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Signature of chaos and delocalization in a periodically driven many-body system:
An out-of-time-order-correlation study
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We study out-of-time-order correlation (OTOC) for one-dimensional periodically driven hardcore bosons in
the presence of Aubry-André (AA) potential and show that both the spectral properties and the saturation values
of OTOC in the steady state of these driven systems provide a clear distinction between the localized and
delocalized phases of these models. Our results, obtained via exact numerical diagonalization of these boson
chains, thus indicate that OTOC can provide a signature of drive-induced delocalization, even for systems which
do not have a well-defined semiclassical (and/or large N ) limit. We demonstrate the presence of such a signature
by analyzing two different drive protocols for hardcore boson chains leading to distinct physical phenomena and
discuss experiments which can test our theory.
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I. INTRODUCTION

Identifying the signature of chaos in quantum systems
is a longstanding issue [1,2] which has relevance for both
its entanglement properties [3–5] and thermalization [6–9].
The typical fingerprint of chaos in a quantum system may
be found in its spectral properties by invoking the Bohigas-
Giannoni-Schmit (BGS) conjecture [10]. Recent studies how-
ever show that the out-of-time-order correlator (OTOC) pro-
vides an alternate and more direct way to quantify chaos,
even in the interacting many-body systems [11–26]. Recent
developments in the experimental techniques to measure
the quantum correlations enable a direct investigation of
the OTOC in trapped ions and spin systems [27,28]. For
quantum systems with a well-defined semiclassical limit,
OTOC provides a way to estimate the Lyapunov exponent
which may be used to quantify the degree of chaos of the
system [11,12]. Interestingly, application of this method in
the Sachdev-Ye-Kitaev (SYK) model [29,30] provides an
upper bound to this Lyapunov exponent, which is believed
to have a connection with the information scrambling in
black holes [31,32]. For the same reason, this method has its
application in quantum information as well as in the study
of the entanglement in strongly interacting quantum systems
[33–36].

On the other hand, study of periodically driven many-body
systems has regained interest after the recent experimental
observation of drive-induced delocalization phenomena [37].
The study of an equivalent noninteracting model reveals that
such delocalization phenomena stems from the underlying
chaotic dynamics [38]. In this context OTOC turns out to
be an ideal method to explore the connection between the
delocalization and the underlying chaos in an interacting
quantum system. Although the connection of OTOC with
Lyapunov exponent has been explored in several condensed-
matter systems [14–19], to the best our knowledge the delo-
calization transition from many-body localized (MBL) phases

of quasiperiodic systems has not been investigated so far using
OTOC.

The experimental realization of quasiperiodic system such
as the Aubry-André (AA) model has become a test-bed to
study single-particle [39] as well as MBL phenomena of
strongly interacting systems [40–44], since the AA model
exhibits localization transition in one dimension (1D) [45,46].
In a recent experiment the dynamics of many-body localized
two-component fermions subjected to a driven AA model
reveals delocalization phenomena controlled by the frequency
of the drive [37]. Motivated by this experiment, in this work
we consider a system of strongly interacting bosons in the
presence of an AA potential subjected to two different types
of periodic drives which have a different consequence on de-
localization phenomena. Our goal is to study the commutator,

C(βT , p) = Tr[ρ̂βT
[Ŵ (p), V̂ (0)]†[Ŵ (p), V̂ (0)]], (1)

calculated after the pth drive cycle using the thermal density
matrix ρ̂βT

at initial inverse temperature kBβT (where kB is
the Boltzmann constant), of suitable local unitary operators
Ŵ (p) ≡ Ŵ (t = pT ) and V̂ , and to detect the delocalization
transition in these driven systems from its behavior. We note
that C(βT , p) is related to the OTOC, defined as

F (βT , p) = Tr[ρ̂βT
Ŵ †(p)V̂ †(0)Ŵ (p)V̂ (0)] (2)

via C(βT , p) = 2(1 − Re[F (βT , p)]). The last relation holds
for operators Ŵ and V̂ that satisfy Ŵ †Ŵ = V̂ †V̂ = Î ; we
shall always focus on such operators here.

Since in the semiclassical limit the Lyapunov exponent of
the corresponding quantum system can be estimated from the
unequal time commutator of conjugate dynamical variables
[18], it is natural to expect that C(βT , p) would capture
thermalization and underlying chaos in a quantum many-
body system and thereby distinguish between its MBL and
ergodic phases. In this work, by carrying out a detailed
study of properties of C(βT , p) related to the OTOC for two
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periodically driven boson models in the presence of an Aubry-
André potential, we show that this is indeed the case. We
discuss the dependence of the C(βT , p) on the time period
T of the drive and show that both its saturation value and
spectral properties can distinguish between MBL and ergodic
phases; our results thus show that these quantities can serve
as an indicator of delocalization transition even for systems
with no obvious semiclassical or large N limit and thus with
no clear definition of Lyapunov exponents. The unequal time
commutator can also be useful to study the localization length
since it involves the local operators and thereby contains the
information of the spatial correlation. Moreover, recent ex-
periments on the measurement of OTOC in the nonintegrable
systems [27,28] opens up the possibility for a direct study of
chaos in driven systems. Thus we believe that our method is
much more experimentally relevant as well suitable to capture
alongside the crossover from MBL to thermal phase induced
by periodic drive and the underlying chaos.

We construct the Floquet operator to generalize OTOC for
stroboscopic dynamics and compare the behavior of C(βT , p)
with the spectral properties of the Floquet operator, which is
a standard method to identify delocalization transition. The
most general Hamiltonian describing a system under periodic
perturbation is given by

Ĥ (t ) = Ĥ0 + Ĥ1(t ), (3)

where Ĥ0 is the time-independent part and the time-
dependent part satisfies Ĥ1(t + T ) = Ĥ1(t ), where T is driv-
ing time period. The corresponding Floquet operator is F̂ =
T̂ e

−i
∫ t0+T

t0
Ĥ (t )dt/h̄, where T̂ is the time ordering operator and

the initial time t0 ∈ [0, T ] gives a shift in time from t = 0, and
the corresponding Floquet operators are related by a unitary
transformation. The Floquet quasienergies do not depend on
the choice of t0 [47]; moreover, we checked that after long-
time stroboscopic dynamics, the steady-state value of the ob-
servables remains unchanged under such shifts in initial time.
Therefore in our study we set t0 = 0. Due to the unitarity of F̂ ,
the eigenvalue equation can be written as F̂ |ψν〉 = e−iφν |ψν〉,
where φν and |ψν〉 are the νth eigenphase and eigenstate
of F̂ , respectively. The unequal time commutator C(βT , p),
consisting of two unitary operators Ŵ and V̂ , after the pth
drive cycle is given by Eq. (1) with Ŵ (p) = F̂†pŴ (0)F̂p. In
what follows, we describe two physical models and analyze
the effect of the drive from the properties of Floquet operator
and OTOC.

II. MODEL I

We consider a periodically driven system of hardcore
bosons at half filling within tight binding approximation and
nearest neighbor (NN) interaction given by the Hamiltonian

Ĥ0 = −J
∑

l

(b̂†l b̂l+1 + H.c.) + V
∑

l

n̂l n̂l+1, (4a)

Ĥ1(t ) = λ[1 + εf (ωt )]
∑

l

cos(2πβl)n̂l , (4b)

where b̂
†
l and n̂l = b̂

†
l b̂l are the creation and the density oper-

ators of the bosons at the lth lattice site, respectively, J is the
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FIG. 1. (a) 〈r〉 is shown as function of T . (b) The spacing
distributions of δν’s for two typical values of T are plotted; the
corresponding probability distributions are shown by solid curves.
(c) C(βT , p) is plotted with number of drives p, keeping the spatial
distance fixed at |l − l′| = 9 for different values of driving time
period T . The linear growth in the delocalized regime (for higher T

values) is shown in (d). In the inset the variation of λL is shown as a
function of T . The other parameters for this plot are λ = 3, ε = 0.47,
V = 0.1, and βT = 0.1.

hopping amplitude, V is the strength of the nearest-neighbor
interaction, λ denotes the amplitude of the quasiperiodic
potential, and β = (

√
5 − 1)/2. For simplicity we consider

a square pulse protocol, i.e., f (ωt ) = 1 for (n − 1)T � t <

(n − 1/2)T and f (ωt ) = −1, otherwise, where n is an integer
and the driving frequency is ω = 2π/T . In the rest of the
paper, we set h̄ = 1, all energies (times) are measured in
units of J (1/J ), and we consider the inverse temperature
βT = 0.1, λ = 3, and ε = 0.47 such that the time-independent
Hamiltonian represents the localized regime of the AA model
and drive induces mixing with the delocalized regime.

We first find out the eigenphases φν of the corre-
sponding Floquet operator and order them in [−π, π ]. To
quantify the degree of delocalization as well as to iden-
tify the change in the corresponding spectral statistics,
we calculate the ratio between the consecutive level spac-
ing, rν = min(δν+1, δν )/max(δν+1, δν ), where δν = φν+1 −
φν . We compute the average level spacing ratio 〈r〉; in the
localized regime, 〈r〉 ≈ 0.386, signifying that the normalized
spacing distribution follows Poisson statistics. In contrast,
in the delocalized regime, 〈r〉 ≈ 0.527 corresponds to the
orthogonal class of random matrix theory (RMT) [48–50].
From Fig. 1(a) we see that the value of 〈r〉 gradually increases
from 0.386 and reaches a value of 0.527 with the increase in
time period T , indicating the thermalization induced by the
periodic drive. To compute the corresponding spacing distri-
bution P (δ) of the eigenphases (φν), we follow the standard
procedure as outlined in [1] in order to keep

∫
P (δ)dδ = 1

and
∫

δP (δ)dδ = 1. In Fig. 1(b) the spacing distributions
are shown for two different values of the time period T

corresponding to the localized and delocalized regime.
Next we investigate the time evolution of the commuta-

tor C(βT , p) constructed from equivalent local Pauli spin
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FIG. 2. Variation of Csat (βT ) and the time-averaged survival
probability WSP are shown as a function of T for different system
sizes Ns in (a) and (b), respectively. The horizontal dashed lines
denote the GOE value of WSP ∼ 3/D. (c) Csat (βT ) is plotted with
|l − l′| for λ = 3. In the inset variation of Csat (βT ) is shown with
increasing λ for different |l − l′|. We set Ns = 12, T = 1. (d) Tem-
perature dependence of Csat (βT ) is shown.

operators Ŵ = σ̂ l
z and V̂ = σ̂ l′

z , where σ̂ l
z = 2n̂l − 1 and

σ̂ l′
z = 2n̂l′ − 1, l and l′ being the site indices. Deep inside the

MBL phase (for small T ), due to the suppression of the kinetic
energy, σ̂ l

z approximately commutes with the time-averaged
Hamiltonian governing the physics of the MBL phase, re-
sulting in a very slow growth of C(βT , p). Such a behavior
has also been supported from the dynamics using a random
matrix model discussed in Sec. III. Another feature of the
MBL phase is the power-law decay of the OTOC, |F (βT , p)|,
with the number of drive p [20] as illustrated in Fig. 8(a). On
the other hand, the kinetic energy term becomes significant
in the delocalized regime, which gives rise to exponential
decay of the OTOC [as shown in Fig. 8(b)], resulting in a
faster growth of the unequal time commutator C(βT , p). In
Fig. 1(c) we have shown the stroboscopic time evolution of
C(βT , p) for different driving time periods T . We observe
that unlike the large-N models, there is no such scrambling
phenomena observed in this driven system in the delocalized
regime and C(βT , p) grows almost linearly with the number
of drives p, as depicted in Fig. 1(d). This is apparently
due to the fact that the driving time period is much larger
compared to the typical scrambling timescale; therefore the
stroboscopic time evolution cannot capture this phenomena.
Further, we fit such faster growth of C(βT , p) with a function
Csat (βT )(1 − e−pλL ), where λL represents the growth rate and
increases with increasing T , as shown in the inset of Fig. 1(d).

From Fig. 1(c), it turns out that C(βT , p) saturates even-
tually in the stroboscopic evolution; the saturation value
Csat (βT ) = limp→∞ C(βT , p) increases with the driving time
period T and finally, for large T it saturates to the value
Csat (βT ) ∼ 2. We performed a temporal averaging over the
shaded region of Fig. 1(c), as well took ∼50 disorder real-
izations to obtain Csat (βT ), and plotted as a function of T in
Fig. 2(a) for different system sizes. The behavior of Csat (βT )
resembles the variation of 〈r〉 and therefore can capture the

crossover from MBL to thermal phase with increasing time
period T . It can be noted that for small T , say T ∼ 0.1, as
well as for large T the value of Csat (βT ) hardly depends on the
system sizes [see Fig. 2(a)]. In the intermediate regime, say
T ∼ 1 − 8, Csat (βT ) changes appreciably with Ns , which is
atypical of any crossover phenomena. However, we note that
the qualitative behavior of Csat (βT ) as a function of T remains
similar for different system sizes, as shown in Fig. 2(a).
We further observe that the finite-size effect becomes pro-
gressively smaller with increasing Ns ; the value of Csat (βT )
obtained for Ns = 14 is within 10% of the asymptotic value
of Csat (βT ) for 1/Ns → 0 (see Appendix C for details). Thus
the crossover phenomena from MBL to thermal phase by
tuning the driving time period T is robust against the system
sizes. Moreover, we find that for intermediate values of T near
the MBL phase (T ∼ 1), there is an interplay between the
localization length and the distance |l − l′| between the local
operators which can be qualitatively understood as follows.
By decreasing the value of |l − l′|, the distance between the
local operators become comparable to the localization length,
resulting in a strong enhancement of Csat (βT ) as illustrated
in Fig. 2(c). To check the consistency of the result we have
performed such numerical analysis for two different system
sizes. The effect of localization length on Csat (βT ) can also be
understood from the dependence of Csat (βT ) on λ. With in-
creasing value of λ, the localization length decreases, leading
to a decrease in Csat (βT ) as depicted in the inset of Fig. 2(c).
For larger values of |l − l′|, such dependence turns out to be
very small [see the inset of Fig. 2(c)]. This is because |l − l′| is
already large compared to the localization length, and thus fur-
ther increase in λ does not have much effect on Csat (βT ). We
further investigate the temperature dependence of Csat (βT ).
For both MBL (small T ) and the thermal phase (larger T ),
Csat (βT ) has hardly any dependence on βT ; however, for
intermediate values of T , Csat (βT ) varies significantly with
βT as shown in Fig. 2(d). Finally, in the delocalized regime
Csat (βT ) becomes temperature scale independent and attains
the maximum value of 2, signifying the infinite temperature
thermalization in driven systems [51–55].

The crossover to a delocalized phase can also be captured
from the survival probability [56–59] of an initially prepared
state in the coarse of time evolution analogous to the dynamics
of an “imbalance factor” measured in the experiments to iden-
tify the delocalization transition [40–44]. In the dynamical
evolution we choose the initial state |�(0)〉 to be the ground
state of the undriven Hamiltonian. During the stroboscopic
time evolution in the presence of drive the survival proba-
bility of the initial state can be computed from WSP (p) =
|〈�(0)|F̂p|�(0)〉|2. In the MBL phase WSP remains close to
unity, whereas it decays in the delocalized regime. We com-
pute the time-averaged value of WSP (obtained for p � 1000
in our numerics) and depict its variation as a function of T for
different system sizes in Fig. 2(b). Well inside the delocalized
regime WSP saturates to ∼3/D, which is in accordance with
the RMT prediction [57], D being the dimension of the Hilbert
space.

In order to understand the physics behind the decay of
the survival probability, we calculate the overlap of the Flo-
quet states with the eigenstates of the undriven Hamiltonian.
We compute the quantity cαν = 〈ψν |vα〉, where |vα〉 is the
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FIG. 3. (a) The overlap |cαν |2 is shown as a function of εα for
a representative φν corresponding to the lowest eigenmode of F̂ .
(b) The same has been plotted for T = 0.2 and the eigenmodes
corresponding to lowest, middle, and upper Floquet band.

eigenstate corresponding to the αth eigenmode of the un-
driven Hamiltonian. In Figs. 3(a) and 3(b) we have shown
|cαν |2 corresponding to the Floquet state with eigenphase
φν as a function of the eigenenergies εα of the undriven
Hamiltonian. We observe that in the small T regime typically
the Floquet states have maximal overlap with one of the
eigenstates of the undriven Hamiltonian indicating localiza-
tion, whereas in the delocalized regime (for higher T ) the
overlap function |cαν |2 spreads over all the eigenmodes |vα〉.
This observation indicates that in the localized regime, the
dominating contributions come from the diagonal elements
of the local operators σ̂ l

z in the Floquet basis. The saturation
value of F with Ŵ = V̂ = σ̂ l

z is independent of l and can be
approximated by

F (βT , p → ∞) =
∑

α,ν

ρα
βT

|cαν |2s4
νν , (5)

where ρα
βT

= e−βT εα /
∑

α e−βT εα are elements of the initial
thermal density matrix, cαν = 〈vα|ψν〉, and sνν = 〈ψν |σ̂z|ψν〉
(see Appendix A for detail derivation). This approximate
analytical formula surprisingly agrees well with the results
obtained from the full stroboscopic dynamics even for large
T , as illustrated in Fig. 4. From the above expression it can
also be noted that in the delocalized regime the saturation
value Csat (βT ) becomes independent of temperature due to the
spreading of the overlap function |cαν |2 ∼ 1/D. Away from
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FIG. 4. Csat (βT ) is shown as a function of T for l = l′. The
solid line is obtained from Eq. (5), and the circles represent the
values obtained from the full stroboscopic time evolution. All other
parameters are the same as in Fig. 1.

the ergodic phase, Csat (βT ) exhibits temperature dependence,
which becomes significant for the intermediate values of T as
depicted in Fig. 2(d) (also see Appendix A).

III. EVOLUTION UNDER THE GAUSSIAN ORTHOGONAL
ENSEMBLE MATRIX

In this section we discuss the stroboscopic dynamics gov-
erned by a model Hamiltonian consisting of a mixture of
random matrix of Gaussian orthogonal ensemble (GOE) class
and a Poisson matrix [60]. The Hamiltonian describing a
mixed random matrix ensemble is given by

ĤR = ĤP + λ̄ĤG/
√
D , (6)

where ĤP is a random banded matrix exhibiting Poisson level
spacing distribution, ĤG is a GOE matrix, and D is the size of
the matrix. In what follows we construct the Floquet operator
F̂ = e−iĤRT and study its spectral properties as well as the
dynamics governed by F̂ . We note that here λ̄ is a tuning
parameter, and in the limit λ̄ → 0, ĤR is a Poisson matrix,
whereas for λ̄  1, ĤR resembles a GOE matrix.

Spectral statistics. From the eigenvalue equation F̂ |ψν〉 =
e−iφν |ψν〉, we first compute the eigenphases φν corresponding
to the eigenmode |ψν〉. We compute the average level spacing
ratio 〈r〉 as defined in the main text and plot it as a function of
λ̄ in Fig. 5(a). For small λ, 〈r〉 ∼ 0.386, indicating the Poisson
distribution; further increase in λ̄ results in an increase in 〈r〉
and finally saturates to ∼0.527, representing the GOE class of
the corresponding spacing distribution as depicted in Fig. 5(a).

OTO correlator. To study the time evolution under F̂ ,
we first construct the initial thermal density matrix as ρ̂βT

=
e−βT ĤP so as to start from a localized system and evolve it
stroboscopically. We calculate the commutator C(βT , p) and
plot it as a function of p for different values of λ̄ in Fig. 5(b).
It can be noted that the growth rate of C(βT , p) as well as the
saturation value Csat (βT ) obtained after sufficient number of
drives increases with increasing λ̄. This is further illustrated
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FIG. 5. (a) 〈r〉 as a function of λ̄. (b) Stroboscopic time evolution
of C(βT , p) for different values of λ̄. Saturation value Csat (βT ) and
time-averaged WSP are plotted as a function of λ̄ in (c) and (d). We
have considered D = 924.
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in Fig. 5(c), where we have shown Csat (βT ) as a function
of λ̄.

Survival probability. We further compute the survival prob-
ability of an initially prepared excited state which has been
considered to be an eigenstate of ĤP . In Fig. 5(d) we have
plotted the long-time-averaged value of WSP as a function of
λ̄. For small λ̄ corresponding to the localized regime WSP ∼ 1
and with increasing λ̄, survival probability reaches to the GOE
value ∼3/D, as depicted by the dashed line in Fig. 5(d).

We note that the behavior of 〈r〉, Csat (βT ), and WSP is
similar to what we obtained above in Sec. II, where T plays
a similar role as λ̄. It further strengthens our conclusions
about the crossover from MBL to thermal phase by tuning
the driving time period as captured from the above-mentioned
measures. Since such an analysis is independent of the system
Hamiltonian, therefore it reveals a more generic feature of
such drive-induced delocalization phenomena.

IV. MODEL II

In the second case we consider a periodic tilting of the
lattice by applying an electric field which can be generated
from a time-dependent vector potential [38]. In the presence
of such driving, the system of strongly interacting bosons in a
quasiperiodic potential can be described by the Hamiltonian

Ĥ0 =
∑

l

[−J (b̂†l b̂l+1 + H.c.) + V n̂l n̂l+1

+ λ cos(2πβl)n̂l

]
, Ĥ1(t ) = E(ωt )a

∑

l

ln̂l , (7)

where a is the lattice spacing, and E is the applied electric
field which can be generated from a time-dependent vector
potential A(ωt ) = �g(ωt )/a using E = −∂tA, � being the
driving amplitude. Considering g(ωt ) to be a periodic trian-
gular pulse with period 2π , the resulting electric field is given
by

E(ωt ) = −4�

aT
, (n − 3/4)T � t < (n − 1/4)T

= 4�

aT
, otherwise, (8)

where n is an integer and the driving frequency is ω = 2π/T .
Such a drive gives rise to a nontrivial effect on the localization
phenomena, which has been explored in [38]. In the nonin-
teracting limit of the above model, it has been shown that
there is a domain of frequency interval within which there
appears a delocalized Floquet band which stems from the
underlying chaotic dynamics of the equivalent classical model
[38]. This is a counterintuitive scenario, since such a drive in
the absence of quasiperiodic potential leads to the suppression
of kinetic energy of the time-averaged Hamiltonian [61–65]
and hence is expected to favor localization [66]. To explore
such phenomena and its connection with the underlying chaos
in the interacting many-body system, we now follow a similar
procedure as outlined in Model I.

First we analyze the Floquet spectrum φν and compute the
average level spacing ratio 〈r〉 to characterize the delocalized
as well as the localized phase. In Fig. 6(a) we have shown
〈r〉 as a function of driving time period T . In both the

εα

αν

δ

δ)

FIG. 6. (a) 〈r〉 as a function of T is shown. In the inset the
distribution of the spacing δν’s are shown for three typical values
of T ; the corresponding probability distributions are shown by the
solid lines. Csat (βT ) and WSP are plotted with T in (b) and (d),
respectively. (c) The overlap |cαν |2 is shown as a function of εα for a
representative φν corresponding to the lowest eigenmode of F̂ . The
other parameters are λ = 3, � = 1, V = 0.1, and βT = 0.1.

small- and large-T regime 〈r〉 ∼ 0.386, indicating the local-
ized Floquet states; the corresponding spacing distribution
of the eigenphases exhibits Poisson distribution as shown in
the inset of Fig. 6(a). On the other hand, in the intermediate
regime 〈r〉 increases with increasing T and shows a peak at
T ∼ 25, exhibiting the level repulsion in the corresponding
spacing distribution as depicted in the inset of Fig. 6(a). We
further compute Csat (βT ) and plot it as a function of T in
Fig. 6(b). We see that Csat (βT ) shows a maximum at T ∼ 25
and decreases on both sides, resembling the nonmonotonic
behavior of 〈r〉. Although the peak values of both quantities
〈r〉 and Csat (βT ) are less than those of the GOE limit, it clearly
distinguishes the MBL phase and indicates an approach to
thermalization.

To explore the connection of underlying chaos with the
delocalization of the many-body Floquet states, we compute
the overlap function |cαν |2 and plot it in Fig. 6(c) for different
values of T . For small as well as for larger values of T ,
|cαν |2 shows a maximum overlap with one of the eigen-
modes of the undriven Hamiltonian in Eq. (7), indicating
localization, whereas for intermediate values of T ∼ 25 the
overlap function spreads over the eigenmodes |vα〉 showing
delocalization of the Floquet states. The peak in Csat (βT )
and the spreading of the overlap function |cαν |2 indicates
that such delocalization phenomena within an intermediate
domain of T is a manifestation of the underlying chaos in the
many-body system. The delocalization of the Floquet states
further results in the decay of survival probability WSP around
T ∼ 25. In Fig. 6(d) we have shown the behavior of WSP as a
function of T ; the dip around T ∼ 25 indicates delocalization,
and the minimum value approaches the GOE limit. Such a
domain of T where delocalized Floquet states appear can
also be captured from the entanglement entropy and has been
illustrated in [38].
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V. STATISTICS OF OTOC

Next, we focus on the statistics of OTOC motivated by a
recent observation that the level spacing distribution of the
OTOC corresponding to a single-particle chaotic Hamiltonian
exhibits a level repulsion analogous to the Gaussian unitary
(GUE) universality class [19]. In what follows we test the
statistics obtained from the eigenmodes of the OTOC operator
F̂ = Ŵ †(p)V̂ †(0)Ŵ (p)V̂ (0) to distinguish the delocalization
and thermalization phenomena in a driven many-body system.
We compute the operator F̂ after a sufficient number of drives
and calculate the structural entropy S

μ
str of the μth eigenmode

|eμ〉 of F̂ , defined as [67,68]

S
μ
str = −

∑

χ

∣∣cμ
χ

∣∣2
ln

∣∣cμ
χ

∣∣2 − ln ξμ, (9)

where cμ
χ = 〈χ |eμ〉 is the overlap of |eμ〉 with the computa-

tional basis |χ〉, and ξμ = 1/
∑

χ |cμ
χ |4 is the corresponding

inverse participation ratio (IPR). For the eigenvectors of the
random matrices of the Gaussian unitary class, the average
structural entropy Sstr approaches a universal value ∼0.27
[69,70] independent of the dimensionality of the Hilbert
space. In Figs. 7(a) and 7(c) the variation of Sstr with increas-
ing T is shown for both models I and II, respectively. The
corresponding distribution of the structural entropy P (Sμ

str )
is depicted in Figs. 7(b) and 7(d) for different values of
T belonging to the localized regime and the delocalized
regime of both models. We notice that in the regime where
thermalization occurs, structural entropy is sharply peaked
at the value ∼0.27, indicating the GUE universality class.
On the other hand in the localized regime, the peak van-
ishes and P (Sμ

str ) shows a broad distribution with increasing
width �Sstr =

√
〈Sμ2

str〉 − 〈Sμ
str〉2 shown by the error bars.

This observation confirms that the statistics of OTOC can
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FIG. 7. (a) 〈Sstr〉 is plotted with increasing T corresponding to
model I. The error bars indicate the width �Sstr of the distribution
of structural entropy P (Sμ

str ), shown in (b) for typical values of T

mentioned therein. The horizontal dashed lines in (a) and the arrow
head in (b) indicate the GUE value of the structural entropy. The
same has been plotted in (c) and (d) for model II.

be an alternate method to detect delocalization in a strongly
interacting driven system.

VI. CONCLUSION

To summarize, we have studied the behavior of Csat (βT )
related to OTOC to detect the delocalization of the MBL
phase in a strongly interacting bosonic system in the presence
of a quasiperiodic potential subjected to two types of peri-
odic drives showing distinctly different phenomena. We have
shown that the saturation value of the unequal time commu-
tator Csat (βT ), the survival probability WSP , and the spectral
property of the OTOC can efficiently distinguish between the
MBL and the thermal regimes of such driven models, as well
capture the crossover between the two phases, by tuning the
driving time period T . We have also analyzed the temperature
dependence of Csat (βT ), which can be used in experiments
to detect the crossover region. The spatial dependence of
Csat (βT ) can serve as a useful tool to estimate the localization
length. Therefore Csat (βT ) can be an ideal measure to cap-
ture MBL to thermal phase transition as well to capture the
underlying chaos. Moreover, recent experiments on the mea-
surement of OTOC in trapped ions and NMR systems [27,28]
provide the way to calculate the saturation value Csat (βT )
and can further be implemented to study such drive-induced
delocalization in a system of strongly interacting bosons in
periodically driven AA potential. The survival probability can
be measured in experimentation from the decay of an initially
prepared state of the system in a similar way as has been done
to measure the “imbalance factor” in cold atom experiments
[37,40–44]. In previously studied noninteracting AA models,
under a similar driving protocol it has been shown that the
drive-induced delocalization phenomena is connected with
the chaotic dynamics of the corresponding classical model
[38]. Our present study also confirms that the delocalization
phenomena has a connection with the underlying chaotic
dynamics of an interacting quantum system, even when a
direct classical correspondence is absent. Our results thus
provide an alternate approach to diagnose the chaos as well
as its connection with the thermalization in driven interacting
many-body systems and can be tested in experiments in a
similar line of thought as in [27,28,37,40–44].
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APPENDIX A: DERIVATION OF ANALYTICAL
EXPRESSION OF OTOC FOR MODEL I

In this Appendix we sketch the derivation of Eq. (5) of the
main text. The quantity F (βT , p) after p cycles of the drive
and at an initial inverse temperature βT is given by

F (βT , p) = Tr[ρ̂βT
Ŵ †(p)V̂ †(0)Ŵ (p)V̂ (0)]

= 1

Z

∑

α

e−βT εαLα, (A1)
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where Lα = 〈vα|Ŵ †(p)V̂ †(0)Ŵ (p)V̂ (0)|vα〉, Ŵ (p) =
F̂†pŴ (0)F̂p, F̂ is the time evolution operator, |vα〉, εα

denotes eigenvectors and eigenvalues of Ĥ (t = 0) [see
Eq. (4) in the main text], and Z = ∑

α exp(−βT εα ) is the
corresponding partition function. We then decompose F̂ in
terms of its eigenstates |ψν〉 and eigenenergies φν (as defined
in the main text). A few lines of algebra yields

Lα =
∑

μ,ν,λ,μ′ν ′
c∗
αμcναeipχT Wμμ′Wλν ′Vμ′λVν ′ν . (A2)

Here cαν = 〈vα|ψν〉 denotes the overlap function, χ = φμ +
φλ − φμ′ − φν ′ , the driving time period is T , and Wνν ′ denotes
the matrix element of Ŵ (0) between Floquet eigenstates |ψν〉
and |ψν ′ 〉. For p → ∞, the contribution to Lα is obtained
from terms for which φμ + φλ = φμ′ + φν ′ , leading to χ = 0.
Furthermore, numerically, we find that for Ŵ = V̂ = σ̂z, these
matrix elements have a maximal contribution from the diago-
nal terms. Thus we obtain 〈ψν |σ̂z|ψν ′ 〉 � sνν ′δνν ′ , resulting in
the expression Lα = |cαν |2s4

νν . Finally, we obtain

F (βT , p → ∞) =
∑

α,ν e−βT εα |cαν |2s4
νν∑

α e−βT εα
, (A3)

which is Eq. (5) of the main text.
We find that in the delocalized regime |cαν |2 ∼ 1/D, where

D is the dimension of the matrix. This results in the saturation
value of Csat (βT ) ∼ 2, indicating that such a driven system
thermalizes to infinite temperature where Csat (βT ) becomes
independent of βT . In contrast, away from the ergodic phase
near delocalization, the saturation value of the OTOC in-
creases with decreasing temperature, resulting in the decrease
of Csat (βT ) with increasing βT , as illustrated in Fig. 2(d). Such
a growth of OTOC with inverse temperature βT can be under-
stood as follows. We first note that in Eq. (5),

∑
ν |cαν |2 = 1

for all α; moreover, it can be checked numerically that s4
νν < 1

for all ν. Thus the quantity Lα = ∑
ν |cαν |2s4

νν < 1, which
ensures the convergence of the numerator of Eq. (5), since
εα can always chosen to be positive without any loss of
generality. In terms of Lα , one can write

F (βT , p → ∞) =
∑

α e−βT εαLα∑
α e−βT εα

. (A4)

Using this expression, it is straightforward to see that

∂F (βT , p → ∞)

∂βT

= 1

Z2

∑

α �=α′
e−βT (εα+εα′ )εαLα′ > 0 . (A5)

Thus F (βT , p → ∞) must increase with increasing βT , lead-
ing to a decrease of Csat (βT ) with βT , as shown in Fig. 2(d).

APPENDIX B: DECAY OF OTOC IN MBL
AND THERMAL PHASE

In this Appendix we will study the stroboscopic evolution
of the OTOC corresponding to model I. In Figs. 1(c) and
1(d) of the main text it has been shown that the growth
rate of C(βT , p) is very small in the MBL phase, but on
the other hand, C(βT , p) grows very fast in the delocalized
regime. In contrast, the OTOC, F (βT , p), shows a very slow
power-law decay in the MBL phase, as depicted in a loga-
rithmic plot of the scaled quantity F̄ (βT , p) = (|F (βT , p)| −

100 1000p

0.1

1
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F(
T,p

)
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0 4 8 12 16p
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(b)

F(
T,p

)

FIG. 8. The stroboscopic time evolution of |F (βT , p)| is shown
in the localized regime for T = 3 in (a) and in the delocalized regime
for T = 50 in (b). The dashed lines in (a) and (b) indicate the linear
behavior in log-log plot and in semilog plot, respectively.

|Fsat (βT )|)/(1 − |Fsat (βT )|) in Fig. 8(a), where Fsat (βT ) =
limp→∞ F (βT , p). On the other hand, for large driving time
periods T the OTOC decays exponentially fast and saturates
to a vanishingly small value, as shown in Fig. 8(b).

APPENDIX C: FINITE-SIZE EFFECT ON Csat (βT )

In this Appendix we have analyzed the effect of finite size
of the system on Csat (βT ). From Fig. 2(a) it can be noted
that in the two extremes, for smaller T ∼ 0.1 and for larger
T , the value of Csat (βT ) hardly depends on the system sizes.
However, in the intermediate regime, say T ∼ 1–8, Csat (βT )
varies with different system sizes.

We note that although the value of Csat (βT ) changes dras-
tically by increasing the system size from Ns = 8 to Ns = 10,
such changes in Csat (βT ) due to system size become progres-
sively smaller with increasing Ns , as depicted by the variation
of Csat (βT ) with 1/Ns in Fig. 9. We further fit such data with a
fitting function ᾱ + β̄/N

γ̄
s ; from the fitted values we obtained

ᾱ ∼ 1.54 (in limit 1/Ns → 0) corresponding to T = 3. We
note that using the system size Ns = 14 we obtained the value
of Csat (βT ) ∼ 1.37, which is ∼10% of the “thermodynamic
limit.”

C
sa

t(
T
)

0.2

0.6

1.0

1.4

FIG. 9. Csat (βT ) as a function of 1/Ns is plotted for T = 3 and
|l − l′| = 7 for different system sizes Ns . Filled circles indicate the
numerical data points, and the solid line represents the fitted curve.
All other parameters are the same as in Fig. 1.

053631-7



S. RAY, S. SINHA, AND K. SENGUPTA PHYSICAL REVIEW A 98, 053631 (2018)

[1] F. Haake, Quantum Signatures of Chaos (Springer Science and
Business Media, New York, 2013), Vol. 54.

[2] G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Ford, Stochastic
Behavior of a Quantum Pendulum Under A Periodic Perturba-
tion, in Stochastic Behavior in Classical and Quantum Hamil-
tonian Systems, edited by G. Casati and J. Ford, Lecture Notes
in Physics Vol. 93, (Springer, Berlin, 1979), pp. 334–352.

[3] S. Chaudhury, A. Smith, B. E. Anderson, S. Ghose, and P. S.
Jessen, Nature (London) 461, 768 (2009).

[4] C. Neill et al., Nat. Phys. 12, 1037 (2016).
[5] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,

P. M. Preiss, and M. Greiner, Science 353, 794 (2016).
[6] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[7] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[8] F. Borgonovi, F. M. Izrailev, L. F. Santos, and V. G. Zelevinsky,

Phys. Rep. 626, 1 (2016).
[9] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,

Adv. Phys. 65, 239 (2016).
[10] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52,

1 (1984); J. Phys. Lett. 45, 1015 (1984).
[11] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55,

2262 (1968) [Sov. Phys. JETP 28, 1200 (1969)].
[12] D. A. Roberts and B. Swingle, Phys. Rev. Lett. 117, 091602

(2016).
[13] K. Hashimoto, K. Murata, and R. Yoshii, J. High Energy Phys.

10 (2017) 138.
[14] B. Swingle and D. Chowdhury, Phys. Rev. B 95, 060201(R)

(2017).
[15] A. A. Patel, D. Chowdhury, S. Sachdev, and B. Swingle,

Phys. Rev. X 7, 031047 (2017).
[16] N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M. Stamper-

Kurn, J. E. Moore, and E. Demler, arXiv:1607.01801.
[17] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap, New J. Phys.

19, 063001 (2017).
[18] E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Phys. Rev. Lett.

118, 086801 (2017).
[19] E. B. Rozenbaum, S. Ganeshan, and V. Galitski,

arXiv:1801.10591.
[20] X. Chen, T. Zhou, D. A. Huse, and E. Fradkin, Ann. Phys.

(Berlin) 529, 1600332 (2017).
[21] M. Heyl, F. Pollmann, and B. Doŕa, Phys. Rev. Lett. 121,
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