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Self-bound ultradilute Bose mixtures within local density approximation
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We have investigated self-bound ultradilute bosonic binary mixtures at zero temperature within density
functional theory using a local density approximation. We provide the explicit expression of the Lee-Huang-Yang
correction in the general case of heteronuclear mixtures, and investigate the general thermodynamic conditions
which lead to the formation of self-bound systems. We have determined the conditions for stability against the
evaporation of one component, as well as the mechanical and diffusive spinodal lines. We have also calculated
the surface tension of the self-bound state as a function of the interspecies interaction strength. We find that
relatively modest variations of the latter result in order-of-magnitude changes in the calculated surface tension.
We suggest experimental realizations which might display the metastability and phase separation of the mixture
when entering regions of the phase diagram characterized by negative pressures. Finally, we show that these
droplets may sustain stable vortex and vortex pairs.
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I. INTRODUCTION

The existence of self-bound ultradilute quantum droplets,
made of atoms of a binary mixture of Bose-Einstein conden-
sates, was predicted by Petrov [1] and has been experimentally
confirmed very recently [2,3]. The stability of these droplets
can be explained as deriving from a subtle balance between
the intraspecies repulsive atom-atom interaction and a tunable
interspecies attractive interaction.

When the attraction between the two atomic species be-
comes larger than the single-species average repulsion, the
mixture is expected to collapse according to mean-field (MF)
theory. Possible stabilization mechanisms preventing the col-
lapse of the mixture triggered by an attractive interaction
have been proposed, as, e.g., three-body correlations [4],
spin-orbit coupling [5], a combination of quantum fluctua-
tions and three-body interactions [6], and purely quantum
fluctuations effects [1] (Lee-Huang-Yang (LHY) mechanism
[7]). In the latter case, the effective repulsion provided by
the first beyond-mean-field (BMF) correction to the energy
is enough to prevent the collapse and to stabilize the sys-
tem, i.e., a density exists where these contributions balance
each other and the droplets become self-bound, stable sys-
tems. The stabilization mechanism resulting from the in-
clusion of the LHY correction is also responsible for the
existence of self-bound aggregates in one-component dipolar
systems [8–11] (where the anisotropic character of the dipole-
dipole forces leads to the formation of filamentlike self-
bound droplets with highly anisotropic properties), in Rabi-
coupled Bose-Bose mixtures [12], and in low-dimensional
mixtures [13].

The formation of liquid drops in a Bose-Bose mixture
has been recently addressed using the diffusion Monte Carlo
(DMC) method [14], confirming the prediction for the sta-
bility of self-bound bosonic mixtures [1]. More recently, the
properties of uniform Bose mixtures have been analyzed using
the variational hypernetted-chain Euler-Lagrange (HNC-EL)
method [15], which includes pair correlations nonperturba-
tively and turns out to be computationally very fast as com-
pared to the DMC method. In particular, the conditions for
having a self-bound, stable mixture of 39K atoms in two
different internal states have been studied within the HNC-EL
approach. Deviations from a universal dependence on the
s-wave scattering lengths are found in spite of the low density
of the systems [15].

These ultradilute and weakly interacting quantum
liquids—whose densities are orders-of-magnitude lower
than that of the prototypical quantum fluid, namely, liquid
helium—can be ideal platforms to benchmark quantum
many-body theories in actual experiments and to study
processes that are more difficult to address in the case of
liquid helium. For this reason, determining the properties of
the underlying uniform system is of special interest in itself
and also represents a first step towards a better understanding
of self-bound droplets.

In this work, we study, within a density functional theory
(DFT) approach in a local density approximation (LDA),
Bose-Bose mixtures at zero temperature (T ); in particu-
lar, we address the thermodynamic conditions which lead
to the formation of self-bound states of the system. We
study the general case of heteronuclear mixtures within the
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beyond-mean-field approach to Bose mixtures. As a case
study, we discuss in detail a 23Na-87Rb mixture. In order to
make a comparison with previous theoretical works, we also
address a Bose-Bose mixture with equal masses, made of two
hyperfine states of 39K.

This work is organized as follows. In Sec. II, we present the
DFT approach to Bose-Bose mixtures. The method is applied
in Sec. III, within LDA, to the description of the uniform
system, allowing us to determine the main characteristics of
the stability phase diagram, in particular the mechanical and
diffusive spinodal lines obtained as outlined in the Appendix.
The surface tension of the mixture is calculated in Sec. IV as
a function of the interspecies attraction, and the structure of
selected mixed droplets is presented in Sec. V. We show that
these droplets may sustain stable vortex and vortex pairs in
Sec. VI. Finally, a summary and outlook are given in Sec. VII.

II. DENSITY FUNCTIONAL APPROACH

Let us consider a uniform Bose-Bose mixture
with two components (with masses m1 and m2) in a
volume V , interacting with coupling constants g11 =
4πa11h̄

2/m1, g22 = 4πa22h̄
2/m2, and g12 = 2πa12h̄

2/mr ,
where mr = m1m2/(m1 + m2) is the reduced mass. The
intraspecies s-wave scattering lengths a11 and a22 are both
positive, while the interspecies a12 is negative. The total
number of bosons is N = N1 + N2.

In the following, n1, n2 are the number densities (ex-
pressed in atomic units, a−3

0 , a0 being the Bohr radius), nor-
malized such that

∫
V

n1dr = N1 and
∫
V

n2dr = N2. Equiv-
alently, we will also characterize the homogeneous mixture
with the total number density, n = n1 + n2, and concentration
of the species 2, Y = n2/n.

Although a precise knowledge of the finite-range details
of the interatomic potential might be necessary for a more
accurate description of such system [15], we consider the
simpler description where the s-wave scattering lengths are
assumed to be enough to fully characterize the interparticle
interactions, and leave to subsequent studies attempts to go
beyond the contact-interaction approximation. This strategy is
similar to that successfully followed within the DFT approach
to liquid helium and droplets [16–18].

Within the DFT framework, the total energy of the system
is given by

E =
∫

dr

{∑
i

[
h̄2

2mi

|∇�i |2 + 1

2
giin

2
i

]
+ g12|�1|2|�2|2

}

+ELHY, (1)

where ni = |�i |2 and i = 1, 2. ELHY is the BMF Lee-Huang-
Yang term, which is necessary in order to yield self-bound
configurations [1].

Functional minimization of the above functional leads to
the Euler-Lagrange (EL) equations,[

− h̄2

2mi

∇2 + Vi (n1, n2)

]
�i = μi�i , (2)

where μi is the chemical potential of the i species and

Vi = giini + g12nj + δELHY

δni

(j �= i). (3)

Equation (2) is the two-component version of the well-known
Gross-Pitaevskii equation [19] with the addition of the BMF
correction.

The LHY correction to the mean-field theory of the mixture
can be expressed as [1]

ELHY

V
= 8

15π2

(
m1

h̄2

)3/2

(g11n1)5/2f

(
m2

m1
,

g2
12

g11g22
,
g22n2

g11n1

)
,

(4)

where f > 0 is a dimensionless function defined below.
At the mean-field level, the condensed Bose-Bose mixture

collapses when the interspecies attraction becomes stronger
than the geometrical average of the intraspecies repulsions,
|g12| >

√
g11 g22. Quantum fluctuations, embodied within the

LHY energy term, stabilize the mixture. As shown in Ref. [1],
the instability manifests itself in the fact that some of the en-
ergy contributions in ELHY acquire an imaginary component
at small momenta. However, in the region mostly contributing
to the LHY term, these modes are found to be insensitive
to small variations of δg ≡ g12 + √

g11g22, and also to its
sign [1]. When evaluated at δg = 0, ELHY in Eq. (4) is well
defined and free from imaginary contributions. Here we will
use the same approximation as in Ref. [1] to evaluate ELHY,
namely, we set g12 + √

g11g22 = 0.
The explicit expression for f in Eq. (4) was given in

Ref. [1] only for the particular case of equal masses. In the
more general case m1 �= m2, which is addressed here—and
considering δg = 0, as discussed above—one finds

f (z, 1, x) = 15

32

∫ ∞

0
k2F (k, z, x)dk, (5)

where

F (k, z, x) =
⎛
⎝1

2

[
k2

(
1 + x

z

)
+ 1

4
k4

(
1 + 1

z2

)]
+

{
1

4

[(
k2 + 1

4
k4

)
−

(
x

z
k2 + 1

4z2
k4

)]2

+ x

z
k4

}1/2
⎞
⎠

1/2

+
⎛
⎝1

2

[
k2

(
1 + x

z

)
+ 1

4
k4

(
1 + 1

z2

)]
−

{
1

4

[(
k2 + 1

4
k4

)
−

(
x

z
k2 + 1

4z2
k4

)]2

+ x

z
k4

}1/2
⎞
⎠

1/2

− 1 + z

2z
k2 − (1 + x) + 1

1 + z

1

k2
[(1 + xz)2 + z(1 + x)2]. (6)
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Here, z ≡ m2/m1, x ≡ (g22n2)/(g11n1), and k is dimension-
less.

The integral (5) converges in spite of the presence of
individually diverging terms in the integrand due to mutual
cancellation of the singular terms. For the numerical eval-
uation of Eq. (4), we found it convenient to calculate the
improper integral (5) using the following transformation:∫ ∞

0
g(k)dk =

∫ π/2

0
g[tan(t )]

dt

cos2(t )
.

The right-hand-side integral has been computed numerically
using a second Euler-McLaurin summation formula refined
until some specified degree of accuracy is achieved [20].

In the particular case N1 = N2 ≡ N/2, m1 = m2 ≡ m,
and g11 = g22 = g12 ≡ g = 4πah̄2/m, Eq. (4) yields the
well-known LHY correction for a system of N identical
bosons in a volume V (i.e., with density n),

ELHY

V
= 256

√
π

15

h̄2

m
(na)5/2 , (7)

where we have used

f (1, 1, 1) = 15

32

∫ ∞

0
k2F (k, 1, 1) dk

= 15

32

∫ ∞

0
k2

[
k

2

√
8 + k2 − k2

2
− 2 + 4

k2

]
dk

= 4
√

2.

Within the local density approximation of DFT, one can
write

ELHY =
∫

V

ELHY[n1(r), n2(r)]dr, (8)

where the energy density ELHY is evaluated at the local
densities n1(r), n2(r):

ELHY = 8

15π2

(
m1

h̄2

)3/2

[g11n1(r)]5/2f

[
m2

m1
, 1,

g22 n2(r)

g11 n1(r)

]
.

(9)

The terms appearing in Eq. (3) are

δELHY

δn1
= ∂ELHY

∂n1

= 8

15π2

(
m1

h̄2

)3/2

g
5/2
11 n

1/2
1

[
5

2
n1f − g22 n2

g11

∂f

∂x

]
,

(10)

δELHY

δn2
= ∂ELHY

∂n2
= 8

15π2

(
m1

h̄2

)3/2

g
3/2
11 g22 n

3/2
1

∂f

∂x
. (11)

III. UNIFORM SYSTEM

A. Self-bound mixtures

As a case study, we consider in the following a uniform
mixture of 23Na (a11 = 54.5 a0) and 87Rb (a22 = 100.4 a0)
atoms [21,22], where a0 is the Bohr radius. We will take
the interatomic scattering length a12 as tunable at will. This
mixture has been recently studied [23] and proven to be a

good candidate to investigate interaction-driven effects in a
superfluid Bose mixture with a largely tunable interspecies
interactions (both repulsive and attractive). We are interested
in the regime where self-bound states appear, i.e., when
g11, g22 > 0, g12 < 0 and |g12| >

√
g11 g22 .

The energy per unit volume of the uniform system is

E (n1, n2) = 1
2g11 n2

1 + 1
2g22 n2

2 + g12n1n2 + ELHY, (12)

and the total energy is E = EV .
At T = 0, especially relevant stable states of the homoge-

neous mixture are those that correspond to zero pressure,

P (n1, n2) = −dE

dV
= n2 ∂

∂n

(E
n

)
= 0, (13)

since isolated self-bound droplets must be at equilibrium with
vacuum. Recalling that P (n1, n2) = −E + μ1n1 + μ2n2 , and
that

μ1 = ∂E
∂n1

= g11n1 + g12n2 + ∂ELHY

∂n1
,

μ2 = ∂E
∂n2

= g22n2 + g12n1 + ∂ELHY

∂n2
, (14)

one obtains, for the pressure,

P (n1, n2) = 1

2
g11n

2
1 + 1

2
g22n

2
2 + g12n1n2 − ELHY

+ n1
∂ELHY

∂n1
+ n2

∂ELHY

∂n2
, (15)

where the BMF terms are evaluated according to Eqs. (10)
and (11).

Figure 1 shows the P = 0 curve in the (n1, n2) plane com-
puted with a12 = −80 a0. The big dot represents the stable
state configuration that, for this chosen a12 value, has the
minimum energy per atom E/N = E/n.

The densities associated to that minimum-energy state are
shown in Fig. 2 as a function of the interatomic scattering

FIG. 1. Solid line is the P = 0 curve in the (n1, n2) plane for
the 23Na-87Rb mixture with a12 = −80 a0, where a0 is the Bohr
radius. The big dot is the point of minimum energy per particle of
the P = 0 curve. The dotted lines correspond to the configurations
in the (n1, n2) plane with chemical potential of one species equal
to zero, μ1 = 0, and μ2 = 0, respectively. In the closed narrow
region delimited by these lines (shown in gray), the system has both
chemical potentials negative. Densities are expressed in units of a−3

0 ,
where a0 is the Bohr radius.
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FIG. 2. Densities n1 (23Na, solid line) and n2 (87Rb, dotted line)
as a function of the interspecies s-wave scattering length for the
minimum energy per particle stable mixtures. Densities and lengths
are expressed in units of a−3

0 and a0, respectively, where a0 is the
Bohr radius.

length a12. They have been computed as described above, i.e.,
selecting the minimum-energy states among those satisfying
the condition P = 0.

From the results of Fig. 2, it follows that self-bound states
appear for a12 < ac ∼ −62 a0. The critical value ac is consis-
tent with that obtained from the condition g12 = −√

g11 g22

(which is the instability condition at the mean-field level, i.e.,
with ELHY = 0), that is, a12 ∼ −60 a0.

In order for an atom of the ith species to be bound in
the mixture, the chemical potential must be negative, μi < 0.
If it is not, the energy will be lowered by removing atoms
from the system (evaporation). We have thus computed the
limiting curves in the (n1, n2) plane where the conditions
μ1 = 0, μ2 = 0 are fulfilled, by using Eqs. (14) for the same
value of a12 considered above. The results are shown in
Fig. 1, where the dotted lines represent the configurations
with μ1 = 0 and μ2 = 0. Only the points within the closed
narrow region shown in the figure in gray are stable against
evaporation, i.e., only inside this region the system verifies
μ1 < 0 and μ2 < 0 simultaneously. Similarly, a very narrow
stability region against evaporation has been found for the
39K-39K mixture within the HNC-EL approach [15].

B. Spinodal lines

Binary mixtures such as those described here are not
thermodynamically stable at all densities n = n1 + n2, tem-
peratures, and relative concentrations Y = n2/n. At T = 0,
necessary and sufficient conditions for thermodynamic stabil-
ity are expressed by the following inequalities [24]:

κ = −V

(
∂P

∂V

)
N

= n
∂P

∂n
> 0,

(
∂μ1

∂Y

)
P

< 0, r (16)

where κ is the inverse compressibility—incompressibility—
of the system. A positive incompressibility guarantees me-
chanical stability, and the condition on the chemical-potential
derivative guarantees diffusive stability. If one of these condi-
tions is violated, the mixture cannot exist as a single phase and
must undergo phase separation. The coexisting phases that

FIG. 3. Diffusive (solid line) and mechanical (dashed line) spin-
odal curves for the 23Na-87Rb mixture with a12 = −80 a0. The big
dot represents the stable, minimum energy per particle mixture at
P = 0. The dotted line is the P = 0 curve in the (n, Y ) plane.
The two dash-dotted curves correspond to μ1 = 0 and μ2 = 0 (also
shown in Fig. 1 as a function of n1 and n2). The gray-shaded area
shows the stability region. Densities are expressed in units of a−3

0 ,
where a0 is the Bohr radius.

appear may have different densities, different concentrations,
or both.

The lines obtained setting to zero the above inequalities are
called mechanical and diffusive spinodal lines, respectively.
Systems such as nucleonic matter, 3He-4He liquid mixtures,
and partially polarized liquid 3He are examples of highly cor-
related systems for which the spinodal lines were determined
in the past by solving similar equations [25–27].

In our system, a straightforward calculation outlined in the
Appendix yields

κ = g11 n2
1 + g22 n2

2 + 2 g12 n1n2 + 15
4 ELHY. (17)

From this expression, the mechanical spinodal line κ = 0 can
be readily calculated. Similarly, the diffusive spinodal line is
obtained by solving the equation(

∂μ1

∂Y

)
P

= 0. (18)

As outlined in the Appendix, this condition on the (∂μ1/∂Y )P
partial derivative can be cast in the following, more convenient
expression: (

∂μ1

∂n2

)(
∂P

∂n1

)
=

(
∂μ1

∂n1

)(
∂P

∂n2

)
. (19)

The mechanical and diffusive spinodal lines in the (n, Y )
plane are shown in Fig. 3 for the 23Na -87Rb mixture with
a12 = −80 a0. It can be seen from this figure that the stabil-
ity region against evaporation—the narrow region where the
chemical potentials are negative—is considerably reduced by
thermodynamic stability conditions, and it is represented in
the figure by the small, triangular-shaped region in gray. In
particular, the point representing the stable minimum-energy
mixture is rather close to the diffusive spinodal line. This point
is at P = 0; reducing n at constant Y amounts to decreasing
P . Hence, from that point down to the diffusive spinodal
line, the mixture is in a metastable state at negative pressure.
Under these conditions, bubbles might appear in the mixture
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FIG. 4. Diffusive (solid line) and mechanical (dashed line) spin-
odal lines for the 39K-39K mixture with the same parameters
as in Ref. [15]: a11 = 35.2 a0, a22 = 65.5 a0, and a12 = −53.5 a0.
The big dot represents the stable, minimum energy per particle
mixture at P = 0. The dotted line is the P = 0 curve in the (n, Y )
plane. The two dash-dotted curves correspond to μ1 = 0 and μ2 =0.
The gray-shaded area shows the stability region. Densities are ex-
pressed in units of a−3

0 , where a0 is the Bohr radius.

(cavitation phenomenon), eventually leading to a first-order
phase transition as thoroughly studied, both theoretically and
experimentally, in liquid helium [28–30].

The stability of the 39K-39K mixture has been studied using
the HNC-EL method [15], and it was found that the condition
that limits the thermodynamic stability of such mixture arises
from the mechanical and not from the diffusive spinodal, at
variance with the Na-Rb mixture just described. Within the
present DFT approach, we have also studied the 39K-39K mix-
ture under similar conditions as those described in Ref. [15],
where finite-range interactions were used rather than contact
interactions as done here. In particular, we have taken δa =
−0.156 (in the same units used in Ref. [15]). The results
for the equilibrium densities, chemical potentials, and energy
per particle are in agreement with their HNC-EL results. In
fact, we find an equilibrium density ratio n2/n1 = 1.385 to be
compared with the HNC-EL result, n2/n1 = 1.380. We find
that the total energy per atom is ε = −3.74 (in the energy
units of Ref. [15]), whereas they find (using an effective range
reff = 43.2) ε = −3.364.

Figure 4 shows the phase diagram of the homogeneous
39K-39K mixture. As found above for the Na-Rb mixture, the
stability region is considerably reduced by thermodynamic
conditions, and it is represented in the figure by the gray
triangular-shaped region delimited by the two dash-dotted
lines and the dashed line. At variance with the Na-Rb case,
the point representing the stable minimum energy per particle
mixture is now close to the mechanical instead of the diffu-
sive spinodal line. This is in agreement with the HNC-EL
results [15]. We conclude that, not surprisingly, the stability
phase diagram is very sensitive to the parameters defining the
mixture. As in the Na-Rb case, bubbles are expected to appear
in the 39K-39K mixture when the density (thus P ) is decreased
from the stable minimum energy per particle point.

The existence of mechanical and diffusive spinodal lines
in self-bound Bose-Bose mixtures might cause dynamic in-
stabilities similar to those characterizing the expansion phase

of a highly compressed nuclear spot created in the course
of an energetic nucleus-nucleus collision, which triggered an
enormous activity in the nuclear physics field in the 1980s;
see, e.g., Refs. [31–34], and references therein. In the BEC
case, it is plausible that self-bound mixed droplets compressed
by an external trap will expand upon release of the trap,
bringing a large portion of the expanding droplet into the
unstable region of the phase diagram (e.g., Figs. 3 and 4).

Related effects could be observed in experiments leading
to cavitation, similarly to what was found in liquid helium
[28–30]. Cavitation bubbles could be created, e.g., by sweep-
ing a large droplet with a laser beam: the pressure difference
due to fore-to-aft asymmetry in the fluid structure around the
laser spot could trigger the appearance of cavitation bubbles
in the wake of the moving laser. A similar geometry was re-
cently investigated [35] in numerical simulations of a moving
thin wire in superfluid 4He, where vortex dipoles’ shedding
occurred, and where cavitation bubbles formed in the wake of
the moving wire, which were found to be responsible for a
large part of the dissipation accompanying the wire motion.

IV. SURFACE TENSION OF SELF-BOUND
BOSE-BOSE MIXTURES

The appearance of self-bound droplets implies the exis-
tence of a surface energy, and a surface tension associated
to it. Cikojevič et al. [14] have fitted their DMC energies
for self-bound droplets of 39K atoms in two different internal
states to a liquid-droplet expression [17] in order to determine
the surface tension of the mixture,

E = EvN + EsN
2/3 + EcN

1/3, (20)

where Ev, Es , and Ec are volume, surface, and curvature
energies. The surface tension of the fluid is estimated as σ =
Es/(4πr2

0 ), where the bulk radius r0 is related to the equi-
librium density of the liquid n0 as 4πr3

0 n0/3 = 1, implicitly
assuming that the radii of the density profiles for both species
are sensibly the same.

Within DFT, one may address the surface tension of the
mixture avoiding the fit procedure to a series of calculated
droplets. The surface tension σ—actually the grand poten-
tial per unit surface [24]—of a fluid planar free surface is
determined along the saturation line of the liquid-vapor (or
liquid-liquid) two-phase equilibrium. In the present case, the
line reduces to the P = 0 point, as the mixture is at T = 0. If
the z axis is taken perpendicular to the free surface, one has

σA = E − μ1N1 − μ2N2

=
∫

dr{E[n1(r), n2(r)] − μ1n1(r) − μ2n2(r)}

= A
∫ ∞

−∞
dz{E[n1(z), n2(z)] − μ1n1(z) − μ2n2(z)},

(21)

where A is the free-surface area.
To avoid the complication of imposing different boundary

conditions for the density profiles at the opposite ends of the
simulation cell, it is more convenient to use a “slab” geometry
characterized by a uniform density in the (x, y) plane and two
“liquid”-vacuum planar interfaces perpendicular to the z axis.
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FIG. 5. Total-density profiles n(z) = n1(z) + n2(z) for the
23Na-87Rb mixture, computed for different values of a12. Densities
and lengths are expressed in units of a−3

0 and a0, respectively, where
a0 is the Bohr radius.

Here, “liquid” means a self-bound mixture of species 1 and
2, whose densities n1, n2 in the bulk region of the slab are
determined by the equilibrium conditions discussed before for
the uniform-system case.

The energy density of the inhomogeneous system with
densities n1(r), n2(r) is, from Eq. (1),

E (n1, n2) = h̄2

2m1
|∇√

n1|2 + h̄2

2m2
|∇√

n2|2

+ 1

2
g11n

2
1 + 1

2
g22n

2
2 + g12n1n2 + ELHY(n1, n2).

(22)

As a case study, we consider again a mixture of 23Na and 87Rb
atoms. We will look for self-bound states (i.e., a12 < −62 a0,
as determined from the uniform-system calculation in the
previous section) of a number of atoms N1, N2 contained in
a cell of sides (Lx,Ly, 2L). The size 2L of the cell along z

is chosen in such a way to guarantee a wide-enough region
outside the slab, where the densities n1, n2 are essentially
zero.

We have obtained the equilibrium densities n1(r) =
|�1(r)|2 and n2(r) = |�2(r)|2 from the solution of the cou-
pled EL Eqs. (2) in the slab geometry for different values
of the interaction strength a12. Several total-density profiles,
n(z) = n1(z) + n2(z), for the calculated equilibrium configu-
rations are shown in Fig. 5. Only one-half of the simulation
cell containing the slab is shown for clarity. Note the very
different shapes of the interface separating a bulk region in
the left part of the figure and the vacuum region to the right,
and that the more negative is a12, the narrower the interface.

We have calculated the surface tension using these
n1(z), n2(z) profiles,

σ =
∫ L

0
dz[E (n1(z), n2(z)) − μ1n1(z) − μ2n2(z)]. (23)

The results are shown in Fig. 6 on a logarithmic scale to
underline the huge variation of σ—which spans almost four
orders of magnitude—as the interspecies interaction strength
is varied.

FIG. 6. Calculated surface tension of the self-bound systems for
the 23Na-87Rb mixture as a function of a12 (squares). The solid line is
drawn to guide the eye. σ is expressed in atomic units, while lengths
are in units of a0, where a0 is the Bohr radius.

V. DROPLETS

Here we describe numerical calculations of isolated, spher-
ical self-bound droplets made of N1 atoms of 23Na and N2

atoms of 87Rb. To this end, we have solved the coupled EL
Eqs. (2) to obtain the densities, n1(r ) and n2(r ), for different
values of the interparticle interaction strength a12.

In our calculations, we arbitrarily fix the radius R of the
droplet to be computed. The values of N1 and N2 thus depend
upon the chosen value of a12, and must be such that in the
central part of the droplet, where the density profiles are sen-
sibly constant, the associated densities n1, n2 are those of the
lowest-energy-per-particle state of the mixture in the uniform
system (see Fig. 2). In practice, we started our calculation with
a density profile which reproduces, at the center of the droplet,
the bulk equilibrium values (nb

1, n
b
2 ) predicted for the uniform

system. Then, Ni is fixed so that Ni = 4 πR3nb
i /3.

If we choose instead values of the densities which are far
from the equilibrium ones, during the minimization process
the excess atoms move towards the outer droplet surface and
form a background of excess species. The experimental coun-
terpart of such behavior is the evaporation which accompanies
any excess species in the forming droplet.

We show in Fig. 7 the density profiles for one such
self-bound droplet corresponding to R = 105 a0 and a12 =
−75 a0. The total number of atoms contained in the droplet
is N ∼ 3.5×106. Figure 8 shows the droplet energy per atom
E/(N1 + N2) for different a12 values. The crossing with the
E = 0 line marks the critical value of a12 for the formation of
a self-bound droplet.

As discussed previously, self-bound mixtures, when sub-
ject to a tensile stress, might enter the metastable negative-
pressure region and eventually reach the mechanical or dif-
fusive instability line. A way to achieve this experimentally
would be to compress a fairly big self-bound droplet by
applying an external harmonic trap and then let it expand upon
releasing the trap, thus bringing a large portion of the bulk of
the expanding droplet into the negative-pressure region of the
phase diagram (e.g., Figs. 3 and 4).
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FIG. 7. Radial density profiles for the droplet state of the
23Na-87Rb mixture with a12 = −75 a0. Solid line corresponds to the
total density; dashed and dotted lines correspond to 23Na (n1) and to
87Rb (n2), respectively. Densities and lengths are expressed in units
of a−3

0 and a0, respectively, where a0 is the Bohr radius.

We have simulated this process numerically, using the
time-dependent version of the EL equations governing the dy-
namics of the mixed droplets. Here we consider a self-bound
droplet of radius R = 105 a0, made of 2.7×106 Na atoms
and 3.6×106 Rb atoms, interacting with a12 = −80 a0 and
subject to the compression exerted by an external isotropic
harmonic potential with frequency ω = 2π×400 Hz. As a
result, we observe, after the trap release, a sudden expansion
of the compressed droplet accompanied by the formation of
well-separated radial shells and the fragmentation of the latter
into smaller radially distributed clusters, each characterized
by the same relative composition of the original droplet.
After such initial expansion, the collection of fragments con-
tracts, eventually leading to a radial oscillation of the whole
structure. Several snapshots taken during such evolution are
shown in Fig. 9. Note that symmetry breaking of the densities
of the emerging fragments occurs in spite of the spherical
symmetry of the initial configuration and contact atom-atom
interactions, which is a common manifestation of modulation
instability against azimuthal perturbations.

The details of the fragmentation process depend on the
amount of the initial compression. A gentle squeezing of the
droplet leads instead to the excitation of an intrinsic mode
of the droplet in the form of a breathing oscillation, whose

FIG. 8. 23Na-87Rb droplet total energy per atom (in atomic units)
as a function of a12 (expressed in units of the Bohr radius a0). The
solid line is drawn to guide the eye.

FIG. 9. Selected frames (from left to right, from top to bottom)
during the real-time evolution of an initially compressed self-bound
23Na-87Rb droplet. Color map represents the total density (in units
of 10−9a−3

0 ). The x and y axes show lengths, in units of the Bohr
radius a0.

frequency depends upon the incompressibility of the mixture,
given by Eq. (17).

VI. VORTICES

Finally, we briefly address vortical states in mixed self-
bound droplets. In particular, we study the stationary states
where a singly quantized vortex and a doubly quantized vortex
are nucleated in the center of the droplet. Vortical states in
self-bound droplets have been studied recently in dipolar Bose
droplets [36] and found to be unstable as a consequence of the
very anisotropic nature of such droplets. The spherical mixed
Bose droplets studied in our work, however, might sustain
stable vortices. Swirling self-bound droplets made of Bose
mixtures have been studied recently in Ref. [37], where it was
found that self-trapped vortex “tori” with double vorticity are
stable topological defects when the droplet exceeds a certain
critical size.

We consider first a 23Na-87Rb droplet of radius R =
2×105 a0 for a12 = −75 a0, and imprint on each component
a vortex with quantization number m by multiplying the pure
droplet wave function by a phase factor eimφ , with φ being
the azimuthal angle, and evolve this initial configuration in
imaginary time until a stable structure is found. A singly
(doubly) quantized vortex is shown in the top left(right) panel
of Fig. 10.

We have studied the dynamical stability of these two con-
figurations by evolving them in real time after a quadrupolar
perturbation has been added to the droplet by multiplying its
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FIG. 10. From left to right, from top to bottom: (i) singly quan-
tized vortex in a 23Na-87Rb droplet; (ii) doubly quantized vortex;
(iii),(iv) two-vortex structure resulting from the dynamical decay of
(ii). (iii) and (iv) are taken at different times during the evolution
initiated from (ii) and shows the apparent rotation (counterclockwise)
of the droplet and vortices system. Color map represents the total
density (in units of a−3

0 ). The x and y axes show lengths, in units of
the Bohr radius a0.

wave function by the phase eiεxy (note that this adds kinetic
energy but not angular momentum to the system). We have
chosen the small constant ε such that the applied perturbation
increases the kinetic energy of the system by a few percent.

While the singly quantized vortex is robust against
quadrupolar perturbation, we have found that the doubly
quantized vortex rapidly decays into a pair of singly quantized
vortices. Such vortices are shown in the bottom panels of
Fig. 10. As a result of the angular momentum associated with
the two vortices, the vortex dimer rotates as a rigid body
around the center of mass of the droplet.

The velocity field associated with the added quadrupolar
phase, together with the angular momentum stored in the
doubly quantized vortex, result in surface capillary waves,
which distort the droplet surface and are responsible for the
apparent rotation of the droplet as a whole [38], as shown
in the bottom panels of Fig. 10. In this particular case, the
vortex dimer appears to rotate with a frequency ω = 3×1015

a.u. It is worth mentioning that at variance with vortices
and vortex arrays in expanding unbound condensates, these
vortical configurations are stable and similar to those recently
found in rotating 4He droplets [39,40]. A more systematic
study of vortex arrays in self-bound droplets and the merging
of droplets hosting vortices is currently underway [41].

A qualitatively similar behavior is observed for the
39K-39K mixed droplet under similar conditions. Figure 11
shows the fate of a doubly quantized vortex in a K-K droplet
subject to the same perturbation described previously. The
vortex decays in a close pair of singly quantized vortices, as
shown in the lower panels of Fig. 11 resembling a partially
fused vortex dimer. Yet, these results seem to indicate that
under suitable conditions, the m = 2 vortex may represent a

FIG. 11. From left to right, from top to bottom: (i) singly quan-
tized vortex in a 39K-39K droplet; (ii) doubly quantized vortex;
(iii),(iv) distorted-core structure resulting from the dynamical evo-
lution of (ii). (iii) and (iv) are taken at different times during the
evolution initiated from (ii) and shows the apparent rotation (coun-
terclockwise) of the droplet and core system. Color map represents
the total density (in units of a−3

0 ). The x and y axes show lengths, in
units of the Bohr radius a0.

robust, stable topological defect in mixed Bose droplets, as
indeed found in Ref. [37].

VII. SUMMARY AND OUTLOOK

We have investigated the zero-temperature phase diagram
of self-bound ultradilute bosonic mixtures made of two dif-
ferent species within the DFT-LDA approach, providing an
explicit expression for the Lee-Huang-Yang correction in
this general case. We determined the general thermodynamic
conditions which permit the formation of self-bound systems.
To this end, we have obtained simple expressions to calculate
the mechanical and diffusive spinodal lines. We have shown
that depending on the mixture, the thermodynamic condition
that limits its stability may be either of the spinodal lines,
and found, in agreement with previous work on equal species
mixtures, that the region of stability in the (n1, n2) plane of
compositions is extremely narrow.

The appearance of self-bound droplets implies the exis-
tence of a surface tension, at variance with most cold gases,
which are metastable, unbound systems. We have thus calcu-
lated the surface tension of the mixture free surface and the
density profile of some selected droplets. In particular, our
results show that the surface tension changes by orders of
magnitude when the interspecies interaction changes by only
a factor of two.

The realization of stable, self-bound ultradilute mixtures
opens the possibility of studying phenomena that are other-
wise restricted to high densities, strongly correlated super-
fluids, such as liquid helium, and liquid-helium mixtures,
such as, e.g., cavitation [28–30], free-droplet merging [41],
one-dimensional (1D) or 3D droplet collisions, and merg-
ing [42,43] or rotating free droplets [37,39,40]. In a similar
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context, the possibility of creating self-bound Bose-Fermi
droplets [44] opens the possibility to extend to these ultra-
dilute systems the study of, e.g., cavitation [26] and swirling
properties of the prototypical Bose-Fermi quantum mixture,
namely, the 3He-4He fluid mixture [17].
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APPENDIX

We detail in this appendix the derivation of the mechanical
and diffusive spinodal lines. We first calculate the incompress-
ibility of the mixture,

κ = −V

(
∂P

∂V

)
N

= n
∂P

∂n
. (A1)

From Eq. (15),

dP

dV
= − dE

dV
+ n1

dμ1

dV
+ μ1

dn1

dV
+ n2

dμ2

dV
+ μ2

dn2

dV

= n1
dμ1

dV
+ n2

dμ2

dV
. (A2)

Using Eq. (13), one finds

V
dP

dV
= −

[
n2

1

(
g11 + ∂2ELHY

∂n2
1

)
+ n2

2

(
g22 + ∂2ELHY

∂n2
2

)

+ 2n1n2

(
g12 + ∂2ELHY

∂n1∂n2

)]
. (A3)

Now,

∂2ELHY

∂n2
1

= 8

15π2

(
m1

h̄2

)3/2

g
5/2
11

[
15

4
n

1/2
1 f − 3

g22n2

g11n
1/2
1

∂f

∂x

+ g2
22n

2
1

g2
11n

3/2
1

∂2f

∂x2

]
, (A4)

∂2ELHY

∂n2
2

= 8

15π2

(
m1

h̄2

)3/2

g
1/2
11 g2

22n
1/2
1

∂2f

∂x2
, (A5)

∂2ELHY

∂n1∂n2
= 8

15π2

(
m1

h̄2

)3/2

g
5/2
11 n

1/2
1

[
3

2

g22

g11

∂f

∂x
− g2

22n2

g2
11n1

∂2f

∂x2

]
.

(A6)

Noticing that the terms containing ∂f/∂x and ∂2f/∂x2 in the
second derivatives of ELHY cancel out, i.e.,

n2
1
∂2ELHY

∂n2
1

+ n2
2
∂2ELHY

∂n2
2

+ 2n1n2
∂2ELHY

∂n1∂n2

= 2

π2

(
m1

h̄2

)3/2

(g11n1)5/2 f = 15

4
ELHY, (A7)

one finally finds for κ the expression in Eq. (17).
The diffusive spinodal line,(

∂μ1

∂Y

)
P

= 0, (A8)

can be easily computed by transforming the above equation
using the method of the Jacobians [24]. At constant tempera-
ture, (

∂μ1

∂Y

)
P

= ∂ (μ1, P )

∂ (Y, P )
=

∂ (μ1,P )
∂ (n1,n2 )
∂ (Y,P )
∂ (n1,n2 )

. (A9)

From the definition of the chemical potentials and pressure at
zero T , it is easy to show that

∂ (μ1, P )

∂ (Y, P )
=

n2n2
{[

∂2E
∂n1∂n2

]2 − ∂2E
∂n2

1

∂2E
∂n2

2

}
{
n2

1
∂2E
∂n2

1
+ 2n1n2

∂2E
∂n1∂n2

+ n2
2

∂2E
∂n2

2

} , (A10)

where E is the energy density for the uniform system. Thus the
diffusive spinodal line can be obtained by solving the equation

(
∂2E
∂n2

1

)(
∂2E
∂n2

2

)
=

[
∂2E

∂n1∂n2

]2

, (A11)

or, equivalently, Eq. (19). Notice that from the computing
viewpoint, both spinodals involve the same ingredients.
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