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In a recent experiment [Peng et al., Phys. Rev. A 97, 012702 (2018)], it has been shown that the p-wave
Feshbach resonance can be shifted toward the s-wave Feshbach resonance by a laser field. Based on this
experiment, we study the universal relations and the normal-state properties in an ultracold Fermi gas with
coexisting s- and p-wave interactions under optical control of a p-wave magnetic Feshbach resonance. Within
the operator-product expansion, we derive the high-momentum tail of various observable quantities in terms of
contacts. We find that the high-momentum tail becomes anisotropic. Adopting the quantum virial expansion,
we calculate the normal-state contacts with and without a laser field for 40K atoms using typical experimental
parameters. We show that the contacts are dependent on the laser dressing. We also reveal the interplay of laser
dressing and different partial-wave interactions on various contacts. In particular, we demonstrate that the impact
of the laser dressing in the p-wave channel can be probed by measuring the s-wave contacts, which is a direct
manifestation of few-body effects on the many-body level. Our results can be readily checked experimentally.
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I. INTRODUCTION

The interplay of s- and p-wave interactions can introduce
interesting many-body physics in ultracold Fermi gases [1–6].
Such a scenario exists in the two-component 40K Fermi gases,
where the p-wave Feshbach resonances near 198G are close to
the wide s-wave Feshbach resonance near 202G [7–11]. In the
previous studies, it has been shown that mixed-partial-wave
interactions in such a system can give rise to fermion super-
fluid with hybridized s- and p-wave pairing [2], as well as
the interesting normal-state properties exhibiting the interplay
of s- and p-wave interactions [3]. For a low-dimensional
two-component 40K Fermi gas, the overlap of s- and p-wave
interactions can be tuned by using confinement-induced reso-
nance, which would favor the elusive itinerant ferromagnetism
in certain parameter regimes [4–6].

In a recent experiment [1], the p-wave Feshbach resonance
with the magnetic quantum number mI = 0 is shifted to
overlap with the s-wave resonance via laser dressing (see
Fig. 1). As illustrated in Fig. 1, a laser field is applied to couple
the bound-to-bound transition between the p-wave closed-
channel molecular states with mI = 0,±1 and an excited state
|e〉. While the energy shift is different for molecular states
with different magnetic quantum numbers mI , the p-wave
Feshbach resonances associated with these closed-channel
molecular states are also shifted. The experiment thus offers
an additional control on mixed-partial-wave interactions of
the system, which is bound to give rise to the interesting
many-body physics. As a first attempt at clarifying the impact
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of few-body physics on many-body properties of the system,
we study the universal relations and normal-state properties
in an ultracold Fermi gas with coexisting s- and p-wave inter-
actions near a laser-dressed p-wave Feshbach resonance. We
expect the interplay between laser dressing and mixed-partial-
wave interactions to have interesting effects on the many-body
level, such that contact in the s-wave sector should be affected
by the laser field as well. This is especially interesting as
the s- and p-wave scattering channels are decoupled on the
two-body level.

In dilute atomic gases with short-range interaction poten-
tials, it has been shown that universal behaviors emerge in the
large-momentum limit. Physically, this is because when two
atoms get close, the short-distance many-body wave function
reduces to the two-body solution, yielding universal relations,
as first studied by Tan for a three-dimensional two-component
Fermi gas near an s-wave Feshbach resonance [12–14]. As
a result of the universality, observable thermodynamic quan-
tities such as the high-momentum tail of the momentum
distribution, the radio-frequency (rf) spectrum, the pressure,
and the energy are connected by a set of key parameters called
contacts [12–18]. Recently, much effort has been devoted
to the study of universal relations under a synthetic gauge
field [19–21], with Raman-dressed Feshbach resonance [22],
in low-dimensional atomic gases [23–33], in high-partial-
wave quantum gases [34–40], and in terms of contact matri-
ces [41] and tensors [42]. In particular, the universal relations
for the p-wave Fermi gases have already been experimentally
verified [36].

In this work, adopting the operator-product expansion
(OPE) approach [21,22,33,34,43–52], we derive universal
relations of the system with laser-dressed hybrid interactions.
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FIG. 1. Level scheme for the optical control of p-wave magnetic
Feshbach resonance modulated by a laser beam [1]. Here mI =
0, ±1 denotes the magnetic quantum number. �0 and �±1 are the
effective Rabi frequencies of the laser field coupling states with
mI = 0, ±1, respectively, to the excited state |e〉.

We show that the leading-order terms in high-momentum
tails of the momentum distribution can be expressed by five
contacts, with one laser-field-dependent open-channel con-
tact and four laser-field-dependent closed-channel contacts.
Interestingly, one of the contacts is anisotropic, and the
high-momentum tail in the momentum distribution shows
anisotropic features. Notice that the anisotropy here is not
due to the laser dressing, which does not induce a momentum
transfer. Rather, it comes from the anisotropy of the many-
body system, due to either an anisotropic environment or
spontaneous symmetry breaking [34].

The comparisons between our results and those in previous
studies are as follows.

First, for one-dimensional pure p-wave Fermi gases in a
two-channel model of the previous work [34], there are four
contacts which are similar to our results. We will point out this
in the end of the first paragraph below Eq. (41). In Fermi gases
with s-wave interactions, the leading-order term in the high-
momentum tail should also feature a contact [23]. Therefore,
when one considers a system with mixed-s- and p-wave
interactions, there should be five contacts in the lead-order
terms. In a previous study [3], we also considered contacts
in a system with mixed-s- and p-wave interactions, but in the
absence of laser dressing. The discrepancy lies in the fact that
we have previously neglected the anisotropy associated with a
finite center-of-mass momentum.

Second, anisotropy in contacts can be induced either by
the anisotropic interactions, such as the p-wave interaction
or by finite center-of-mass momentum. The former has been
discussed in previous works [35–40], under which contacts
associated with different magnetic quantum numbers mI be-
have differently. The latter has been discussed, for example,
in Ref. [34], where the contact in the q−3 tail (q is the

relative momentum) is anisotropic, and the other contacts
are isotropic. Specifically, what we mainly focus on here is
the anisotropic feature induced by the center-of-mass mo-
mentum. For three-dimensional pure p-wave Fermi gases in
Refs. [35,36], they assumed that the distribution of center-
of-mass momentum is isotropic, so that the contacts which
they obtained do not show an anisotropic feature induced by
the center-of-mass momentum and they did not have the q−3

tail. Reference [37] just considered the zero center-of-mass-
momentum case, which does not show an anisotropic feature
induced by the center-of-mass momentum. Reference [38]
calculated only the leading order term (q−2 tail) of the high-
momentum distribution in three-dimensional pure p-wave
Fermi gases, and it does not show an anisotropic feature
induced by the center-of-mass momentum.

We then calculate the normal-state contacts and spectral
function using the quantum virial expansion, both with and
without the laser field for 40K atoms using typical exper-
imental parameters. We find that, with the addition of the
laser dressing in the closed channel of the p-wave interaction,
the s-wave contact significantly decreases around the p-wave
Feshbach resonance. Such a behavior is a direct manifestation
of few-body effects on the many-body level and is useful for
detecting the impact of dressing lasers on the system. Further-
more, the interplay of laser dressing and p-wave interaction
leads to a much larger p-wave contact than the one without
a laser. Additionally, we show the p-wave contacts decrease
very rapidly in the Bose-Einstein condensation (BEC) limit
under the influence of s-wave interaction, which is due to the
interplay of s- and p-wave interactions on the many-body
level as discussed in Ref. [3]. Our results can be readily
checked under current experimental conditions.

The paper is organized as follows: In Sec. II we give
the model Lagrangian density to describe the two-component
ultracold Fermi gas with laser coupling. In Sec. III we present
a brief derivation of the renormalization of bare interactions.
In Sec. IV we calculate the high-momentum distribution
of this system within the OPE quantum field method. In
Sec. V we derive the corresponding universal relations such as
high-frequency rf spectroscopy, adiabatic relations, pressure
relations, and virial theorem for this system. In Sec. VI we
present the formalism of the quantum virial expansion and
express the contacts and the spectral function in the normal
state up to the second order. In Sec. VII we numerically
evaluate the high-temperature contacts and spectral functions.
We summarize in Sec. VIII.

II. MODEL

We consider a two-component Femi gas close to an s-
wave Feshbach resonance. One of the spin components is
also close to a laser-dressed p-wave Feshbach resonance, as
illustrated in Fig. 1. Physically, the closed-channel molecular
states with different mI should feel a different laser-induced
energy shift, which would lead to a state-dependent shift in
the corresponding self-energies of the system Lagrangian.
The local Lagrangian density (at coordinate R) is given by
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L = LA + LM + LAM, where [1]

LA =
∑

σ=↑,↓
ψ†

σ

(
i∂t + ∇2

R

2m

)
ψσ − usψ

†
↑ψ

†
↓ψ↓ψ↑, (1)

LM =
∑
mI

ϕ†
mI

[
i∂t + ∇2

R

4m
− νmI

− �mI
(R)

]
ϕmI

, (2)

LAM = −
∑
mI

gmI√
2

(
ϕ†

mI
YmI

+ Y†
mI

ϕmI

)
. (3)

Here the self-energy in coordinate space is [53]

�mI
(R) = |�mI

|2
4
(
i∂t + ∇2

R
4m

− νe + δmI
+ i

γe

2

) , (4)

YmI
=−1

2

∑
α

√
3

4π
Cα,mI

[(i∇αψ↑)ψ↑−ψ↑(i∇αψ↑)], (5)

ψσ (σ =↑,↓) denotes the open-channel fermionic atom-field
operator, ϕmI

denotes the field operator for the closed-channel
molecule in ground state |g〉 with the magnetic quantum
number mI = 0,±1, and α = x, y, z denotes the direction
of spin polarization. Cα,mI

are the coefficients when trans-
forming kα/k to the p-wave spherical harmonics Y1,mI

(k̂),
which satisfies

∑
α

√
3/(4π )Cα,mI

kα = kY1,mI
(k̂). There-

fore, Cx,0 = Cy,0 = 0, Cz,0 = 1; Cx,±1 = ∓1/
√

2, Cy,±1 =
−i/

√
2, Cz,±1 = 0. R is the center-of-mass coordinate, t is

the time, m is the atom mass, us is the s-wave bare coupling
between two fermionic atoms, gmI

is the p-wave bare cou-
pling between two fermionic atoms and a bosonic molecule,
and νmI

is the bare magnetic detuning. The difference in the
energy levels of atoms and excited molecules is denoted by
νe. �mI

is the strength of the effective laser-induced coupling
between the molecular ground state |g〉 and excited state
|e〉. δmI

≡ 2π (ωL − ωe,mI
) is the detuning of the laser light

with respect to the energy difference between the ground and
excited states of molecules. ωL is the frequency of the laser
light, and ωe,mI

is the energy difference between the ground
and excited states of molecules. The spontaneous decay of the
excited molecular state |e〉 is treated phenomenologically by
a decay rate γe. The natural units h̄ = kB = 1 will be used
throughout the paper.

Accordingly, we can write the Hamiltonian in momentum
space from the Lagrangian by the Legendre and Fourier
transformations

H −
∑

σ=↑,↓
μσNσ = HA + HM + HAM, (6)

HA =
∑

k,σ=↑,↓
a
†
k,σ

(
k2

2m
−μσ

)
ak,σ

+ us

V

∑
Q′,k,k′

a
†
Q′
2 +k,↑a

†
Q′
2 −k,↓a Q′

2 −k′,↓a Q′
2 +k′,↑, (7)

HM =
∑
Q,mI

b
†
Q,mI

[
Q2

4m
+ νmI

− 2μ↑ + �mI
(q0, Q)

]
bQ,mI

,

(8)

HAM =
∑

Q,k,mI

gmI√
2V

k
[
Y1,mI

(k̂)b†Q,mI
a Q

2 +k,↑a Q
2 −k,↑

+ Y ∗
1,mI

(k̂)a†
Q
2 −k,↑a

†
Q
2 +k,↑bQ,mI

]
, (9)

where the self-energy in momentum space is

�mI
(q0, Q) = |�mI

|2
4
(
q0 − Q2

4m
− νe + δmI

+ i
γe

2

) , (10)

ak,σ (a†
k,σ ) is the annihilation (creation) field operator of Fermi

atom in momentum space, bQ,mI
(b†Q,mI

) is the annihilation
(creation) field operator of ground-state bosonic molecule
in momentum space, Q is the center-of-mass momentum,
q0 = Q2/(4m) + k2/m is the total incoming energy, V is the
volume of the system, μσ is the fermionic chemical potential
with spin σ , and the particle numbers are given by N↑ =∑

k a
†
k,↑ak,↑ + 2

∑
Q,mI

b
†
Q,mI

bQ,mI
and N↓ = ∑

k a
†
k,↓ak,↓.

III. INTERACTION RENORMALIZATION

In this section, we will renormalize the bare interactions
in the s- and p-wave channels, respectively. On the two-
body level, different partial-wave scattering channels are de-
coupled. Therefore, the renormalization can be performed
independent for these two cases.

A. s wave

In s-wave case, we consider zero total momentum for
each pairing state, so that an incoming state can be set as
|Is〉 = |k,↑; −k,↓〉 with two fermions of different species
having momentum k and −k to an outgoing state |Os〉 =
|k′,↑; −k′,↓〉 with two fermions having momentum k′
and −k′.

As shown in Fig. 2, the two-body T matrix for the s-wave
interaction is given by [54]

−iT
(s)

k,k′ (k) = −ius

1 − (−ius )�s (k)
, (11)

where the polarization bubble for s wave is

�s (k) =
∫

d3p
(2π )3

i

k2/m − p2/m + i0+

= im

2π

(
− ik

2
− �

π

)
. (12)

FIG. 2. Diagram for calculating the T matrix for s-wave interac-
tion. Single lines denote the bare atom propagators G(0). The green
square represents the T matrix: −iT

(s )
k,k′ . The green dot represents the

interaction vertex: −ius .
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FIG. 3. Diagram for calculating the T matrix for p-wave interac-
tion. Single lines denote the bare atom propagators G(0), double lines
denote the bare molecule propagators D(0)

mI
, and the bold one denotes

the renormalized molecule propagators DmI
. The blue square repre-

sents the T matrix: −iT
(mI )

k,k′ . The blue dot represents the interaction

vertex: (−igmI
/
√

2)kY1,mI
(k̂).

The s-wave scattering length is given by

as = m

4π
T

(s)
k,k′ (k = 0) = m

4π

1
1
us

+ m�
2π2

, (13)

where � is an ultraviolet momentum cutoff.
Further, we get the renormalization relation

1

us

= m

4πas

− m�

2π2
. (14)

B. p wave

We consider an incoming state |Ip〉 = |Q/2 + k,↑; Q/2 −
k,↑〉 with two fermions of different species having mo-
mentum Q/2 + k and Q/2 − k to an outgoing state |Op〉 =
|Q/2 + k′,↑; Q/2 − k′,↑〉 with two fermions having mo-
mentum Q/2 + k′ and Q/2 − k′.

As shown in Fig. 3, the two-body T matrix for p-wave
interaction is given by [54–58]

−iT
(mI )

k,k′ (k) = 2D(0)
mI

(k)

(−igmI√
2

)2

k2Y1,mI
(k̂)Y ∗

1,mI
(k̂′)

+ 2D(0)2
mI

(k)

(−igmI√
2

)4

2�mI
(k)k2Y1,mI

(k̂)

×Y ∗
1,mI

(k̂′) + · · ·

= 2DmI
(k)

(−igmI√
2

)2

k2Y1,mI
(k̂)Y ∗

1,mI
(k̂′),

(15)

where the factor 2 in front of D(0)
mI

(k) comes from the scat-
tering of two identical fermions [36,54], the bare molecule
propagator is

D(0)
mI

(k) = i

k2/m − νmI
− �mI

(k) + i0+ , (16)

the polarization bubble is

�mI
(k) =

∫
d3p

(2π )3

ip2|Y1,mI
(p̂)|2

k2/m − p2/m + i0+

= i

4π

(
−m�3

6π2
− m�k2

2π2
− imk3

4π

)
, (17)

and the full molecule propagator DmI
(k) satisfies

D−1
mI

(k) = [
D(0)

mI
(k)

]−1 − 2

(−igmI√
2

)2

�mI
(k). (18)

In the absence of optical field, i.e., �mI
= 0, the p-wave

scattering amplitude is given by

fp(k, k′) = − m

4π

∑
mI

T
(mI )

k,k′ (k)

=
∑
mI

4πk2Y1,mI
(k̂)Y ∗

1,mI
(k̂′)

−1/υ̃mI
− k2/R̃mI

− ik3
, (19)

where υ̃mI
is the p-wave scattering volume and R̃mI

is the
p-wave effective range. Further, we have the renormalization
relations [10,11,36]

νmI

g2
mI

= ν̃mI

g̃2
mI

+ m�3

24π3
, (20)

1

g2
mI

= 1

g̃2
mI

− m2�

8π3
, (21)

where ν̃mI
/g̃2

mI
and 1/g̃2

mI
are renormalized in the form of

ν̃mI

g̃2
mI

= − m

16π2υ̃mI

, (22)

1

g̃2
mI

= m2

16π2R̃mI

. (23)

In the presence of optical field, the p-wave scattering
volume is

1

υmI

= − 16π2

mg2
mI

[
νmI

− |�mI
|2

4
(
νe − δmI

− i
γe

2

)
]

+ 2�3

3π
, (24)

and the p-wave effective range is

1

RmI

= 16π2

m2g2
mI

[
1 + |�mI

|2
4
(
νe − δmI

− i
γe

2

)2

]
+ 2�

π
. (25)

Notice that, in the section of numerical calculations, we use a
large detuning, i.e., νe � δmI

[1].

IV. MOMENTUM DISTRIBUTION

In this section, we study the tail of the momentum distribu-
tion for fermions with coexisting s- and p-wave interactions
near a laser-dressed p-wave Feshbach resonance using the
quantum field method of OPE [21,22,33,34,43–52].

OPE is an ideal tool to explore short-range physics. Fur-
thermore, OPE is an operator relation that the product of two
operators at small separation can be expanded in terms of the
separation distance and operators, which can be interpreted
as a Taylor expansion for the matrix elements of an operator.
Therefore, one can expand the product of two operators as

ψ†
σ

(
R − r

2

)
ψσ

(
R + r

2

)
=

∑
n

Cn(r)On(R), (26)

where On(R) are the local operators and Cn(r) are the
short-distance coefficients. Cn(r) can be determined by
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calculating the matrix elements of the operators on both
sides of Eq. (26) in the two-body state |k,↑; −k,↓〉 for s-
wave interaction and |Q/2 + k,↑; Q/2 − k,↑〉 for p-wave
interaction.

By using the Fourier transformation on both sides
of Eq. (26), we have the expression of momentum
distribution [46]

nσ (q) =
∫

d3R
V

∫
d3re−iq·r

〈
ψ†

σ

(
R − r

2

)
ψσ

(
R + r

2

)〉
,

(27)

where q is the relative momentum.
In the following subsections, we will show the calculations

for the momentum distribution n↑(q), for instance.

A. s-wave channel

As shown in Figs. 4(a)–4(d), there are four types of di-
agrams which can be used to denote the operators on the

(a) (b)

(c) (d)

FIG. 4. Diagrams for matrix elements of the operator
ψ

†
↑(R − r

2 )ψ↑(R + r
2 ) in s-wave interacting channel. The open dots

represent the operators.

left-hand side of OPE equation (26). However, the only non-
analyticity comes from the diagram as shown in Fig. 4(d).
Therefore, we can evaluate the diagram in Fig. 4(d) as

〈
Os

∣∣∣ψ†
↑
(

R − r
2

)
ψ↑

(
R + r

2

)∣∣∣Is

〉
d

=
∫

d3pdp0

(2π )4

[ − iT
(s)

k,k′ (k)
]2

i3eip·r

[p0 − (−p)2/(2m) + i0+][k2/m − p0 − p2/(2m) + i0+]2

= im2
[
T

(s)
k,k′ (k)

]2

8πk
− r

8π
m2

[
T

(s)
k,k′ (k)

]2 + O(r2) + · · ·. (28)

To match the nonanalytic terms in Eq. (28), we calculate the expectation values of the two-atom operator
〈Os |ψ†

↑(R)ψ†
↓(R)ψ↓(R)ψ↑(R)|Is〉 as shown in Fig. 5:

〈Os |ψ†
↑(R)ψ†

↓(R)ψ↓(R)ψ↑(R)|Is〉 =
∑

j=a,b,c,d

〈Os |ψ†
↑(R)ψ†

↓(R)ψ↓(R)ψ↑(R)|Is〉j = [
1 − iT

(s)
k,k′ (k)�s (k)

]2
. (29)

Substituting Eq. (11) into (29), we have

〈Os |ψ†
↑(R)ψ†

↓(R)ψ↓(R)ψ↑(R)|Is〉 =
[
T

(s)
k,k′ (k)

]2

u2
s

. (30)

B. p-wave channel

Similar to the case of s-wave interaction, we can evaluate the diagram in Fig. 6(d) as〈
Op

∣∣∣ψ†
↑(R − r

2
)ψ↑(R + r

2
)
∣∣∣Ip

〉
d

=
∑
mI

k2Y1,mI
(k̂)Y ∗

1,mI
(k̂′)D2

mI
(k)

(−igmI√
2

)4

×
∫

d3pdp0

(2π )4

2i3p2|Y1,mI
(p̂)|2ei(Q/2+p)·r

[p0 − (Q/2 − p)2/(2m) + i0+][q0 − p0 − (Q/2 + p)2/(2m) + i0+]2

≈ −m2

4π

∑
mI

k2Y1,mI
(k̂)Y ∗

1,mI
(k̂′)D2

mI
(k)

(−igmI√
2

)4

×
[

1

r
+ i3k

2
−k2r− Q2r

24
+

(
i
Q

2
− 3kQr

4

)
P1(Q̂ · r̂)− Q2r

12
P2(Q̂ · r̂) + O(r2) + · · ·

]
,

(31)

where we average over the direction of p as an approximation, q0 = k2/m + Q2/(4m) is the total incoming energy, jl (x) are the
spherical Bessel functions, and Pl (Q̂ · r̂) are the Legendre polynomials.

053621-5



FANG QIN PHYSICAL REVIEW A 98, 053621 (2018)

(a) (b)

(c) (d)

FIG. 5. Diagrams for matrix elements of the two-atom local
operator ψ

†
↑(R)ψ †

↓(R)ψ↓(R)ψ↑(R) and its derivatives.

To match the nonanalytic terms in Eq. (31), we cal-
culate the expectation values of the molecule operator
ϕ
†
mI

(R)ϕmI
(R) as shown in Fig. 7:

〈Op|ϕ†
mI

(R)ϕmI
(R)|Ip〉

= D2
mI

(k)

(−igmI√
2

)2

k2Y1,mI
(k̂)Y ∗

1,mI
(k̂′). (32)

Therefore, we get〈
Op

∣∣∣∣ϕ†
mI

(R)

(
i∂t + ∇2

R

4m

)
ϕmI

(R)

∣∣∣∣Ip

〉

= k2

m
D2

mI
(k)

(−igmI√
2

)2

k2Y1,mI
(k̂)Y ∗

1,mI
(k̂′), (33)〈

Op

∣∣ϕ†
mI

(R)(−i∇R )ϕmI
(R)

∣∣Ip

〉
= QD2

mI
(k)

(−igmI√
2

)2

k2Y1,mI
(k̂)Y ∗

1,mI
(k̂′), (34)〈

Op

∣∣∣∣ϕ†
mI

(R)

(
−∇2

R

4m

)
ϕmI

(R)

∣∣∣∣Ip

〉

= Q2

4m
D2

mI
(k)

(−igmI√
2

)2

k2Y1,mI
(k̂)Y ∗

1,mI
(k̂′). (35)

C. Coexistence of s- and p-wave channels

Matching Eq. (28) and Eq. (31) with Eq. (30) and
Eqs. (32)–(35), we get the momentum distribution n↑(q ) in

(a) (b)

(c) (d)

FIG. 6. Diagrams for matrix elements of the operator ψ
†
↑(R −

r
2 )ψ↑(R + r

2 ) in p-wave interacting channel.

FIG. 7. Diagram for matrix elements of the one-molecule local
operator ϕ†

mI
(R)ϕmI

(R) and its derivatives.

the large q-limit (n1/3 � q � 1/r0 with n the total number
density and r0 the interaction range)

n↑(q) = Ca

q4V
+

∑
mI

Cυ,mI

q2V
−

∑
mI

q̂ · CQ1,mI

q3V

+
∑

mI
[2CR,mI

− CQ2,mI
+ 4CQ2,mI

(q̂ · Q̂)2]

q4V
,

(36)

where the corresponding contacts are defined as

Ca ≡ m2u2
s

∫
d3R〈ψ†

↑(R)ψ†
↓(R)ψ↓(R)ψ↑(R)〉, (37)

Cυ,mI
≡ m2g2

mI

∫
d3R〈ϕ†

mI
(R)ϕmI

(R)〉, (38)

CR,mI
≡ m3g2

mI

∫
d3R

〈
ϕ†

mI
(R)

(
i∂t + ∇2

R

4m

)
ϕmI

(R)

〉
, (39)

CQ1,mI
≡ m2g2

mI

∫
d3R

〈
ϕ†

mI
(R)(−i∇R )ϕmI

(R)
〉
, (40)

CQ2,mI
≡ m3g2

mI

∫
d3R

〈
ϕ†

mI
(R)

(
−∇2

R

4m

)
ϕmI

(R)

〉
. (41)

Notice that the distribution of Q here is anisotropic. There-
fore, we find that CQ1,mI

is anisotropic and the q−3 tail and
part of the q−4 tail of the momentum distribution Eq. (36)
show anisotropic behaviors of center-of-mass momentum Q.
Especially in the previous studies, it has been shown that
the contacts of a similar nature to CQ1,mI

in q−3 tail and
CQ2,mI

in q−4 tail also exist for one-dimensional p-wave
Fermi gases [34].

Note that, if we consider finite total momentum in the
s-wave case, the center-of-mass-momentum-related contacts
will appear in the q−5 and q−6 tails of the high-momentum
distribution [22], where q is the relative momentum. However,
we calculate only the high momentum tails up to q−4, so that
the q−5 and q−6 tails are not included here. Therefore, we
consider only zero total momentum in the s-wave case.

We emphasize that, in our system, the center-of-mass mo-
mentum induces the anisotropic behavior of the contact. Here
only CQ1,mI

in q−3 tail and CQ2,mI
in q−4 tail are both center-

of-mass-momentum and laser dependent, but only CQ1,mI
is

anisotropic. The other three contacts are laser dependent but
not center-of-mass-momentum dependent.

As the adiabatic relations shown in the next section, Ca ,
Cυ,mI

and CR,mI
are associated to the inverse of s-wave
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scattering length, the inverse of p-wave scattering volume,
and the inverse of p-wave effective range. The last two
contacts CQ1,mI

and CQ2,mI
are related to the velocity and the

kinetic energy of the closed-channel molecules, respectively.
A simple physical picture to describe the anisotropic be-

havior of the contact is as follows. The contact is a many-
body physical quantity which bridges the few- and many-body
physics. Therefore, the anisotropic behavior of the contact
is dependent on both the center-of-mass momentum and the
anisotropy of the many-body wave function of the system.
For example, a finite anisotropic contact can be probed in
the Fulde-Ferrell state which supports a finite-momentum
two-body bound state and pairing superfluidity [22]. Specif-
ically, the anisotropic contact induced by the center-of-mass
momentum appears only in the subleading tails of the pure s-
and pure p-wave high-momentum distributions, respectively.

We should clarify that, in this system, the center-of-mass
momentum is a good quantum number, and the Galilean
invariance is not broken. Therefore, the high-momentum tail
in the presence of the finite center-of-mass momentum can be
obtained by doing a frame transformation from the center-of-
mass frame. For concreteness, we explicitly assume that the
system has a distribution of the center-of-mass momentum,
which accounts for the anisotropy in the high-momentum tail.

For simplicity, in our model, we assume that the p-wave in-
teraction exists only between two spin-up fermions, and there
is no interaction between two spin-down fermions. Therefore,
the momentum distribution for the spin-down fermions has

only the s-wave contact.

n↓(q) = Ca

V q4
. (42)

V. UNIVERSAL RELATIONS

In this section, we derive the corresponding universal rela-
tions.

A. High-frequency radio-frequency spectroscopy

The rf spectroscopy can be used as an important exper-
imental tool to detect the contacts [35,59–62]. The high-
frequency tails of the rf spectroscopy are governed by con-
tacts. The rf with frequency ω is applied to transfers fermions
from the internal spin state |σ 〉 (σ =↑,↓) into a third spin
state |3〉. The resultant number of the atoms transferred to
state |3〉 is proportional to the transition rate, which is given
by [60,61]

�rf,σ (ω) = �2
rf Im i

∫
d3R

∫
dteiωt

∫
d3r

×
〈
T O†

σ3

(
R + r

2
, t

)
Oσ3

(
R − r

2
, 0

)〉
, (43)

where �rf is the rf Rabi frequency determined by the strength
of the rf signal, Oσ3(r, t ) ≡ ψ

†
3 (r, t )ψσ (r, t ), and T is the

time-ordering operator.
We can evaluate the diagram in Figs. 8(a) and 8(b) as

∫
dteiωt

∫
d3r

〈
Os

∣∣∣T O†
σ3

(
R + r

2
, t

)
Oσ3

(
R − r

2
, 0

)∣∣∣Is

〉

=
∫

d3pdp0

(2π )4

i4
[ − iT

(s)
k,k′ (k)

]2

[p0−(Q/2 − p)2/(2m) + i0+][q0−p0−(Q/2 + p)2/(2m) + i0+]2[q0−p0 + ω−(Q/2 + p)2/(2m) + i0+]

= m3
[
T

(s)
k,k′ (k)

]2

4π

{
1

(mω)3/2
+ k2

2(mω)3/2
− 1

2|k|mω
− |k|

(mω)2
+ O[(mω)−5/2] + · · ·

}
, (44)∫

dteiωt

∫
d3r

〈
Op

∣∣∣T O†
↑3

(
R + r

2
, t

)
O↑3

(
R − r

2
, 0

)∣∣∣Ip

〉

=
∑
mI

k2Y1,mI
(k̂)Y ∗

1,mI
(k̂′)D2

mI
(k)

(−igmI√
2

)4

×
∫

d3pdp0

(2π )4

2i4p2|Y1,mI
(p̂)|2

[p0−(Q/2−p)2/(2m) + i0+][q0−p0−(Q/2 + p)2/(2m) + i0+]2[q0−p0 + ω−(Q/2 + p)2/(2m) + i0+]

=
∑
mI

k2Y1,mI
(k̂)Y ∗

1,mI
(k̂′)D2

mI
(k)

(−igmI√
2

)2 m3g2
mI

16π2

{
1

(mω)1/2
+ 3k2

2(mω)3/2
− 3|k|

2mω
− |k|3

(mω)2
+ O[(mω)−5/2] + · · ·

}
.

(45)

Matching Eq. (44) and Eq. (45) with Eq. (30) and Eqs. (32)–(35), we have the rf transfer rate from Eq. (43) in high-frequency
limit (1/(mR2

mI
) � ω � EF with Fermi energy EF = k2

F /(2m) and Fermi wave vector kF ):

�rf,↑(ω) = m�2
rf

4π

{
Ca

(mω)3/2
+

∑
mI

[
Cυ,mI

(mω)1/2
+ 3CR,mI

2(mω)3/2

]}
, (46)

�rf,↓(ω) = m�2
rf

4π

Ca

(mω)3/2
. (47)
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(a) (b)

FIG. 8. Diagrams for the matrix element of∫
dteiωt

∫
d3rT O†

σ3(R + r
2 , t )Oσ3(R − r

2 , 0) (σ = ↑, ↓). (a) the
s-wave case and (b) the p-wave case.

B. Adiabatic relations

With the Hellmann-Feynman theorem and Eqs. (37), (38),
and (39), we obtain the adiabatic relations

∂E

∂a−1
s

= −
∫

d3R
〈

∂L
∂a−1

s

〉
= − Ca

4πm
, (48)

∂E

∂υ−1
mI

= −
∫

d3R
〈

∂L
∂υ−1

mI

〉
= −Cυ,mI

4πm
, (49)

∂E

∂R−1
mI

= −
∫

d3R
〈

∂L
∂R−1

mI

〉
= −CR,mI

4πm
, (50)

where E is the total energy of the many-body system, and we
have used the following relations:

〈
∂L

∂a−1
s

〉
=

〈
∂L
∂us

〉
∂us

∂a−1
s

=mu2
s

4π
〈ψ†

↑(R)ψ†
↓(R)ψ↓(R)ψ↑(R)〉,

(51)〈
∂L

∂υ−1
mI

〉
=

〈
∂L

∂νmI

〉
∂νmI

∂υ−1
mI

= mg2
mI

16π2
〈ϕ†

mI
(R)ϕmI

(R)〉, (52)

〈
∂L

∂R−1
mI

〉
=

〈
∂L

∂gmI

〉
∂gmI

∂R−1
mI

+
〈

∂L
∂νmI

〉
∂νmI

∂gmI

∂gmI

∂R−1
mI

= mg2
mI

16π2

〈
ϕ†

mI
(R)

(
i∂t + ∇2

R

4m

)
ϕmI

(R)

〉
. (53)

C. Pressure relation

For a uniform gas, the pressure relation can be de-
rived following the expression of the Helmholtz free en-
ergy density F = F/V which can be expressed in terms
of [14,15,22,23,33–35,48]

5F =
∑
mI

(
2T

∂

∂T
+ 3n↓

∂

∂n↓
+ 3n↑

∂

∂n↑

− as

∂

∂as

− 3υmI

∂

∂υmI

+ RmI

∂

∂RmI

)
F . (54)

Using the thermodynamical relations and the adiabatic
relations (48)–(50), we can get the pressure relation as

P = 2

3
E + Ca

12πmasV

+
∑
mI

(
Cυ,mI

4πmυmI
V

− CR,mI

12πmRmI
V

)
, (55)

where P is the pressure density and E is the energy density.

D. Virial theorem

For an atomic gas in a harmonic potential VT =∑
j mω2r2

j /2, the total energy can be expressed in terms
of [14,15,22,23,33–35,48]

E =
∑
mI

(
ω

∂

∂ω
− 1

2
as

∂

∂as

− 3

2
υmI

∂

∂υmI

+ 1

2
RmI

∂

∂RmI

)
E,

(56)

which, together with the Hellmann-Feynman theorem and the
adiabatic relations (48)–(50), gives

E = 2〈VT 〉 − Ca

8πmas

−
∑
mI

(
3Cυ,mI

8πmυmI

− CR,mI

8πmRmI

)
.

(57)

VI. QUANTUM VIRIAL EXPANSION

The idea of the quantum virial expansion is to expand
the thermodynamic quantities in powers of the fugacity zσ =
eβμσ , where β = 1/T and T is the temperature.

In order to investigate the experimental detectable many-
body physics of the above system, we calculate the normal-
state contacts and spectral function of the system by using the
quantum virial expansions [63–84].

A. Thermodynamic potential

To further calculate the normal-state contacts of the sys-
tem, we will first evaluate the thermodynamic potential as
follows.

In our model, two fermionic atoms with spin-↑ species
interact with each other by exchanging a bosonic molecule
as shown in Fig. 3. Therefore, we can write the grand thermo-
dynamic potential of a strongly interacting Fermi gas as (up
to the second order) [72–76]

� = −T
V

λ3
[f5/2(z↑) + f5/2(z↓)

+ 2z↑z↓�b2,s + 2z2
↑�b2,p], (58)

where �b2,s is the second virial coefficient which in-
cludes the s-wave two-body interaction shown in Fig. 2,
�b2,p is the second virial coefficient which includes the
physical p-wave two-body interaction shown in Fig. 3,
λ ≡ √

2π/(mT ) is the thermal de Broglie wavelength,
and fυ (zσ ) = [1/�(υ )]

∫ ∞
0 xυ−1dx/(z−1

σ ex + 1) is the Fermi-
Dirac integral with the gamma function �(υ ) [85].

B. Normal-state contacts

According to the adiabatic relations Eqs. (48)–(50), the
contacts can also be expressed in term of the grand thermo-
dynamic potential � [76,86]:

Ca = −4πm

(
∂�

∂a−1
s

)
T ,V,μ↑,μ↓

, (59)

Cυ,mI
= −4πm

(
∂�

∂υ−1
mI

)
T ,V,μ↑,μ↓

, (60)

CR,mI
= −4πm

(
∂�

∂R−1
mI

)
T ,V,μ↑,μ↓

. (61)
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(a) (b)

FIG. 9. Lowest order diagram for the self-energy for (a) the s-
wave interaction and (b) the p-wave interaction, respectively. The
fermion propagator line with n vertical dashes denotes the nth-order
contribution G(0,n)

σ in Eq. (62). Unlike the Feynman diagrams in the
above figures, here, the green square with T inside represents the
Ts matrix: T

(s )
p,p′ and the blue square with T inside represents the Tp

matrix: T
(mI )

p,p′ .

C. Self-energy

In order to calculate the normal-state self-energy, we first
expand the noninteracting fermionic Green’s function in pow-
ers of the fugacity zσ = eβμσ [64–68]

G(0)
σ (k, τ ) = eμσ τ

∑
n≥0

G(0,n)
σ (k, τ )zn

σ , (62)

where G(0,0)
σ (k, τ ) = −�(τ )eμσ τ , G(0,n)

σ (k, τ ) =
(−1)n−1e−εkτ e−εknβ with n ≥ 1, �(τ ) is the Heaviside
function, εk = k2/(2m), and τ is the imaginary time.

According to the Feynman diagram shown in Fig. 9, the
lowest order of the self-energies for the s- and p-wave inter-
actions are, respectively,

�(s)
σ (k, τ ) =

∫
d3P

(2π )3
eμσ τ

[
G(0,1)

σ (k,−τ )zσ

]
T

(s)
p,p′ (P, τ ),

(63)

�(p)
mI

(k, τ ) =
∫

d3P
(2π )3

eμ↑τ [G(0,1)
↑ (k,−τ )z↑]T (mI )

p,p′ (P, τ ),

(64)

where

T
(s)

p,p′ (P, τ ) = e− P 2

4m
τ

∫ γ+i∞

γ−i∞

dz

2πi
e−τz 4π/m

a−1
s − √−mz

, (65)

T
(mI )

p,p′ (P, τ ) = e− P 2

4m
τ

∫ γ+i∞

γ−i∞

dz

2πi
e−τz

× 16π2zY1,mI
(p̂)Y ∗

1,mI
(p̂′)

υ−1
mI

+ R−1
mI

mz − mz
√−mz

, (66)

with the complex z = Re(z) + i0+.
Therefore, we derive the retarded self-energy for spin σ as

�
(R)
↑ (k, E↑) = �

(s)
↑ (k, E↑) +

∑
mI

�(p)
mI

(k, E↑)

= z↑[F (s)(k, E↑) + F (p)(k, E↑)]

+ z2
↑[H (s)(k, E↑) + H (p)(k, E↑)], (67)

�
(R)
↓ (k, E↓) = �

(s)
↓ (k, E↓)

= z↓F (s)(k, E↓) + z2
↓H (s)(k, E↓), (68)

where Eσ = ω + μσ + i0+, F (s)(k, Eσ ), F (p)(k, Eσ ),
H (s)(k, Eσ ), and H (p)(k, Eσ ) are given in the Appendix.

D. Normal-state spectral function

We calculate the spectral function as [65–68]

Aσ (k, Eσ ) = − 1

π
Im

[
G(R)

σ (k, Eσ )
]
, (69)

where the retarded Green’s function is given by

G(R)
σ (k, Eσ ) = 1

Eσ − k2/(2m) − �
(R)
σ (k, Eσ )

. (70)

VII. NUMERICAL RESULTS

For the numerical calculations, we take the atom density
n = 1.50 × 1013 cm−3 [8]. For 40K atoms, we have the exper-
imental parameters δμmI

= 0.134μB with the Bohr magneton
μB [7–10].

The s-wave scattering length as is given by [7–10]

as = abg

(
1 − �s

B − B0,s

)
, (71)

where B0,s = 202.1G, abg � 174a0, a0 is the Bohr radius, and
�s � 8.0G.

In absence of the laser field, the p-wave scattering volume
can be conveniently calculated using [10,11,36]

υ̃mI
= υ̃ (bg)

mI

(
1 − �mI

B − B0,mI

)
, (72)

where υ̃
(bg)
mI =0 = (101.6a0)3, υ̃

(bg)
mI =±1 = (96.74a0)3,

�mI =0 = 21.95G, �mI =±1 = 24.99G, B0,mI =0 = 198.8G,
and B0,mI =±1 = 198.3G.

The p-wave effective range in absence of the laser field
is [10,11,36]

1

R̃mI

= 1

R̃
(bg)
mI

(
1 + B − B0,mI

�R,mI

)
, (73)

where R̃
(bg)
mI =0 = 47.19a0, R̃

(bg)
mI =±1 = 46.22a0, �R,mI =0 =

−18.71G, and �R,mI =±1 = −22.46G.
In presence of the laser field, we consider the typical

experimental values γe = 2π × 6MHz, δ0 = −1.55G Hz,
δ±1 = −2.90G Hz, �0 = 2π × 57.14MHz, �±1 = 2π ×
32.95MHz, BmI =0 = 201.6G, and BmI =±1 = 198.8G [1].

Here BmI =0 = 201.6G is much closer to the s-wave Fesh-
bach resonance B0,s = 202.1G than BmI =±1 = 198.8G. Ac-
cordingly, we calculate the contacts Cυ,mI

and CR,mI
with

mI = 0, for instance.

A. Contacts

Figures 10(a)–10(c) show the contacts of 40K atoms as
functions of the magnetic field magnitude changing from
191G to 205G across the laser-dressed p-wave resonance at
a given temperature T = 6TF � 2.1μK [87,88], spin polar-
ization P = 0.1, and mI = 0. The red (dark gray) lines are
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FIG. 10. Contacts Ca , Cυ,0 and CR,0 for 40K atoms as functions of the magnetic field magnitude changing from 191G to 205G across
the laser-dressed p-wave resonance at a given temperature T = 6TF , spin polarization P = 0.1, and mI = 0. The red (dark gray) lines are
calculated under the laser dressing, while the green (light gray) lines are calculated in the absence of the laser. The solid lines denote the results
with coupling of s- and p-wave, the dashed lines denote the results of pure p-wave, and the dot-dashed black line denotes the result of pure
s-wave. Parameters used for the plots are given in the main text.

calculated under the laser dressing, while the green (light
gray) lines are calculated in the absence of the laser. The
solid lines denote the results with coupling of s- and p-wave,
the dashed lines denote the results of pure p-wave, and the
dot-dashed black line denotes the results of pure s-wave.

According to the laser-dressed p-wave interaction, the s-
wave contact Ca with laser dressing significantly decreases
around the p-wave Feshbach resonance 198G as shown in
Fig. 10(a). Such a behavior is a direct manifestation of
few-body effects on the many-body level, and is useful for
detecting the impact of dressing lasers on the system.

Second, Figs. 10(b) and 10(c) show that the magnetic field
points for the maximum values of Cυ,0 and |CR,0| with laser
are closer to the laser-dressed p-wave resonance 201.6G than
the corresponding results without laser, and the maximum
values of Cυ,0 and |CR,0| with laser are much larger than the
corresponding results without laser. This is according to the
strong interplay of laser dressing and p-wave interaction.

15 20 25
ω/EF

0

0.5

1

1.5

2

2.5

3

3.5

A
↑(0

,ω
)E

F

s+p-laser
p-laser
s+p-no laser
p-no laser

FIG. 11. Spectral function A↑(0, ω) versus ω for 40K atoms at a
given temperature T = 6TF , magnetic field magnitude B = 201G,
spin polarization P = 0.1, and mI = 0. Here we choose θ = 0,
where θ is the angle between momenta p and p′ before and after
the scattering event. The line styles are similar to those in Fig. 10.
Parameters used for the plots are given in the main text.

Third, it is indicated from Figs. 10(b) and 10(c) that the
p-wave contacts Cυ,0 and |CR,0| decrease more rapidly in the
BEC limit under the influence of s-wave interaction, which
is due to the interplay of s- and p-wave interactions on the
many-body level.

B. Spectral function

Figure 11 shows the spectral function of 40K atoms ver-
sus the frequency at a given temperature T = 6TF , mag-
netic field magnitude B = 201G, spin polarization P = 0.1,
and mI = 0.

Similar to the contacts, the spectral function shows a very
obvious laser-dressing effect on the many-body level.

VIII. SUMMARY

We have shown that, in a three-dimensional Fermi gas with
laser-dressed mixed-s- and p-wave interactions, the high-
momentum tail of the density distribution can be charac-
terized by a series of contacts which depend on the laser
dressing. In particular, we find that the contact related to
the velocity of the closed-channel molecules is anisotropic
and the high-momentum tail of the momentum distribution
show anisotropic behaviors of center-of-mass momentum. We
then derive the universal relations and numerically estimate
the high-temperature contacts and spectral function which
show the interplay of laser dressing and different partial-
wave interactions on the many-body level. In particular, the
laser-dressing effect on the contacts and spectral function is
visualized. The results here can be verified in current cold
atom experiments.
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APPENDIX: FUNCTIONS IN SELF-ENERGY

The functions in the self-energy of Eqs. (67) and (68) are given by

F (s)(k, Eσ ) =
∫

d3P
(2π )3

e−βεP−kf (s)

(
Eσ + εP−k − P 2

4m

)
, (A1)

H (s)(k, Eσ ) = −
∫

d3P
(2π )3

e−β P 2

4m h(s)

(
Eσ + εP−k − P 2

4m

)
, (A2)

f (s)(z) = �
(
a−1

s

)
8π

m2as (z − Eb,s )
+ 4

m3/2

∫ ∞

0

√
x dx

(x − Eb,s )(z − x)
, (A3)

h(s)(z) = �
(
a−1

s

)
8πe−βEb,s

m2as (z − Eb,s )
+ 4

m3/2

∫ ∞

0

e−βx
√

x dx

(x − Eb,s )(z − x)
, (A4)

F (p)(k, Eσ ) =
∑
mI

16πY1,mI
(p̂)Y ∗

1,mI
(p̂′)

∫
d3P

(2π )3
e−βεP−kf (mI )

(
Eσ +εP−k− P 2

4m

)
, (A5)

H (p)(k, Eσ ) = −
∑
mI

16πY1,mI
(p̂)Y ∗

1,mI
(p̂′)

∫
d3P

(2π )3
e−β P 2

4m h(mI )

(
Eσ + εP−k − P 2

4m

)
, (A6)

f (mI )(z) = −�
(
υ−1

mI

)
π(

mR−1
mI

)2
υmI

(
z − Eb,mI

) +
∫ ∞

0

m3/2x5/2 dx[(
υ−1

mI
+ R−1

mI
mx

)2 + (mx)3
]
(z − x)

, (A7)

h(mI )(z) = −�
(
υ−1

mI

)
πe−βEb,mI(

mR−1
mI

)2
υmI

(
z − Eb,mI

) +
∫ ∞

0

e−βxm3/2x5/2 dx[(
υ−1

mI
+ R−1

mI
mx

)2 + (mx)3
]
(z − x)

. (A8)

Here Eb,s = −1/(ma2
s ) and Eb,mI

= −RmI
/(mυmI

) are the s- and p-wave two-body bounding energies, respectively.
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