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The excitation spectrum of a highly condensed two-dimensional trapped Bose-Einstein condensate (BEC) is
investigated within the rotating frame of reference. The rotation is used to transfer high-lying excited states to the
low-energy spectrum of the BEC. We employ many-body linear-response theory and show that, once the rotation
leads to a quantized vortex in the ground state, already the low-energy part of the excitation spectrum shows
substantial many-body effects beyond the realm of mean-field theory. We demonstrate numerically that the many-
body effects grow with the vorticity of the ground state, meaning that the rotation enhances them even for very
weak repulsion. Furthermore, we explore the impact of the number of bosons N in the condensate on a low-lying
single-particle excitation, which is describable within mean-field theory. Our analysis shows deviations between
the many-body and mean-field results which clearly persist when N is increased up to the experimentally relevant
regime, typically ranging from several thousand up to a million bosons in size. Implications are briefly discussed.
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I. INTRODUCTION

Ultracold bosonic gases under rotation are suitable to probe
various phenomena of correlated quantum systems. During
the past two decades, rotating Bose-Einstein condensates
(BECs) were studied from multiple perspectives, ranging from
the occurrence of quantized vortices [1–5] to vortex lattices
and excitations therein [6–8], and with respect to the analogy
to the fractional quantum Hall effect [9–12]. The literature
concerning these topics is extensive and we therefore refer to
the reviews in Refs. [13–16].

In addition to analyzing the ground state of a rotating BEC,
low-lying excited states have been of interest because for very
low temperatures, they describe the thermodynamic properties
of the system. Most studies offering analytical and numerical
results for the low-energy spectra were carried out by utilizing
the Bogoliubov–de Gennes (BdG) mean-field equation
[17,18], e.g., the decay of the counter-rotating quadrupole
mode [19], Tkachenko modes in vortex lattices [20,21],
the twiston spectrum [22], or excitations in anharmonic
traps [23,24]. Interestingly, a many-body analysis of the
low-energy spectra in rotating BECs is rather rare. Examples
are the yrast spectra in a harmonic confinement obtained by
exact diagonalization [25–28].

The starting point and motivation of this work are different.
We consider many-body effects in the low-energy excitation
spectrum of a weakly interacting rotating BEC in a regime
where the mean-field theory is supposed to accurately de-
scribe the physics. Going beyond previous works, we study
bosons in an anharmonic external confinement [29–31] where
one can no longer rely on the validity of the lowest Landau
level approximation. The latter is well-suited for rapidly ro-
tating and slightly repulsive bosons in a harmonic trap with
rotation frequency very close to the trap frequency.

Rotating the BEC leads to a transfer of high-lying excited
states in the laboratory frame to the low-energy part of the
spectrum in the rotating frame. A central role in our analysis
would be the dependence of the excitation energies and their
many-body characteristics on the particle number N . It has
been shown recently that for a nonrotating repulsive BEC in
a trap, the excitation energies in the Hartree limit converge
towards the BdG spectrum [32], and similarly for a rotating
BEC under certain conditions [33]. However, it remains un-
clear if many-body effects in the excitation spectrum can be
observed for mesoscopic and large BECs, typically of the ex-
perimentally relevant order of 103–106 bosons. Our numerical
results present strong physical trends for this regime and show
that the answer is positive.

As a main result, we show that once the rotation leads
to a quantized vortex in the ground state, substantial many-
body effects in the low-energy excitation spectrum occur.
These effects grow with the vorticity of the ground state,
which means they can be enhanced by stronger rotation. In
addition, we demonstrate for a low-lying excited state which
is also accessible within mean-field theory, that these effects
clearly persist when the number of bosons is increased up to
the experimentally relevant regime, despite the BEC being
essentially condensed. The present work reports on accurate
many-body excitation energies of a two-dimensional BEC
obtained by linear response and goes well beyond previous
investigations of one-dimensional systems [34,35].

II. SYSTEM AND METHODS

The general form of the Hamiltonian for
N interacting bosons in the rotating frame is
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given by

Ĥrot =Ĥlab − �L̂z, Ĥlab =
N∑

i=1

ĥ(�ri ) + λ0

N∑
i<j

Ŵ (|�ri − �rj |),

(1)

where the single-particle Hamiltonian is ĥ = −�
2 + V with

the Laplacian � = ∂2/∂�r 2 and the external trapping potential
V , and the two-body interaction is λ0Ŵ with λ0 being its
strength. The rotation term contains the rotation frequency �

and the total angular momentum operator in the z direction,
L̂z = ∑N

i=1 l̂z(i). We work in dimensionless units obtained by

dividing Ĥrot by h̄2

d2m
where d is a length scale and m the boson

mass. A translation to dimensionful units is given in [36].
The Gaussian-shaped repulsion λ0Ŵ (|�ri − �rj |) =

λ0
2πσ 2 e−|�ri−�rj |2/2σ 2

with σ = 0.25 avoids the regularization
problems of the zero-ranged contact potential in two
dimensions [38,39], and has been employed in recent
works [40–42,58,61,62]. The role of the width σ is discussed
in Appendix A. The interaction strength λ0 for different
particle numbers is adjusted such that the mean-field
interaction parameter � = λ0(N − 1) is kept constant,
i.e., λ0 ∼ (N − 1)−1. The trapping potential models a
radially symmetric crater given by V (r ) = C e−0.5 (r−RC )4

for
r =

√
x2 + y2 � RC and V (r ) = C for r > RC . The values

of the crater height C and the radial size RC are given in [36].
In contrast to the commonly considered harmonic trapping
potential for rotating BECs, this potential ensures that the
center-of-mass and relative coordinates do not separate.
Furthermore, there is no formation of distinct Landau levels
and it is thus required to go beyond the lowest Landau level
approximation (see Appendix C).

The standard strategy to compute excited states
in a (weakly interacting) BEC is to first calculate
the ground state using the Gross-Pitaevskii (GP)
equation [43–46]. In the rotating frame, it reads
[ĥ + �

∫
d�r ′Ŵ (|�r − �r ′|)|φGP(�r ′)|2−�l̂z]φGP(�r ) = μφGP(�r ),

where φGP is the ground-state orbital and μ the chemical
potential. Afterward, one applies linear-response theory atop
φGP which yields the BdG equation,

LBdG

(
uk

vk

)
= ωk

(
uk

vk

)
, (2)

with the BdG matrix LBdG, the correction amplitudes uk and
vk of the kth excited state to the ground-state orbital, and the
excitation energies ωk = Ek − E0 relative to the ground-state
energy E0. We employ the particle-conserving version of
Eq. (2) [47–50]. It is worth noting that the BdG theory by
construction only gives access to excitations where a single
boson is excited from the condensed mode.

It is a well-known fact that a linear-response analysis
atop the exact ground state gives rise to the exact excitation
spectrum [51]. Thus, to go beyond the mean-field approach
described above, we increase the accuracy of the ground
state by utilizing a many-body ansatz for the wave func-
tion, |�(t )〉 = ∑

�n C�n(t ) |�n; t〉, which is a superposition of
permanents {|�n; t〉} comprised of M single-particle orbitals
{φj (�r, t ) : 1 � j � M} and expansion coefficients {C�n(t )}

where �n = (n1, . . . , nM )t is a vector carrying the individ-
ual occupation numbers of the orbitals for a given perma-
nent. Both the orbitals and coefficients are time adaptive
and determined by the Dirac-Frenkel variational principle,
yielding the multiconfigurational time-dependent Hartree for
bosons (MCTDHB) method [52,53], see, e.g., [54–59] for
applications.

The ground-state depletion f is defined as the occupation
of all but the first natural orbital, f = ∑M

k>1 nk . The natural
orbitals are the eigenvectors of the one-body reduced density
matrix ρ = {ρij } with ρij = 〈�|b̂†i b̂j |�〉 where the annihila-
tion (creation) operator b̂

(†)
i removes (adds) a particle from (to)

the orbital φi . If only the largest occupation n1 is macroscopic,
the system is said to be condensed. This is the case in this
work since the repulsion between the bosons is very weak. If
more than a single occupation is macroscopic, the system is
said to be fragmented, and there are recent works dealing with
fragmented rotating BECs as well [42,60–62].

After computing the many-body ground state, we ap-
ply many-body linear-response (LR) theory, termed LR-
MCTDHB [63,64], atop it, also see [34,35]. This leads to an
eigenvalue equation of the form

L

⎛
⎜⎜⎝

uk

vk

Ck
u

Ck
v

⎞
⎟⎟⎠ = ωk

⎛
⎜⎜⎝

uk

vk

Ck
u

Ck
v

⎞
⎟⎟⎠ (3)

with the (2M + Nconf)-dimensional linear-response matrix
L where Nconf = (

N+M−1
N

)
is the number of possibilities to

distribute N bosons among M orbitals. It consists of four

blocks, L =
(
Loo Loc

Lco Lcc

)
, accounting for the couplings be-

tween the orbitals and coefficients. A detailed derivation of
L and its submatrices is shown in [63,64]. The eigenvec-
tor (uk, vk, Ck

u, Ck
v )T collects the correction amplitudes to

the ground-state orbitals and coefficients, and the eigenvalue
ωk = Ek − E0 denotes the energy of the kth excited state
relative to the ground-state energy E0. We stress that LR-
MCTDHB also accounts for excitations where more than a
single boson is excited from the condensed mode. It is further
important to note that for M = 1, Eqs. (2) and (3) become
identical such that the BdG theory is contained in our many-
body approach as the simplest limiting case.

Throughout this work, we refer to excitations calculated
with Eq. (2) as mean-field excitations, whereas to excitations
calculated with Eq. (3) as many-body excitations. Further-
more, it is useful to distinguish between single- and multi-
particle excitations where either one or multiple particles are
excited from the condensed mode.

Technically, we calculate the lowest few eigenvalues of
L by using the implicitly restarted Arnoldi method [65],
a generalization of the Lanczos method for non-Hermitian
matrices, and its parallel implementation in the ARPACK
numerical library [66]. It allows us to treat even large systems
with N = 1000 bosons and M = 3 orbitals, where already the
dimensionality of the coefficient matrix Lcc exceeds 106. The
numerical results below are converged both with respect to the
number of orbitals M and the number of grid points on which
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FIG. 1. (a)–(e) Many-body ground-state densities in a rotating
BEC of N = 10 bosons with interaction parameter � = 0.5 for
vorticities l = 0 to l = 4 [in respective panels (a)–(e)]. For l > 0 the
ground state is a single vortex whose size grows with l. The mean-
field densities are alike (not shown). (f) Corresponding low-energy
excitation spectra for the ground states in the upper panels. Thick
black lines indicate mean-field results from Eq. (2), i.e., with M = 1
(BdG), and red squares denote the many-body results from Eq. (3)
with M = 7 orbitals (LR-MCTDHB). The many-body spectra show
a very rich structure which cannot be accounted for within the
mean-field picture. All quantities are dimensionless.

the Hamiltonian in Eq. (1) is represented. To calculate the
ground states we use the MCTDHB implementation in [67].

III. RESULTS

Figure 1 shows the ground-state densities and the low-
energy excitation spectra of a rotating BEC with N = 10
bosons and interaction parameter � = 0.5 for different ro-
tation frequencies �. The many-body energies have been
computed utilizing M = 7 orbitals which ensures numerical
convergence for the shown energy range. A discussion on the
numerical convergence can be found in Appendix A. The rota-
tion frequencies were chosen such that the underlying ground
states have different vorticities, i.e., angular momenta per
particle, l. The degree of condensation 10 − f ranges from
9.999 (l = 0) to 9.962 (l = 4) out of 10 particles, meaning
that the BEC is highly condensed and one might expect the
mean-field theory to give accurate results. One can see from
the densities in Figs. 1(a)–1(e) that the radial symmetry is, of
course, preserved under rotation and that the core size of the
vortex is growing with vorticity l. This is a giant vortex which
an anharmonic trap can sustain [29,31], albeit here described
at the many-body level.

With regard to the excitation spectra in Fig. 1(f), we
observe that for l = 0, i.e., when the ground state is fully
condensed, the mean-field and many-body energies of the
first two single-particle excitations are equal (first and third
state from below). They refer to the cases of taking one
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FIG. 2. Enhanced many-body effects by rotation. The excitation
energies ω(+1) are shown as a function of the rotation frequency �

for interaction parameter � = 0.5. Many-body results are calculated
for different particle numbers N . Vertical dotted lines indicate the
transition from ground-state vorticity l to l + 1 between two adjacent
analyzed rotation frequencies (mean-field in black and many-body
in red). It is seen that the many-body effects grow with growing
vorticity. Even the assignment of the vorticity to the mean-field and
many-body ground states does not match as the vorticity grows,
at least for systems up to N = 1000 bosons. The inset shows a
magnified view for � = 3.8. All quantities are dimensionless.

boson from the condensed mode to either an orbital with
angular momentum lz = +1 or +2, respectively. We refer to
the former excitation as (+1). How its energy ω(+1) depends
on the vorticity and the number of particles is discussed in
detail below. The second excitation from below, only captured
at the many-body level, is a two-particle excitation where two
bosons occupy the orbital with lz = +1.

For nonzero ground-state vorticities (l > 0), the deviations
between the BdG and many-body spectra grow substantially.
At the many-body level, the increased rotation transfers many
more states to the low-energy spectrum than at the mean-field
level. Moreover, the differences between BdG and many-body
energies of single-particle excitations grow. The inaccuracy
of the mean-field energies for single-particle excitations is
intriguing since one might expect this simplest kind of ex-
citations to be the least sensitive to many-body effects. In
the remaining part of this work, we show that this intuition
is misleading and that one needs an accurate many-body
description even for the lowest single-particle excited states.
Therefore, we elaborate on (+1) in more detail.

Figure 2 shows the excitation energy ω(+1) for a broader
range of rotation frequencies � and compares mean-field and
many-body energies for N = 10, 100, and 1000 bosons. Up
to � = 1.9 (l = 0), the mean-field and many-body results
coincide, meaning that rotating the BEC with � � 1.9 does
not lead to visible many-body corrections to the excitation
energy ω(+1).

Once the ground state of the BEC becomes a vortex (� �
2.0), the mean-field and many-body results start to deviate.
The energetic distance between them grows with l. This can
be rationalized by the geometry of a vortex. Since it has the
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FIG. 3. Gap size �N for particle numbers from N = 20 to N =
1000. Results are given relative to �10, the dashed lines indicate
exponential-fit curves. For l = 0, �N is essentially zero (not shown).
The gap varies with N weaker as the vorticity l grows. Small
oscillations in the tails of the curves �N/�10 are due to the numerical
accuracy of order O(10−5). All quantities are dimensionless.

shape of a ring with finite radial width, a comparison to a
one-dimensional system of interacting bosons on a finite ring
is instrumental. For such a system, it has been demonstrated
recently that the overlap between the mean-field and the exact
ground state decreases and that the depletion grows with the
size of the ring [68]. This implies here that the quality of the
BdG results decreases with growing vortex size and thus with
growing vorticity. Nonetheless, we point out again that even
for N = 10 and l = 4, f is only 0.038. Thus the BEC is highly
condensed and one might a priori expect the BdG equation
to yield accurate results for the lowest excitation energies.
Instead, for � = 3.9, the difference between the mean-field
and many-body energies becomes approximately as large as
the mean-field energy itself.

The inset in Fig. 2 magnifies ω(+1) with respect to the
particle number N for � = 3.8. One can see that the excitation
energy decreases as N grows, but increasing N from 100 to
1000 lowers ω(+1) only marginally and one is rather far from
the mean-field result.

Figure 3 shows the impact of N on the energy gap �N =
ωN

(+1) − ωBdG
(+1), where ωN

(+1) is the many-body and ωBdG
(+1) the

mean-field energy of (+1). Using M = 3 orbitals ensures
numerical convergence for the obtained results of ωN

(+1), see
Appendix A. The gap size is shown relative to �10, i.e., for
N = 10 bosons. For all values of l, �N decreases until N ≈
200 and then apparently slowly saturates. Moreover, the gap
varies with N weaker as the vorticity l grows. Even for l = 1,
the size of �N remains around 97% of �10 for N = 1000,
and it remains even larger for higher values of l. We stress
again that the BEC is highly condensed for all chosen rotation
frequencies. As an example, the degree of condensation for
N = 1000 and l = 4 is 999.97, i.e., only f ≈ 0.03 bosons
(or 0.003%) are outside the condensed mode. According to
the results in Fig. 3 there is basically no evidence that �N

would show a sharp descent when N is increased by two or
three orders of magnitude beyond the particle numbers con-
sidered in this work. Naturally, the question arises whether the

asymptotic behavior discussed in Refs. [32,33], namely, that
the BdG spectrum yields the exact excitation energies for both
trapped nonrotating and rotating but symmetry-broken BECs
is the same for a rotating BEC where the radial symmetry is
preserved. Although our results do not answer this question in
general, they at least indicate that in such a case one would
need an inconceivable amount of bosons to come close to the
BdG energies, certainly more than 104–106 bosons which are
typically used in experiments.

IV. CONCLUDING REMARKS

To summarize, we have shown that rotating a weakly
interacting BEC leads to a strong enhancement of many-body
effects in the low-energy excitation spectrum, even if the
degree of condensation is very high. Besides the fact that
the amount of multiparticle excited states increases strongly
when the ground state is a vortex, the differences between the
mean-field and accurate many-body excitation energies grow
with growing vorticity and can become of the order of the
mean-field excitation energies themselves, even for the very
lowest single-particle excited states. Moreover, these differ-
ences clearly persist for larger particle numbers, showing that
an accurate many-body theory for the low-energy excitation
spectrum is necessary, not only for a small amount of bosons.
Such many-body effects in the excitation spectrum would be
interesting to search for also in the dynamics of essentially
condensed rotating BECs.
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APPENDIX A: NUMERICAL CONVERGENCE

The numerical convergence of the results for the excitation
energies shown in the main text is discussed. Furthermore, we
discuss the convergence of the ground states themselves on
top of which the linear-response analysis is applied, as well as
the role of the width σ of the Gaussian interaction potential.
A benchmark of the utilized numerical implementation of
LR-MCTDHB [67] against the exactly solvable harmonic
interaction model in two dimensions is shown in Appendix B.

Concerning the excitations, we focus on the convergence
with respect to the number of orbitals M included in the
LR-MCTDHB calculations and the number of grid points of
the underlying spatial grid on which the orbitals are repre-
sented. For both cases, we show the convergence for a rotation
frequency of � = 3.8, i.e., l = 4, because for this vorticity the
condensate depletion is maximal for the systems considered.
The trap parameters are chosen as follows. For the radius
of the crater we chose Rc = 3.0 and the height of the crater
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FIG. 4. Excitation energies of the lowest excited states for a BEC
with N = 100 bosons, rotation frequency � = 3.8 (i.e., ground-state
vorticity l = 4), and interaction strength � = 0.5 for 64 × 64 and
128 × 128 grid points. Results are computed with LR-MCTDHB (3).
The energies obtained for the two different grid sizes lie atop each
other, showing numerical convergence for the smaller grid size. All
quantities are dimensionless.

wall is C = 200.0, which is much larger than the energy per
particle.

Figure 4 shows the lowest excitations for a BEC with
N = 100 bosons, rotation frequency � = 3.8, and interac-
tion strength � = 0.5. We compare the results for a grid
with 64 × 64 points to a grid with 128 × 128 points on a
two-dimensional box with range [−4, 4) × [−4, 4). At the
many-body level, M = 3 self-consistent orbitals are utilized
within the MCTDHB approach. Comparing the results for
the two different numbers of grid points, there are essentially
no differences observable, the results lie atop each other. We
observe a similar agreement also for other system parameters,
i.e., different N , l, and �. We thus deduce that for all system

 0
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 5  10  15  20  25  30  35

ω(+1)

ω

n

M=3
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M=7

FIG. 5. Low-energy spectrum for system parameters N = 10,
� = 3.8, and � = 0.5. On the entire energy range, M = 5 orbitals
yield accurate results. For the very lowest excitation energies, in
particular for ω(+1) which is discussed in detail in the main text,
already M = 3 self-consistent orbitals lead to numerically converged
values. All quantities are dimensionless.
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FIG. 6. Convergence of the position variance per particle in the
x direction for the ground states of a BEC with N = 10 bosons and
interaction strength � = 0.5 for different vorticities l. Results are
computed for M = 5, 7, and 9 self-consistent orbitals. For all values
of l, the points for different numbers of orbitals lie atop each other,
demonstrating numerical convergence for M = 5. Inset: Magnified
view for l = 4. Already for M = 5, the variance is converged to
O(10−3) of the exact value. All quantities are dimensionless.

parameters considered, the 64 × 64 grid yields converged
results.

Figure 5 shows the comparison of the results for a BEC
with parameters N = 10, � = 3.8, and � = 0.5 for different
numbers of orbitals M . There are two major observations.
First, the results coincide for the very first excited states for all
M = 3, 5, and 7. In particular, M = 3 orbitals lead to highly
accurate results for the (+1) excitation energy ω(+1). Second,
the results for M = 5 and 7 lie atop each other on the entire
range shown, which is the same as in Fig. 1 of the main text.
Thus, the results for M = 5 give an accurate description of
the excitation energies up to ω = 1.5. As for the discussion of
the convergence with respect to the number of grid points, we
observe a similar agreement also for other system parameters,
i.e., different N , l, and �.

The numerical convergence of the ground-state energy and
depletion is asserted during the computations of the results
presented in the main text. Here we discuss the convergence
of the position variance of the ground state in the x direction,
i.e., the variance of the position operator X = ∑N

i=1 xi , for
the ground state of N = 10 bosons with interaction strength
� = 0.5 and all values of l > 0 considered in the main text. It
has been shown recently that the variance is a very sensitive
quantity for many-body effects [69–73]. The position variance
in the x direction of an N -boson system in two dimensions is
given by

1

N
�2

X =
∫

dr
ρ(r)

N
x2 − 1

N

[∫
dr ρ(r) x

]2

+
∫

dr1dr2
ρ (2)(r1, r2, r1, r2)

N
x1x2, (A1)

where r = (x, y)t , ρ(r) denotes the one-body density at posi-
tion r, and ρ (2) denotes the two-body reduced density matrix.
For further details on the derivation we refer to [69]. Figure 6
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FIG. 7. Same as for the l = 4 vortex in Fig. 3 but for different
widths σ of the Gaussian repulsion. As in the example of the main
text (σ = 0.25), the relative gap �N/�10 for the smaller and larger
values of σ stays far away from zero, even for large BECs consisting
of N = 1000 bosons. All quantities are dimensionless.

shows the many-body variance computed for different num-
bers of orbitals M . We observe that already utilizing M = 5
self-consistent orbitals yields numerical convergence since its
results lie atop the results of M = 7 and M = 9. Only in a
magnified view, differences of less than O(10−3) can be seen
(inset).

Finally, the role of the width σ of the Gaussian repulsion
is discussed. Figure 7 shows the evolution of the gap �N with
respect to �10 [cf. Fig. 3] for the different widths. In all cases,
the gap stays far away from zero, which would correspond
to no many-body corrections to the BdG value of ω(+1). One
rather observes that for the smallest width of σ = 0.1, the
gap remains to be approximately 98.5% of �10, even for a
large BEC with N = 1000 bosons, which is close to the values
for σ = 0.25 from the main text. Hence the relative size and
the persistence of the gap depend only slightly on the width
of the Gaussian repulsion. This confirms that the physics
is essentially governed by the weak depletion and the fact
that high-lying excitations are transferred to the low-energy
spectrum due to the rotation, and it does not depend on the
details of the repulsive potential.

APPENDIX B: BENCHMARK TO THE HARMONIC
INTERACTION MODEL

In this Appendix, we present a numerical benchmark of
our newly developed implementation of LR-MCTDHB in two
dimensions. As a reference, we chose the harmonic interaction
model (HIM) in two spatial dimensions. As in the main text,
results are shown for the rotating frame of reference.

In the HIM, both the trapping frequency and the two-body
interaction potential are harmonic, i.e.,

V = 1

2
K2 r 2 (B1)

and

Ŵ (ri , rj ) = λ0|ri − rj |2, (B2)

where positive (negative) λ0 denotes attraction (repulsion)
between the bosons. Below, we set K = 1 and λ0 = −0.001.
The rotation frequency is � = 0.1. Table I shows the ground-
state energy E0 as well as the first 15 excitation energies
ωi = Ei − E0 for the mean-field case (M = 1) and the many-
body case utilizing M = 3 self-consistent orbitals for N =
100 bosons. The exact results are obtained by applying the
coordinate transformation

Qk = 1√
k(k + 1)

k∑
i=1

(rk+1 − ri ), 1 � k � N − 1, (B3)

and

QN = 1√
N

k∑
i=1

ri , (B4)

which separates the center-of-mass and relative motions of
the bosons [74]. Also other coordinate transformations can be
applied, see, e.g., Ref. [75]. The excitation energies for zero
rotation are thus given by

En,m =
(

n + N − 1

2

)
ω̃ + m + 1, (B5)

with ω̃ =
√

K2 ± 2Nλ0. The parameters n = 0, 2, 3, . . . and
m = 0, 1, 2, . . . denote the quantum numbers for excitations
of the relative and center-of-mass coordinates, respectively. In
the rotating frame, the above energy levels become shifted by
the term

Erot = −� lz, (B6)

where lz denotes the angular momentum in the z direc-
tion. In Table I, we label all obtained excitations with the
corresponding values (n,m, lz). The numerical accuracy of
the LR-MCTDHB (3) results becomes clearly obvious. The
LR-MCTDHB many-body approach is superior to the BdG
mean-field approach not only because it yields more accurate
excitation energies, but also because all levels are obtained, so
no state is missing for M = 3.

APPENDIX C: INAPPLICABILITY OF THE LOWEST
LANDAU LEVEL APPROXIMATION

In this Appendix, we briefly discuss the inapplicability of
the lowest Landau level approximation (LLL) for calculating
the low-energy spectrum of excited states for the anharmonic
trapping potential used in this work. The LLL, as described,
e.g., in Ref. [16], is particularly appropriate to calculate the
lowest excited states of rotating BECs in harmonic traps
when the rotation frequency � is slightly lower than the
trapping frequency K . In that case, all nodeless single-particle
states with angular momenta lz = 0, 1, 2 . . . are energetically
similar, and they are referred to as the lowest Landau level.
The second lowest Landau level, referring to all states with
one node, are energetically separated by 2K . This separation
of energies justifies the usage of the LLL, meaning that the
wave function of the BEC can be approximated in terms
of a full-configuration-interaction superposition where the
underlying basis set is given by the first few states from the
lowest Landau level. The LLL has been applied successfully
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TABLE I. Spectra of excited states of the isotropic HIM in two dimensions in the rotating frame. The rotation frequency is � = 0.1.
Results are presented for N = 100 bosons and different numbers of orbitals M . The trapping frequency is K = 1, whereas the strength of the
repulsive interaction is λ0 = −0.001. Shown are the energies of the ground state E0 and the first 15 excited states relative to E0, ωi = Ei − E0.
Underlined figures show differences to the exact analytical results. All quantities are dimensionless.

M = 1 M = 3 (n,m, lz ) Exact analytical [Eqs. (B5)+(B6)]

E0 89.554453 89.548293 (0,0,0) 89.548292
ω1 0.900000 0.900000 (0,1,1) 0.900000
ω2 1.100000 1.100000 (0,1,-1) 1.100000
ω3 1.591089 1.588859 (2,0,2) 1.588854
ω4 1.791089 1.788862 (2,0,0) 1.788854
ω5 1.800439 (0,2,2) 1.800000
ω6 1.991089 1.988859 (2,0,-2) 1.988854
ω7 2.000657 (0,2,0) 2.000000
ω8 2.200438 (0,2,-2) 2.200000
ω9 2.386633 2.383226 (3,0,3) 2.383282
ω10 2.487088 (2,1,3) 2.488854
ω11 2.586634 2.583318 (3,0,1) 2.583282
ω12 2.689270 (2,1,1) 2.688854
ω13 2.691535 (2,1,1) 2.688854
ω14 2.700528 (0,3,3) 2.700000
ω15 2.786634 2.783318 (3,0,-1) 2.783282

in, e.g., Refs. [27,28]. We stress again that the separation from
the second Landau level is crucial for the validity of the LLL.

To illustrate that the LLL is not applicable to the system
considered in the main text, Fig. 8 shows several states of
the first and second Lanau levels, computed with the BdG
equation (2). The interaction strength is � = 0.5, as in the
main text. The rotation frequency is � = 1.9, which leads to
a ground state with vorticity l = 0, but is very close to the

 0

 1

 2

 3

 4

 5

 6

-2 -1  0  1  2  3  4  5  6

ω

lz

Ω=1.9
Λ=0.5

FIG. 8. Several states from the first two Landau levels in the
case of the anharmonic trap utilized in this work, computed with
the BdG equation. The angular momentum is denoted by lz. Blue
lines (for lz � 0; to the right) denote the single-particle states (plus
the ground state at lz = 0) of the first level, red lines (for lz � 0;
to the left) denote the single-particle states of the second level. The
rotation frequency � = 1.9 is close to the transition of the ground
state to a vortex with vorticity l = 1. The two Landau levels greatly
overlap, showing that the LLL is not applicable here. All quantities
are dimensionless.

transition to a vortex with vorticity l = 1. We are thus in a
comparable situation to the case � ≈ K in the harmonic trap.
We see that the two Landau levels greatly overlap. Hence,
there is no clear separation of the two levels, which shows that
we are not in the regime where the LLL is applicable. Thus,
one is in need of a more general approach like LR-MCTDHB
to calculate the low-energy spectrum of the rotating BEC.

 0  0.5  1  1.5  2
ω

M=1

M=3

FIG. 9. Low-energy excitation spectrum for a rotating BEC in a
harmonic trap. The number of bosons is N = 100 and the ground-
state vorticity is l = 1. The repulsion is of the same Gaussian type
as in the main text but with a width of σ = 0.01. The interaction
parameter is � = 0.5. Compared are the results for the BdG spec-
trum (M = 1) and the many-body spectrum with M = 3 orbitals,
leading to a depletion of f ≈ 1.65%. For 0 � ω � 0.7, the mean-
field and many-body spectra deviate only slightly, whereas for higher
excitation energies the differences become more pronounced. All
quantities are dimensionless.
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APPENDIX D: EXCITATIONS IN A HARMONIC TRAP

We qualitatively discuss many-body effects in the low-
energy excitation spectrum of a rotating BEC in a harmonic
trap, see Eq. (B1) with K = 1. To this end, we study excita-
tions atop a vortex with vorticity l = 1 for a BEC consisting of
N = 100 bosons, interacting via the same Gaussian repulsion
as in the main text but with a smaller width of σ = 0.01.
The interaction parameter is � = 0.5. In Fig. 9, the mean-
field spectrum obtained from the BdG equation, i.e., Eq. (2),
and the many-body spectrum obtained from LR-MCTDHB
(3), i.e., Eq. (3), are compared. As for the anharmonic trap,
we observe that the mean-field and many-body results show

differences, both in terms of the number of states obtained as
well as in the values of the excitation energies. This shows
that many-body effects persist also in the harmonic trapping
potential. However, although the depletion is higher (f ∼
1.6%) than for the l = 1 vortex in the anharmonic trap of the
main text (f ∼ 0.02% for N = 100), the overall agreement
between the mean-field and many-body spectra appears to be
better, especially for the lowest excited states with energies
0 � ω � 0.7. This potentially means that the anharmonicity
and the resulting coupling between the relative and center-of-
mass motions enhances the occurrence of many-body effects.
To investigate this further, also on a quantitative level, goes
beyond the scope of this work and will be done elsewhere.
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