a low
temperature or a high external magnetic field.

As well as studies in natural materials, artificial structures
have received considerable attention as a platform to investi-
gate MCh effects. In the microwave region, a metamolecule
composed of a twisted Cu wire and a ferrite rod placed within
a waveguide exhibited a significantly enhanced MCh effect,
two orders of magnitude greater than in previous studies
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[9–11]. The MCh effect is enhanced under preferable con-
ditions for practical applications, namely, in a low mag-
netic field at room temperature. In the optical region, artifi-
cially controlled magnetochiral dichroism (MChD) has been
reported in a Ni helix array under low external static magnetic
fields at room temperature [12]. The helix array has both
magnetism and structural chirality and gives rise to MChD. In
addition, the combination of independent magnetic and chiral
elements gives rise to MChD [13,14]. To understand MChD
further, a theoretical model describing the independent control
of magnetism and chirality is needed.

In this paper, we numerically demonstrate that an MCh
effect is realized in the optical region by independent control
of magnetism and structural chirality. We theoretically for-
mulate the MCh effect based on a coupled Lorentz oscillator
model in an external static magnetic field [15]. Our theoretical
results indicate that the MCh effect is realized even in the
absence of internal coupling between magnetism and chirality.
Calculation predicts that a gigantic MCh effect can be realized
in a metamaterial with simultaneous breaking of space and
time inversion.

II. THE BORN-KUHN MODEL
IN A STATIC MAGNETIC FIELD

We consider the situation shown in Fig. 1, where two
identical oscillators separated by a distance d are coupled and
subjected to an external static magnetic field. To describe the
electrodynamics of this system, we start with the Born-Kuhn
model [16], described as

üx + γ u̇x + ω2
0ux + ω2

Chuy = q

m∗ (ex + iωuyB0), (1)

üy + γ u̇y + ω2
0uy + ω2

Chux = q

m∗ (ey − iωuxB0), (2)

where m∗ is the effective mass, q is the electric charge, γ

is the damping factor, and ω0 is the resonance frequency of
the oscillator. The imaginary unit is denoted i. The x and y

components of the electric field on the oscillator are described
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FIG. 1. Schematic of two coupled oscillators separated by dis-
tance d and with resonance frequency ω0 and damping constant γ .
An external magnetic field is applied along the +z direction.

by ex and ey , respectively. The coupling constant between the
two oscillators is given by ωCh. The displacement of the os-
cillator is �u = (ux, uy ). An overdot denotes a derivative with
respect to time. We solve the equations of motion for coupled
oscillators under an external magnetic field B0 directed in the
+z direction.

We expand the position vector of the oscillators to be
�u = �u(0) + �u(1), where the superscripts (0) and (1) denote
the zeroth- and first-order spatial dispersion. At zeroth order,
the coupling effect between the two oscillators is negligible,
resulting in ωCh = 0. The zeroth-order coupled equation gives
us the solution as(

u(0)
x

u(0)
y

)
� q

m∗�2

(
1 iω�c/�

2

−iω�c/�
2 1

)(
ex

ey

)
, (3)

where � =
√

ω2
0 − ω2 − iγ ω and the cyclotron frequency

�c = qB0/m∗. The off-diagonal component of the square ma-
trix represents the MO effect, giving rise to Faraday rotation.

At first order, the equation of motion is described as

ü(1)
x + γ u̇(1)

x + ω2
0u

(1)
x + ω2

Chu
(0)
y = 0, (4)

ü(1)
y + γ u̇(1)

y + ω2
0u

(1)
y + ω2

Chu
(0)
x = 0. (5)

In this coupled equation, we dropped the electric Lorentz
force of first order, which is calculated to be �e(�u(0) +
�u(1) )|1st � (�u(1) · ∇ )�e(�u(0) ) = −i(�u(1) · �k)�e. This is 0 because
the displacement vector is perpendicular to the wave vector.
The first-order coupled equation gives us the solution as(

u(1)
x

u(1)
y

)
= −

(
ωCh

�

)2
qd

m∗�2

(
0 −ik

ik 0

)(
ex

ey

)

−
(

ωCh

�

)2
q

m∗�2

dkω�c

2�2

(
ex

ey

)
. (6)

The first term on the right-hand side of Eq. (6) represents
the OA. The second term is proportional to the cyclotron
frequency �c characterizing the magnetism and to ωCh char-
acterizing the chirality. This term is proportional to the wave

vector k, representing the directional birefringence. That is,
the second term represents the MCh effects.

So far, we have solved the coupled oscillators up to the
first order of spatial dispersion and obtained the displacement
vector �u = �u(0) + �u(1). From this result, we can calculate a
polarization vector �p = q �u. Here, we convert the microscopic
polarization and electric field to macroscopic quantities by
taking a volume average; that is, �P = N〈 �p〉 and �E = 〈�e〉,
where N is the density of the oscillator and 〈 〉 indicates the
volume average. Using Maxwell’s equation ∇ × �E = iω �B,
we obtain constitutive equations for the electric displacement
�D and the magnetic-field strength �H as

�D = ε0ε̂ �E − iξ

√
ε0

μ0

�B − 2ε0
ξg

ε − 1

ck

ω
�E, (7)

�H = μ−1
0

�B − iξ

√
ε0

μ0

�E, (8)

where ε0 is the permittivity and μ0 is the permeability of
the vacuum. In these constitutive equations, we introduce
notations defined as

ε̂ =
(

ε ig

−ig ε

)
, (9)

ε = 1 + 2

3

ω2
p

ω2
0 − ω2 − iγ ω

, (10)

g = 2

3

ω2
p

ω2
0 − ω2 − iγ ω

ω�c

ω2
0 − ω2 − iγ ω

, (11)

ξ = 1

3

ω2
p

ω2
0 − ω2 − iγ ω

ω2
Ch

ω2
0 − ω2 − iγ ω

d

2

ω

c
, (12)

where ωp is the plasma frequency, defined as
√

Nq2/(ε0m∗).
Note that the factor 2/3 in ε and g stems from the volume
average and is the consequence of the two orthogonal os-
cillators along the x and y directions in three-dimensional
space. The remaining direction is related to the OA, resulting
in the factor 1/3 in ξ . The constitutive equations are linked
to the Born-Kuhn model under the external magnetic field
as follows. Due to the applied external dc magnetic field,
the MO effect appears in the of-diagonal components of the
permittivity, which is described in Eqs. (9) and (11). The
orthogonal oscillators give rise to the OA, which appears as
ξ in Eqs. (7) and (8). As a result of coupling between these
two effects, the MCh effect appears in the last term on the
right-hand side of Eq. (7).

Following the derivation of the constitutive equations, let
us consider wave propagation in an MCh medium. Substitut-
ing the constitutive equations into Maxwell’s equations, we
obtain the wave equation

∇2 �E +
(

ω

c

)2

(ε �E + i �E × �g) − 2ξ
ω

c
∇ × �E

− 2
ω

c

ξgk

ε − 1
�E = 0, (13)

where we assume that the electromagnetic wave is transverse:
∇ · �E = 0. Assuming that the eigenstate of this system is
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circular polarization, we obtain the eigenequation

(ε ∓ g)

(
ω

c

)2

∓ 2ξk

(
1 ± g

ε − 1

)
ω

c
− k2 = 0, (14)

where ∓ corresponds to right and left circular polarizations,
respectively. The solution of this quadratic equation with
respect to ω/c yields the dispersion relation:

ω

c
= |k|√

ε ∓ g ∓ ξsgn(k) − ξsgn(k)g/(ε − 1)
. (15)

The denominator on the right-hand side of Eq. (15) is a
refractive index, which is approximated to be

n = √
ε ∓ g

2
√

ε
∓ ξsgn(k) − ξsgn(k)

g

ε − 1
. (16)

This refractive index consists of four terms. The first term is
the conventional refractive index, which is independent of the
polarization state and propagation direction of the light. The
second term represents the MO effect, which is dependent
on the polarization state. The third term corresponds to the
OA, which is dependent on both the polarization state and the
propagation direction. The last term includes the product of
ξ and g/(ε − 1). This term is dependent on the propagation
direction but is independent of the polarization state, repre-
senting the MCh effect. In our derivation of the MCh effect,
the MO effect is formulated at zeroth order and is modulated
by the OA at first order, resulting in the MCh effect. This
cascade process is found in the second term on the left-hand
side of Eq. (14). This term is proportional to ∓ξ and repre-
sents the OA. Moreover, it has a correction term described
as ±g/(ε − 1), which represents the MO effect. The product
of ∓ξ and ±g/(ε − 1) describes the modulation of the MO
effect by the OA and gives −ξg/(ε − 1), which appears in the
refractive index representing the MCh effect. The polarization
independence of the MCh effect is attributed to the product
of the polarization-dependent effects of the MO effect and
OA. In this process, we have not assumed internal coupling
between the OA and the MO effect. Our formulation indicates
that an MCh effect is realized by combining magnetic and
chiral elements. Next, we numerically show that the MCh
effect in a metamaterial with broken space and time inversion
symmetries well represents the results of our theory.

III. DEMONSTRATION OF THE MCh EFFECT
WITHOUT INTERNAL COUPLING

Figure 2 shows an MCh metamaterial composed of chiral
and magnetic meta-atoms. The chiral meta-atom consists of
two Al nanorods orthogonal to each other, representing the
two coupled oscillators. The rods measure 40 × 40 × 100 nm,
are spaced 70 nm apart, and are arranged so that the system
has C4 symmetry [17]. The permittivity of Al is modeled
by the Drude-Lorentz model [18], in which permittivity has
no off-diagonal component. To include nonreciprocity, we
introduce a magnetic nanoparticle as a magnetic meta-atom at
the center of the chiral structure and assume that an external
magnetic field is applied along the +z direction. The radius
of the particle is 100 nm. This meta-atom modulates the elec-
tromagnetic response of the chiral meta-atoms, giving rise to
the MCh effects. The diagonal and off-diagonal components

FIG. 2. Schematic of MCh metamaterial. A magnetic nanopar-
ticle is located at the center of the MCh metamaterial. The chiral
meta-atom consists of a pair of Al nanorods configured so that the
metamaterial has C4 symmetry.

of permittivity of the magnetic meta-atom are 2.62 and 0.2i,
respectively. The eigenstates of the magnetic and chiral meta-
atoms are circular polarization. This means that the eigen-
modes of the combined structure (the MCh metamaterial) are
also circular polarization. The period and total thickness of the
MCh metamaterial are 500 nm in the x and y directions and
110 nm, respectively. This thickness is shorter than the wave-
length in the deep ultraviolet region, indicating that the MCh
metamaterial can be regarded as a subwavelength structure in
the wavelength region longer than 220 nm. We introduced x-
polarized light into the metamaterial from ports 1 and 2. Both
ports are defined to calculate the x component of the fields
and are terminated by perfectly matched layers. Under these
conditions, we calculated transmission coefficients from the
ports as S21 and S12 by a finite-element method in COMSOL
Multiphyiscs software.

Figure 3 shows the phase and amplitude difference spectra
of S21 and S12. The left and right y axes show the phase
and amplitude differences. Owing to the nonreciprocity of the
MCh metamaterial, their significant differences are evident.
In particular, the differences show clear resonance features
and become prominent around 240.4, 256, and 290 nm. The
spectra have a dispersive feature around 240.4 nm and, less
clearly, around 265 and 290 nm. Hence, we focus on the
resonance around 240.4 nm.

To clarify the eigenmode responsible for this strong nonre-
ciprocity, we calculated the near-field distribution patterns of
the electromagnetic fields. Figure 4 shows the electric-field

FIG. 3. Signal phase (left) and amplitude (right) difference spec-
tra of the MCh metamaterial.
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FIG. 4. Electric-field distributions at 240.4 nm when excited
from (a)–(c) port 1 and (d)–(f) port 2. Colors indicate electric-field
intensities; arrows indicate vectors. The unit of the electric-field
intensity is V/m.

distributions at the maximum of the amplitude difference.
In Figs. 4(a) and 4(d), the electric-field vectors exhibit
dipolelike patterns, indicating that this resonance is related
to Mie resonance. The direction of the electric dipole is
tilted about 45◦ in Fig. 4(a) but is nearly horizontal in (d).
In addition to the field distributions in the magnetic sphere,
those near the chiral meta-atoms are different. The presence
of vortexlike features in the upper right and lower left chiral
meta-atoms in Fig. 4(a) and their absence in Fig. 4(d) indicates
that strong chiral resonance is present only in Fig. 4(a). In
Figs. 4(b) and 4(e), the electric-field intensity distributions
in the y-z plane have a whispering gallery mode (WGM)
characteristic. As shown in Fig. 4, there are two resonances
in the metamaterial around 240.4 nm. On the other hand,
the distribution patterns in Figs. 4(c) and 4(f) are different
from the others: the WGM is excited also in the z-x plane
in Fig. 4(c) but not in Fig. 4(f). This result indicates that
the resonance condition for WGM in the z-x plane is not
satisfied when excited from port 2 owing to the nonreciprocity,
resulting in the large transmittance difference. This sensitivity
of the resonance condition in a nonreciprocal system has been
reported before [10,11].

We calculated the eigenmodes involving the nonreciproc-
ity. To compare the results with our theoretical results,

FIG. 5. (a) Phase (left) and amplitude (right) difference spectra
of the MCh metamaterial. (b) Real (solid line) and imaginary (dashed
line) parts of �n given by Eq. (17) as a function of wavelength.

we considered the phase and amplitude difference spectra,
S21 − S12. The phase difference corresponds to the difference
of the real part of the refractive index, whereas the amplitude
difference corresponds to that of the imaginary part. From
Eq. (16), the refractive index independent of the polarization
state is

√
ε − ξsgn(k)g/(ε − 1). The directional birefringence

independent of the polarization state is calculated to be

�n = nk − n−k

2
= −ξ

g

ε − 1
. (17)

FIG. 6. Schematic of (a) right-handed, (b) left-handed, and (c)
achiral meta-atoms. Red arrows in (a) and (b) indicate the twist
direction to the +z direction.
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FIG. 7. Signal phase (left) and amplitude (right) difference spec-
tra of the MCh metamaterials with left-handed and achiral meta-
atoms.

Figure 5(a) shows an enlarged version of Fig. 3 around
240.4 nm, and Fig. 5(b) shows the real and imaginary parts
of �n. We set the resonance wavelength as 240.4 nm and the
damping constant as 0.08 eV. As evident from the comparison
between these two figures, there is a clear correspondence
between the phase difference and the real part of �n. The
amplitude difference also corresponds to the imaginary part
of �n. The spectral features agree well with the numerical
results, indicating that the MCh effect without internal cou-
pling is realized in the MCh metamaterial. To confirm that
the nonreciprocity signal is due to the product of ξ and g, we
investigated chirality dependence: we switched the chirality of
the chiral meta-atom from right [Fig. 6(a)] to left [Fig. 6(b)] or
achiral [Fig. 6(c)] and calculated the nonreciprocal response.

Figure 7 shows the signal difference spectra for the MCh
metamaterials with left and achiral meta-atoms. The polar-
ity of the nonreciprocity signal of the left-handed structure
is reversed from that of the right-handed one of the same
magnitude. Moreover, there is no nonreciprocity when the
metamaterial has no chirality. These results indicate that
the nonreciprocity signal is an odd function with respect
to chirality. In addition, we confirmed that the polarity is

reversed when the direction of the external dc magnetic field is
reversed (not shown). In the absence of the external field, the
nonreciprocity disappears (not shown). All these calculations
indicate that the nonreciprocity signal is an odd function
with respect to ξ and g and originates from the MCh effects
represented by the product of ξ and g. The MCh effect in this
study is very large and an order of magnitude greater than
reported in previous studies in the optical region. Moreover,
the gigantic nonreciprocity is realized in the absence of the
internal coupling between magnetism and chirality at room
temperature. This feature extends the range of application of
MCh effects and is thus preferable for practical applications.
Thus, a gigantic MCh effect in a metamaterial is key to
realizing novel functional devices such as one-way mirrors in
the optical region.

IV. CONCLUSION

In summary, we have formulated an MCh effect based on
the Born-Kuhn model subject to an external static magnetic
field. The MCh effect is represented by the product of the off-
diagonal component of permittivity and the chiral parameter,
indicating that an MCh effect is induced even in the absence of
internal coupling between magnetism and chirality. We have
numerically shown that such an MCh effect is realized in a
metamaterial composed of magnetic and chiral meta-atoms.
Moreover, the MCh effect is gigantically enhanced by the
resonance of the metamaterial. This study paves the way to
realizing giant MCh effects in the optical region.
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