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Chiral Majorana edge states in the vortex core of a p + i p Fermi superfluid
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We study Majorana modes in the vortex core of a two-dimensional p + ip Fermi superfluid interacting with a
Bose-Einstein condensate. Under a repulsive s-wave contact interaction between fermions and bosons, fermions
are depleted from the vortex core when the bosonic density becomes sufficiently high. This gives rise to a
dynamically driven local interface that emerges between fermions and bosons, along which chiral Majorana edge
states should appear. We examine in detail the variation of vortex-core structures as well as the formation of chiral
Majorana edge states with increasing bosonic density, where the circulation of the vortex plays an important role.
Whereas both the Majorana modes and the vortex-core structures can be controlled and manipulated by tuning
the bosonic density and the Bose-Fermi interaction strength, our study presents an illuminating example of how
topological defects can be dynamically controlled in the context of cold-atomic gases.
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I. INTRODUCTION

Topological edge states emerge at the interface between
phases of distinct topological natures, whose characterization
and manipulation are among central issues in the study of
topological materials. As an outstanding example, edge modes
at vortex cores of spinless p + ip superfluids or ν = 5/2
fractional quantum Hall systems are non-Abelian Majorana
zero modes (MZMs) [1,2]. Motivated by the pursuit of novel
fundamental physics and potential applications in quantum
computation, much effort has been devoted to the study of
these non-Abelian MZMs in condensed matter [3–6] or cold-
atom systems [7,8].

Generically, the existence and number of topological edge
modes are dictated by topological invariants through the
bulk-boundary correspondence [9–11]. However, properties
of edge modes at a given boundary are affected by the
geometry of the boundary. For example, a vortex in a two-
dimensional topological p + ip Fermi superfluid is a point
defect, and the edge mode associated with such a point defect
is an MZM bound to the core. By contrast, for a linear defect,
the corresponding topological edge modes are linearly disper-
sive and reside on the one-dimensional boundary [12–15]. A
subtle scenario arises in two dimensions when a local defect
develops a finite spatial expanse but is still localized within a
closed contour. Here, while the existence of topological edge
modes is still associated with bulk topological invariants, their
forms of existence are closely related to the spatial geometry
and range of the defect. Understanding the response of topo-
logical edge modes to geometrical deformations of defects
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provides valuable knowledge necessary for the manipulation
and control of edge states.

In this work, we study the response of topological edge
modes to dynamically controlled defects in a mixture of Bose
and Fermi condensates in two dimensions. In a previous
study [16], it has been shown that, for a Bose-Fermi super-
fluid mixture in three dimensions, a Bose-Einstein condensate
(BEC) can become localized at the vortex core of the Fermi
superfluid at a sufficiently high repulsive interspecies inter-
action energy. The localization of a BEC thus dynamically
generates an interface between fermions and bosons.

Building upon such a physical picture, we consider a single
vortex in a p + ip Fermi superfluid and in the presence of
an atomic BEC, where fermions interact repulsively with
atoms in the BEC. The p + ip superfluid is topologically
nontrivial in the weak-pairing BCS regime, where its chemical
potential μF > 0 and becomes topologically trivial in the
strong-pairing BEC regime with μF < 0 [2,7]. In this work,
we focus on the case of a topological Fermi superfluid. In
the absence of a BEC, vortices in the topological superfluid
hosts MZMs at their centers [17–23]. These MZMs obey non-
Abelian statistics and are robust against symmetry-preserving
perturbations [8,24,25]. We show that, when the density of
BEC is sufficiently high, the vortex-core structure is drasti-
cally modified as fermions are depleted from the core. This
gives rise to a dynamically generated boundary inside the
vortex core. We find that the MZM and discrete Caroli–de
Gennes–Matricon (CdGM) states in the core continuously
merge into a branch of chiral Majorana edge states, provided
the circulation of the vortex matches the chirality of the
Fermi superfluid. By contrast, a first-order transition occurs
in the first excited state within the vortex core, where CdGM
states with angular momenta of opposite signs compete with
each other. Our results present an interesting example where
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topological defects and topological edge modes are dynami-
cally controlled.

While a p + ip Fermi superfluid may be experimen-
tally implemented in a quasi-two-dimensional fully polarized
Fermi gas close to a p-wave Feshbach resonance, topological
superfluid can also be realized in a two-dimensional two-
component Fermi gas with strong s-wave interactions under
two-dimensional spin-orbit coupling and an out-of-plane Zee-
man field [26–28], where similar phenomena are expected in
the presence of a BEC. Following the recent experimental
realization of two-dimensional spin-orbit coupling in optical
lattices [29] and Fermi-Bose superfluid mixtures [30–33], we
hope that the vortex-core chiral edge states discussed in this
work can be probed in the future.

This paper is organized as follows. In Sec. II, we present
a brief derivation of the Bogoliubov–de Gennes (BdG) equa-
tions describing the p + ip superfluid, which is coupled with
the Gross-Pitaevski (GP) equation describing the BEC. In
Sec. III, we study the behavior of a single vortex with a
matching circulation for the Fermi superfluid chirality, and we
discuss the opposite case in Sec. IV. Finally, we summarize in
Sec. V.

II. MODEL

We study a mixture of a p + ip Fermi superfluid and
a BEC by numerically solving the coupled BdG and GP
equations. We note that the mean-field approach we adopt
here should provide a qualitatively valid picture for the two-
dimensional superfluid mixture at zero temperature. Since the
p + ip Fermi pairing breaks the time-reversal symmetry, the
BdG equation has only the particle-hole symmetry, such that
the resulting topological superfluid belongs to the D class of
the Z classification [34]. This means that a system with an
open boundary also possesses a chiral edge mode even in
the absence of vortices. The introduction of a vortex into the
p + ip superfluid should reduce the classifying group to Z2.
Hence, as long as the angular-momentum quantum number m

of the vortex is odd, an MZM should appear in the vortex core.
In the current case, we consider a single vortex with m = ±1.
While the chirality of the Fermi superfluid is fixed, we show
that the vortex-core structures can be quite different for m = 1
and m = −1, particularly in the presence of a BEC. These two
scenarios are schematically illustrated in Fig. 1.

The BdG equation of the fermion quasiparticle wave func-
tion [un, vn]T is given by

[
H0(r) �(r)

−�∗(r) −H0(r)

][
un(r)
vn(r)

]
= En

[
un(r)
vn(r)

]
, (1)

where the off-diagonal term is defined as �(r) =
i

kF
[�(r)P + 1

2P�(r)] with the operate P = ∂x + i∂y .
For convenience, we set h̄ = 1 throughout this work.
�(r) is the p-wave pairing order parameter of the
p-wave Fermi superfluid. Here, the diagonal term
H0(r) = − ∇2

2mF
− μ̃F (r ), with the effective Fermi chemical

potential μ̃F (r ) = μF − gBF|φ(r)|2, s-wave Fermi-Bose
interaction gBF = 2π (mB+mF )aBF

mBmF
, and bosonic ground-state

wave function φ(r).

Y

X
Z

p+ip p+ip

(a) (b) m=1m 1 

FIG. 1. Schematic of the chirality of Majorana edge states at the
inner and outer boundaries of an annulus. In the context of our work,
the inner boundary represents the dynamically generated interface at
the vortex core, and the outer boundary corresponds to the enforced
open boundary. (a) When the circulation of the vortex is m = −1,
the running direction of chiral Majorana edge states on the inner
boundary (black arrows) matches the direction of circulation of the
vortex (blue arrows). (b) When the circulation of the vortex is m = 1,
the running direction of chiral Majorana edge states on the inner
boundary is opposite to the direction of circulation of the vortex.

The dynamics of the BEC is described by the GP equation[
− ∇2

2mB

+ gBFnF (r) + gBnB (r)
]
φ(r) = μBφ(r), (2)

where μB is the bosonic chemical potential, gB = 4πaB

mB
is the

boson-boson interaction coefficient, nF (r ) = ∑
En>0(|un|2 +

|vn|2), and nB (r ) = |φ(r)|2 are the fermion and boson densi-
ties, respectively.

The p + ip Fermi order parameter is

�(r) = igp

kF

∑
En>0

[v∗
n(r)(∂x − i∂y )un(r) − un ↔ vn], (3)

where gp = ∫ kc

0
d�k

(2π )2
(k/kF )2

k2/mF −Eb
is the effective p-wave inter-

action strength. Eb is the two-body bound-state energy of
fermions in vacuum, and kc is the momentum cutoff, deter-
mined by the short-range interaction potentials.

We consider the case where a single vortex with m = ±1
exists in the Fermi superfluid, whereas there are no vortices in
the BEC. In general, vortices spontaneously form in a rotating
superfluid when the frequency of the rotation exceeds a criti-
cal frequency. Thus the scenario under study can occur when
the rotating frequency is in between the critical frequencies
of Fermi and Bose superfluids. Further, as we are assuming a
repulsive interaction between fermions and bosons, vortices in
the fermionic and bosonic components should not overlap due
to energy minimization, which is indeed the case in a recent
experiment [32]. We may then rewrite the order parameter
as �(r) = �(ρ)eimθ in the polar coordinate, with m = ±1.
Under an open-boundary condition with rotational symmetry,
we expand the radial component of the particle and hole wave
functions under the Fourier-Bessel basis as[

un(ρ)
vn(ρ)

]
=

∑
j,l

[
c

(j )
n,l ϕj,l (ρ)

d
(j )
n,l ϕj,l−m−1(ρ)

]
, (4)

where ϕjl (ρ) =
√

2Jl (αjlρ/R)
RJl+1(αjl )

, Jl (r ) is the lth-order Bessel func-
tion, and αjl is the j th root of Jl (r ). The BdG equation then
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becomes

∑
j ′

[
T

jj ′
l �

jj ′
l

�
jj ′
l −T

jj ′
l−m−1

][
c

(j ′ )
n,l

d
(j ′ )
n,l

]
= En

[
c

(j )
n,l

d
(j )
n,l

]
, (5)

where

T
jj ′
l =

(
1

2mF

α2
j,l

R2
− μF

)
δjj ′ + gBFn

jj ′
B,l, (6)

n
jj ′
B,l =

∫ R

0
ρdρnB (ρ)ϕj,l (ρ)ϕj ′,l−m−1(ρ),

�
jj ′
l =

∫ R

0
ρdρ(�(ρ)χj ′,l−m−1ϕj,l (ρ))

− 1

2

∫ R

0
ρdρ

(
∂�(ρ)

∂ρ
− m�(ρ)

ρ

)
×ϕj ′,l−m−1(ρ)ϕj,l (ρ), (7)

and

�(ρ) = gp

2π

∑
l,En�0,jj ′

cn
j ′ld

n
jl (ϕj,lχ

∗
j ′,l−m−1 + ϕj ′,l−m−1χj,l ).

(8)

Here we define χjl (ρ) = αjl

R

√
2Jl+1(αjlρ/R)
RJl+1(αjl )

and χ∗
j l (ρ) =

αjl

R

√
2Jl−1(αjlρ/R)
RJl+1(αjl )

. By self-consistently solving the coupled BdG
and GP equations under the open-boundary condition, we
obtain the wave functions of the Fermi quasiparticles and the
stable ground state of the BEC. For convenience, we only
consider the case where no external trapping potentials are
present.

III. CHIRAL MAJORANA EDGE STATES
IN A VORTEX WITH m = −1

In this section, we study the vortex-core structure for the
case of m = −1. For numerical calculations, we use EF =
k2
F /2m as the unit of energy, where the Fermi wave vector

kF = √
4πnf with a typical Fermi density in two dimensions,

nf = 5 × 108 cm−2 [35]. We assume an open-boundary con-
dition, and the radial boundary R and the total fermion
particle number Nf = 2π

∫ R

0 drrnF (r ) are locked through
kF = √

4Nf /R2. We further fix k2
c /2mF = 10EF throughout

this work.
In Fig. 2, we show typical quantities characterizing the

Fermi vortex-core structure. In the absence of bosons, the
order parameter �(ρ) ∝ ρ|m| when ρ is small. As the Bose-
Fermi interaction is repulsive, the depletion of fermions in
the vortex core effectively attracts bosons. The condensation
of bosons at the vortex core should then further enhance
the fermion depletion [16]. As shown in Figs. 2(a)–2(c), the
vortex core is completely depleted above a threshold BEC
density. This is driven by a negative effective Fermi chemical
potential μ̃F (0) = μF − gBFnB (0) < 0 near the vortex core
[see the left inset in Fig 2(b)]. We note that a complete
depletion of the vortex core occurs more favorably at a small
or negative Bose-Bose interaction gB , since in this case the
BEC can easily condense into the vortex core, either due to a
small coherence length ξB or due to the attractive interaction.
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FIG. 2. Spatial profiles of various quantities of a vortex core with
m = −1 and for different atomic-number ratios between bosonic and
fermionic components Nb/Nf . (a) Pairing order parameter �(ρ ),
(b) Fermi density distribution nF (ρ ), (c) bosonic density distribution
nB (ρ ), and (d) wave function of the MZM u(ρ ). Note that for
MZM v(ρ ) = u(ρ ). Insets in (b): Variations of the effective chemical
potential μ̃F (0) = μF − gBFnB (0) (left) and the Fermi density nF (0)
(right) at the center of the vortex core with increasing Nb/Nf . In
our numerical calculation, the radius of the outer boundary R is set
at 50k−1

F . For simplicity, the Bose-Bose interaction rate gB is set
to 0. The scattering length for the Bose-Fermi interaction is set at
0.02k−1

F , which corresponds to aBF = 40a0 (a0 is the Bohr radius),
and the Fermi-Fermi interaction is tuned to the BCS regime with
μF /EF = 0.9.

For simplicity, we set the Bose-Bose interaction to 0 for our
numerical calculations here.

Interestingly, as shown in Fig. 2(d), the spatial wave func-
tion of the MZM is deformed into a ring when the vortex
core is completely depleted. The increase in the vortex size
should make both vortices and MZMs more accessible in
experiments. The condensation of bosons in the vortex core
further provides the possibility of adiabatically controlling the
trajectory of the vortex by spatially shifting the BEC by tuning
its trapping lasers. This possibility can be useful in future
applications like topological quantum computation based on
topological superfluid, where the manipulation of qubits can
be implemented by braiding vortices with MZMs.

To further characterize vortex-core structures and MZMs
in the presence of BEC, we calculate the quasiparti-
cle spectra and local density of states (LDOS) of the
system. Here, the LDOS can be written as D(r, E) =∑

n [|un(r )|2δ(E − En) + |vn(r )|2δ(E + En)], which yields
the distribution of eigenstates with energy E in the po-
sition space. In Fig. 3, we plot quasiparticle spectra and
the corresponding LDOS for cases without [Fig. 3(a)] and
with [Figs. 3(b) and 3(c)] a BEC, respectively. As shown
in Fig. 3(a), in the absence of a BEC, the branch of chiral
Majorana edge states at the outer boundary R crosses the
zero-energy point, which gives rise to a twofold degeneracy
at zero energy. The MZM at the vortex core is manifested
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FIG. 3. (a)–(c) Quasiparticle spectra and (d)–(f) LDOS D(ρ,E) of a single vortex with m = −1. (a), (d) In the absence of a BEC with
Nb/Nf = 0; (b), (e) Nb/Nf = 0.34; (c), (f) Nb/Nf = 1 with a fully depleted vortex core. All other parameters are the same as those in Fig. 2.

as the zero-energy bright horizontal stripe near ρ = 0 in
Fig. 3(d). In contrast, the discrete CdGM modes, arising from
the Andreev reflection, all have finite energies [see Figs. 3(a)
and 3(d)] [36–38]. Unlike the CdGM modes, which are always
discrete, the spectrum of chiral edge modes at the outer bound-
ary becomes continuous in the thermodynamic limit. Note that
chiral edge states on the outer boundary are unaffected by
BEC.

More importantly, by comparing Figs. 3(a)–3(c), we ob-
serve that the number of vortex-core modes increases in the
presence of a BEC. Further, when the vortex core is com-
pletely depleted, as in Fig. 3(c), the CdGM modes become
fully connected to the MZM, to form the branch of topological
chiral edge states running around the dynamically generated
boundary between the localized BEC and the Fermi super-
fluid. These chiral Majorana edge states are visualized as the
in-gap, arrow-shaped bright stripes in Fig. 3(f).

Since the Fermi pairing order parameter breaks the time-
reversal symmetry, topological edge states have specific chi-
rality. As illustrated in Fig. 1, the running directions of edge
states at the inner and outer boundaries are opposite to each
other. For the vortex with m = −1, the occupied edge modes
at the outer boundary have nonnegative angular momentum
and run along the boundary in the anticlockwise direction, as
schematically indicated by black arrows on the outer bound-
ary in Fig. 1(a). By contrast, edge modes at the inner boundary
run in a clockwise fashion along the boundary, as indicated by
black arrows on the inner boundary in Fig. 1(a). Importantly,
the chirality of Majorana edge states at the inner boundary
is determined by the chirality of the Fermi superfluid, which
matches the vorticity of the vortex for m = −1. All these
features are confirmed in Fig. 3.

IV. CHIRAL MAJORANA EDGE STATES
IN A VORTEX WITH m = 1

We now turn to the case where the Fermi vortex features
m = 1. As illustrated in Fig. 4, variations of the vortex-core
structure in terms of spatial profiles of the order parameter
and number densities are similar to the case of m = −1.
Here, the BEC still becomes localized beyond a threshold
bosonic density, where fermions are depleted from the vortex
core. However, an important difference lies in the mismatch
between the chirality of the Majorana edge states on the inner
boundary and the vorticity of the Fermi vortex [see Fig. 1(b)].
This is manifested in Fig. 5(a), where CdGM states traverse
the gap in the same direction as chiral edge states at the
outer boundary. As the BEC density increases and a dynamic
boundary gradually becomes well defined within the vortex
core, a new branch of CdGM states with a matching angular
momentum to the chiral superfluid develops from the bulk,
which eventually forms chiral Majorana edge states running
on the inner boundary [see Figs. 5(a)–5(c)].

As a result of the process discussed above, with increasing
BEC density, a first-order transition takes place in the lowest
excited state of the vortex core, where CdGM states with
opposite angular momenta compete with each other. This
gives rise to a sharp peak in the excitation gap of the MZM, as
shown in Figs. 6(a) and 6(b), and is in contrast to the case with
m = −1, where the excitation gap monotonically decreases
[see Fig. 6(c)]. At the point with the largest gap, the MZM is
well separated from other core modes [Fig 5(e)], which should
facilitate its detection. In Fig. 6(a), we also show the excitation
gap for different chemical potentials μF , where it is apparent
that the transition is sharper and the enhancement of the gap
is more prominent in the weak-coupling regime.
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FIG. 4. Spatial profiles of various quantities of a vortex core with
m = 1 and for different atomic-number ratios between bosonic and
fermionic components Nb/Nf . (a) Pairing order parameter �(ρ ),
(b) Fermi density distribution nF (ρ ), (c) bosonic density distribution
nB (ρ ), and (d) wave function of the MZM u(ρ ), where for MZM
v(ρ ) = u(ρ ). Insets in (b): Variations of the Fermi density nF (0)
(left) and the effective chemical potential μ̃F (0) = μF − gBFnB (0)
(right) at the center of the vortex core with increasing Nb/Nf . All
other parameters are the same as those in Fig. 2.

V. CONCLUSION

In summary, we study a single vortex in a mixture of a
p + ip Fermi superfluid and a BEC. Owing to the repulsive
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FIG. 6. (a) Excitation gap of the MZM as a function of Nb/Nf

for different μF values with m = 1. (b) Excitation gap of the MZM
at a fixed μF = 0.9 and with m = 1. (c) Excitation gap of the MZM
at a fixed μF = 0.9 and with m = −1. All other parameters are the
same as in Fig. 2.

Bose-Fermi interaction, the BEC can localize at the Fermi
vortex core, giving rise to a dynamically generated boundary
between the Fermi and the Bose components. As a result,
chiral Majorana edge states can emerge on the boundary. We
study in detail how chiral Majorana edge states evolve into
existence as the geometry of the topological defect at the
vortex core changes with an increasing BEC density. Our
work reveals that vortices with different chiralities in the
p + ip Fermi superfluid show great differences in response
to the BEC. Our study demonstrates an interesting example
of how the geometric configurations of topological defects
can be dynamically generated and controlled in a realistic
system.
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FIG. 5. (a)–(c) Quasiparticle spectra and (d)–(f) LDOS D(ρ,E) of a single vortex with m = 1. (a), (d) In the absence of a BEC with
Nb/Nf = 0; (b), (e) Nb/Nf = 0.34; (c), (f) Nb/Nf = 1 with a fully depleted vortex core. All other parameters are the same as those in Fig. 2.
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Our result further suggests that, in a conventional topolog-
ical superconductor [4], it is possible to add an appropriate
local electric field, which should play a role similar to that
of the BEC, generating a local interface within the core and
increasing the excitation gap of the MZM. Such a scheme
could be useful for detecting and manipulating MZMs, where
adiabaticity can be facilitated by larger excitation gaps above
MZMs.
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