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We numerically obtain the full time-evolution of a parametrically driven-dissipative Bose-Einstein condensate
in an optical cavity and investigate the implications of driving for the phase diagram. Beyond the normal and su-
perradiant phases, a third nonequilibrium phase emerges as a many-body parametric resonance. This dynamical
phase switches between two symmetry-broken superradiant configurations. The switching is accompanied by a
substantial occupation of other momentum states not retained in the mapping to the Dicke model. The emergent
phase shows features of nonintegrability and thermalization.
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I. INTRODUCTION

Quantum light-matter systems present an ideal platform to
study the confluence of many-body physics and time-periodic
modulations [1,2]. High-frequency modulation is an estab-
lished versatile tool to experimentally engineer a wide array of
static Hamiltonians [3–5]. Near-resonant driving, on the other
hand, provides a means of combining unique phenomena
like parametric resonance [6], dynamical localization [7,8],
and collective many-body physics. Though driven interacting
systems tend to heat up [9–11], the interplay between periodic
driving and cooperative effects offers the exciting possibility
of realizing exotic prethermalized steady states.

Superradiant phases are the quintessential example of col-
lective behavior in light-matter systems [12]. The classic
model describing this is the Dicke model [13–16], where
a quantum cavity mode collectively couples to independent
two-level atoms [14–16]. This physics was recently realized
experimentally in a weakly interacting cold bosonic gas cou-
pled to a high finesse optical cavity [17–20], where super-
radiance manifests itself via the spontaneous formation of a
lattice supersolid [21]. Easy implementations of parametric
modulations in a wide range of frequencies makes it the
perfect realistic system in which to study the influence of
drive, interactions as well as dissipation. This is particularly
interesting as parametric modulation of the light-matter cou-
pling in the Dicke model (DM) was shown to generate a
parametric instability [22,23] to an intriguing new phase of
matter, termed the dynamical normal phase (DNP) [23].

In this work, we obtain the phase diagram of a Bose-
Einstein condensate (BEC) in a dissipative optical cavity with
parametrically modulated atom-cavity coupling [see Figs. 1(a)
and 1(b)]. Many-body parametric resonance occurs in this
system resulting in an emergent oscillatory phase of matter. In
this phase, the drive facilitates the dynamical switching of the
system between the two symmetry-broken ordered configura-
tions permitted by the undriven Hamiltonian. This switching

is, however, explicitly forbidden in the static case. Contrary
to standard expectations, this interacting driven-dissipative
system displays heating characteristics which depend on its
phase, further enriching its physics.

This article is structured as follows. In Sec. II we introduce
the model for the coupled BEC-cavity system. In Sec. III we
present the results obtained from numerical simulations and
analytical calculations. In Sec. III A we reproduce the static
phase diagram to benchmark our method and then we obtain
and analyze the dynamic phase diagrams for the parametri-
cally driven system in Sec. III B. Section III C is devoted to
the analysis of the time evolution of the atomic condensate,
while in Sec. III D we investigate the heating characteristics
on the various parametrically driven phases. Last, in Sec. III E
we discuss the limitations of the two-level description in
the many-body parametric resonance phase (MaPaReP). In
Sec. IV we summarize the main findings of our work.

II. MODEL

The BEC comprises N interacting atoms and is disper-
sively coupled to a high-finesse optical cavity with a single
mode of frequency ωc, Fig. 1(a). The atoms of the BEC
have a transition frequency ωa and are coherently driven by
a transverse pump laser of frequency ωp. In the dispersive-
coupling regime, if the atoms are strongly detuned in the rotat-
ing frame, i.e., �a = ωp − ωa is large, one can adiabatically
eliminate the excited atomic levels [24] to obtain the following
effective Hamiltonian for the coupled BEC-cavity system in
the rotating frame:

HBEC =
∫

d3r �̂†(r, t )

{
− h̄2

2m
∇2 + Vtrap(r)

+ U

2
�̂†(r, t )�̂(r, t )

}
�̂(r, t )
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FIG. 1. (a) A BEC in a transversely pumped dissipative cavity, subject to an external harmonic potential of frequency ωx . (b) Laser pump
profile ηp (t ), comprising a ramp up, a sinusoidally modulated plateau and a ramp down. (c) Time evolution of the normalized density ρ(x, t )
(upper panel) and the self-consistent one-body potential V (x, t ) (lower panel) for a time interval of ten units pertaining to the plateau for the
many-body parametric resonance phase (MaPaReP). The maximum value reached by ρ(x, t ) is 0.296. (d) Snapshots of the atomic density
ρ(x, t ) (solid blue line) and one-body potential V (x, t ) (dashed orange line) seen by the atoms in the modulated plateau region. In the upper
panel, the BEC is mostly localized on the even sites of the periodic lattice. In the lower panel, the BEC is mostly localized on the odd sites.
The drive causes atoms of the BEC to oscillate in time between even and odd sites of the periodic lattice in the MaPaReP. A unit of time
corresponds to 0.63 ms, while a unit of length corresponds to 0.48 μm (see Appendix C).

+
∫

d3r �̂†(r, t )

{
h̄

�a

[h2(r, t ) + g2(r)â†â

+h(r, t )g(r)(â + â†)]

}
�̂(r, t ) − h̄�câ

†â. (1)

The atoms in the BEC are described by bosonic field op-
erators �̂ (†)(r, t ) while â† and â describe the cavity mode.
All operators obey bosonic commutation relations. For the
sake of computational simplicity, in the following we re-
strict ourselves to the one-dimensional problem along the
cavity axis x. The atoms are subjected to a harmonic trap-
ping potential Vtrap(x) = mω2

xx
2/2 and interact through short-

range interactions with the strength U = 4πh̄2a/m where
a is the s-wave scattering length and m is the mass of the
atom [25–27].

The atoms are driven by a transverse pump field described
by the mode function h(r, t ) = h(z, t ) = ηp(t ) cos kz while
the cavity mode function is g(r) = g(x) = g0 cos kx. Here ηp

is the pump rate, k is the wavelength of the light, and g0 is the
atom-cavity coupling. The last two terms in the Hamiltonian
describe the atom-cavity interaction. The g2(r) term arises
directly from the cavity mode function while the h(r, t )g(r)
term results from the interference between cavity and pump
fields.

For static pumps a mean-field analysis for large N and
Vtrap(r) = 0 using the Gross-Pitaevskii equation shows a Z2-
symmetry breaking transition; as the pump power increases,
the system goes from a normal phase (NP) with no photons
in the cavity to a superradiant phase (SP), where the cavity
field is a coherent state [17,24,28]. In the SP, the atoms
spontaneously self-organize into either an even or an odd
lattice structure with a spacing λ = 2π

k
[17]. Note that self-

organization has been proposed even in the absence of a cav-
ity [29]. The relevant order parameter is � ≡ 〈ψ | cos kx|ψ〉:
� = 0 in the NP and � �= 0 in the SP. � essentially counts
the population imbalance between odd and even lattice sites

in the SP. The same physics is well described by a mapping to
the DM Hamiltonian which assumes that only the lowest ±k

modes of the atoms are populated [17,28].
In this article, we study the parametrically modulated

system described by the Hamiltonian (1). The time-dependent
pump amplitude in the plateau [see Fig. 1(b)],

ηp(t ) = η0
p[1 + α sin (2πt/T )], (2)

will lead to a new phase of matter. We explicitly include
the cavity dissipation. We consider system parameters which
describe the experimental system studied in Refs. [17,18]
(see also Appendix C). For the considered system, the cavity
dynamics follows that of the atoms closely, because the de-
tuning �a is much larger than the other energy scales. In this
adiabatic limit, it is reasonable to replace â by its expectation
value 〈â〉 ≡ a in the dynamics for the atoms. This cavity
population obeys a dissipative equation of motion with a rate
κ (see Appendix B). We note that, even though semiclassical
approaches in the description of dissipation have been shown
to capture certain features of collective cooling [15,30], this
treatment effectively ignores possible cooling effects induced
by cavity fluctuations. The resulting dynamical evolution
of the atoms is then studied using the multiconfigurational
time-dependent Hartree method for indistinguishable parti-
cles (MCTDH-X) [31–34]; see Appendix A for details. This
method has been very successful in describing the dynamics
of bosonic systems [32–37]. Here we apply the method to a
periodically driven many-body system coupled to an optical
cavity.

III. RESULTS

A. Static phase diagram

As a benchmark, we reproduce the undriven (ηp, �c)-
phase diagram obtained in [17]. We use the time-dependent
transverse pump protocol illustrated in Fig. 1(b) with the
modulation amplitude α = 0 in Eq. (2). At time t = 0, the
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FIG. 2. Phase diagrams of a parametrically driven BEC in a
cavity for N = 1000 bosons. They are superimposed on the average
heating of the system as a function of modulation amplitude α and
period T . The inset shows the undriven phase diagram. The param-
eters for the driven cases in the NP (η0,NP

p = 2π × 3.28 kHz, �c =
−2π × 10.08 MHz; phase diagram in the upper panel) and in the SP
(η0,SP

p = 2π × 4.79 kHz, �c = −2π × 10.08 MHz; phase diagram
in the lower panel) are marked as stars in the inset. In the upper
panel the BEC is driven from the NP and the dashed line, obtained
from the evaluation of �, delineates the NP and the MaPaReP. In
the lower panel the condensate is driven from the SP and the black
region corresponds to the SP while the colored region corresponds
to the MaPaReP. In both diagrams the Arnold tongue corresponds
to the first resonance (n = 1) with a period of T ≈ 1.3 (NP) and
T ≈ 0.65 (SP). In both plots, the black regions indicate no heating
while the colored tiles indicate heating. All quantities shown are
dimensionless; see Appendix C.

cavity is decoupled from the BEC in the trap. As ηp(t ) is
ramped up, and approaches a constant, η0

p, in the plateau we
obtain either the NP where � = 0, or the SP where � �= 0
(see the inset in Fig. 2 and Fig. 7 in the Appendix). For N =
1000, converged results are obtained using the M = 1 or-
bital in the MCTDH-X approach. Contributions from M > 1
orbitals are negligible. For this M = 1 case, MCTDH-X cor-
responds to the mean-field solution obtained using the Gross-
Pitaevskii equation [27]. We verified that our results recover

the scaling invariance under N → N ′ provided g0 →
√

N
N ′ g0,

U → N
N ′ U , and η0

p →
√

N
N ′ η

0
p [24].

B. Parametrically driven system

We now discuss a nonzero modulation α and assess the
nature of the parametrically driven system when it is driven
starting either from the NP or from the SP. For a fixed de-
tuning �c = −2π × 10.08 MHz, we select two representative
points close to the SP-NP phase boundary of the static pump

simulations (see the inset in Fig. 2). Similarly other pairs of
points across the SP-NP phase transition lead to analogous
results. Note that α is chosen to be small enough, so that the
instantaneous ηp(t ) never crosses the static phase boundaries.
In the spirit of standard parametric driving, the modulating
frequency ω ≡ 2π/T is chosen to be close to twice the
gap to the lowest polaritonic excitation in the system. The
approximate polaritonic gap is determined by mapping the
driven BEC-cavity to the DM; see Appendix D. We obtain
two polaritonic modes for each phase [38]: a very high-energy
branch, εNP-SP

+ proportional to �c, and a low-energy branch

εNP-SP
− proportional to the atomic recoil energy 2Er = h̄2k2

m
,

(εNP
− )2 ≈ E2

r

[
1 − (

η0
p/ηp,c

)2]
,

(εSP
− )2 ≈ E2

r

[(
η0

p/ηp,c

)4 − 1
]
.

The energy of the lower polaritonic branch goes to zero at
the QPT where ηp → ηp,c (see inset in Fig. 2). To study the
impact of parametric driving on the atoms, we simulate the
full time evolution of the system as a function of ω starting
from both NP and SP.

Our results for the phase diagram of the modulated BEC-
cavity system as a function of the drive amplitude α and period
T are summarized in Fig. 2, obtained by evaluating the order
parameter �. In the same figure we have also superimposed a
color plot of the time averaged energy profile. In the upper
panel the phase boundary, obtained from the evaluation of
�, is indicated with a white dotted line. The energy of the
BEC substantially increases only for higher values of α.
For the lower panel the transition from low- to high-energy
zones coincides with the phase boundary obtained from �.
Both phase diagrams show the emergence of a many-body
parametric resonance: the static phases display parametric
instability lobes—reminiscent of Arnold lobes for Mathieu
oscillators—for certain resonant values of T [39,40]. This is
related to the fact that in the DM, polaritonic excitations are
effectively described by the physics of two coupled parametric
oscillators; see Appendix D. For certain thermalizing regions
in the phase diagram, however, the mapping to the DM does
not fully characterize the physics, as higher momentum states
are populated [35] (see also Sec. III E). As the parameters
(T , α) are varied, the underlying undriven NP or SP become
unstable and the system transitions to a new phase which we
term the many-body parametric resonance phase (MaPaReP).
In this phase, the order parameter �(t ) shows oscillatory be-
havior in time with zero mean (excluding trap contributions).

The instability lobes seen in Fig. 2 differ greatly from the
standard Arnold lobes for parametric oscillators described by
the Mathieu equation. The periods around which the Arnold
lobes of the BEC-cavity system are centered can be calcu-
lated as follows. In both phases, the dynamics is essentially
governed by a classical Hill equation [39]

ẍ + γ ẋ + [εNP-SP
− (t )]2x = 0, (3)

where γ is some effective damping and εNP-SP
− (t ) ≡

εNP-SP
− (ηp(t )). The parametric resonance condition is deter-

mined by εNP-SP
− (t = 0)/ω = n/2, n ∈ N0 whereas the struc-

ture of the instability lobes is determined by the detailed
form of (εNP-SP

− ). The many-body resonance periods in our
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FIG. 3. Snapshots of the time evolution of the atomic density
(solid blue curves) and of the effective potential (dashed orange
curve) in the many-body parametric resonance phase. The density
is normalized to 1 while the units of time and length are 0.63 ms and
0.48 μm, respectively. The condensate was driven starting from the
(static) normal phase with fixed parameters η0,NP

p = 2π × 3.28 kHz,
�c = −2π × 10.08 MHz. One can clearly appreciate the superlat-
tice switching between odd and even configurations. The driving
from the SP leads to a qualitatively similar superlattice switching
and is therefore not shown. All quantities shown are dimensionless;
see Appendix C for further discussion.

simulations are in good agreement with this simple resonance
condition for n = 1 when the system is driven starting from
the NP or the SP. The resulting lobes are the first instability
lobes and the complex lobe shape in the SP case is qualita-
tively captured by Eq. (3). Higher values of the cavity dissi-
pation κ were found to smoothen the shape of the MaPaReP
lobe (cf. Sec. III D).

C. Time evolution of the atomic density

Insights into the nature of the different phases can be
gained by an analysis of the time-evolved density ρ(x, t ) and
the effective one-body potential V (x, t ) seen by the atoms [see
Figs. 1(c) and 3].

In the NP, the trapped BEC has a Gaussian profile �(t ) ≈ 0
and ρ(x, t ) shows minimal changes as a function of time. The
atomic density profile then looks as in Fig. 3(a).

In the SP, the atoms occupy the sites of the even or the
odd lattice and � shows an oscillatory behavior with nonzero
mean [cf. light blue line in Fig. 4(b)]. Exemplary density
profiles for this phase are shown in Figs. 3(f) and 3(h). The
choice of which superlattice is occupied can be seen as a man-
ifestation of spontaneous symmetry breaking. Throughout the
entire duration of the modulated plateau, the condensate does
not leave the initially “chosen” symmetry subspace and the
only dynamical feature observed is a deepening of the density
minima with increasing pump power. Upon ramping down the
laser pump, the condensate exhibits a quasi-irregular motion,
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FIG. 4. Time evolution of the order parameter and energy for
a system driven from the NP (left panels) and SP (right panels).
Thin lines represent the raw data, while running averages are marked
as thick solid lines. Each panel features one time evolution in the
modulated NP or SP and another one in the corresponding MaPaReP
at higher periods. The driving parameters α and T are (0.005, 1.6)
(light line) and (0.05, 1.35) (dark line) for the left panels, and
(0.04, 1.6) (light line) and (0.096, 1.6) (dark line) for the right
panels. In the driven NP we note that the amplitude of the oscillations
in the raw energy curve is very small and hence they are covered
by their running average (thick dark line). All quantities shown are
dimensionless; see Appendix C.

signaling that it cannot simply go back to the initial Gaussian-
like configuration.

In the modulated plateau region, cf. Fig. 1, the atoms
remain in the lattice configuration chosen by the atoms be-
fore the pump modulation was turned on. In the MaPaReP,
however, the atoms and their potential systematically oscillate
between the even and the odd lattice configurations always
passing through a Gaussian-like distribution [see Figs. 1(c)
and 1(d) and 3(c)–3(h)], hinting at a complex dynamical
particle reconfiguration. The superlattice switching is induced
by a dynamical change in the effective potential, which os-
cillates between an odd and an even configuration [compare,
for example, Figs. 3(f) and 3(h)]. We see that the lattice
contribution to the effective potential seen by the atoms goes
to zero at the point where the atoms transition between the
even and the odd lattice.

As expected from the general solutions of Mathieu-like
equations [39,40], both the density and the one-body potential
oscillate in time not at the underlying driving frequency
[see Fig. 1(c)], but rather aperiodically. As time progresses,
the density peaks in the inequivalent superlattices gradually
become more pronounced [Figs. 3(f)–3(h)], concomitant with
an increase in energy, signaling that the condensate is heating
up.

D. Stability of many-body phases and heating characteristics

We now discuss the stability of the different phases to
heating, which is endemic to periodically driven interacting
systems. In the NP and SP, the energies per particle oscillate
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(aperiodically) in time, but their time averages stay constant
[see Figs. 4(c) and 4(d)]. Earlier works on the closed undriven
Dicke model [38,41] have shown the integrable nature of the
NP and the ergodic nature of the SP. The lack of heating when
modulating the NP is consistent with this integrability. This
hints towards the existence of a generalized Gibbs ensem-
ble [42,43] describing the modulated NP. The fact that the
modulated SP does not heat up at experimentally relevant time
scales does not preclude heating and thermalization at much
longer times not accessed in the simulation.

In the MaPaReP, the system tends to heat up irrespective
of whether it originated from the NP or the SP. The heating
across the entire phase is illustrated by the colored tiling
of the phase diagrams in Fig. 2. Remarkably, the MaPaReP
obtained from the NP (upper panel of Fig. 2) has minimal
heating as compared to the MaPaReP obtained from the SP;
it displays prethermalizationlike plateaus where the average
energy is approximately constant [see thick solid curve in
Fig. 4(c)] and � shows smooth oscillatory behavior. As the
amplitude is gradually increased, the width of the plateaus
shrinks and the condensate thermalizes more quickly. This
rather stable behavior of the MaPaReP should make it easy to
observe experimentally. The time scale over which the system
absorbs energy depends crucially on the static pump rate η0

p,
the amplitude α, and the period T .

The MaPaReP, when obtained from the SP, shows a much
faster thermalization (increase of about 500% in the consid-
ered time interval) to a trivial high-temperature state [see
Fig. 4(d)]. The corresponding order parameter � shows the
even to odd lattice reconfigurations, but is increasingly noisy.
The particularly high heating rate could stem from the un-
derlying ergodic nature of the superradiant phase [38,41].
The jump from the nonheating (SP) to the heating behavior
(MaPaReP) is sharp, suggesting a first-order phase transition.
We find that the energy in the MaPaReP averaged over a
period initially increases linearly with time despite the cavity
dissipation.

We have also explored the robustness of our results to
parameter changes in the system. We have investigated the
stability of parametric resonance lobes with respect to sizable
changes in the dissipation coefficient κ . We have simulated
N = 1000 interacting bosons in a cavity with the same pa-
rameters but different values of κ . The results are shown in
Fig. 5. Besides some slight deformations in the boundaries of
the Arnold tongue, we found no other significant change in the
shape of the lobe, indicating that the many-body resonance is
stable with respect to changes in the dissipation.

Similarly, different values of the cavity-atom coupling
g0 only affect the resonance condition of the instability
lobes [17], shifting them vertically, but do not qualitatively
change their physical picture. Additionally, the qualitative
features of the heating diagrams are found to be insensitive
to changes in the value of the atom contact interaction U for
experimentally relevant ranges, i.e., weakly interacting Bose
gases, both for M = 1 and beyond.

To summarize, heating profiles of the dissipative BEC-
cavity system show an intriguing parametrically induced
crossover between an effective integrability (where the system
does not heat up) and nonintegrability (where the system
heats up). We also reiterate that cavity fluctuations are not
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FIG. 5. Comparison of the parametric resonance (Arnold tongue)
from the SP for different dissipation coefficients: (a) κ = 2π ×
1.3 MHz (value used for the simulations presented in the main text),
(b) κ = 2π × 0.13 MHz, (c) κ = 2π × 0.33 MHz, (d) κ = 2π ×
2.6 MHz. All quantities shown are dimensionless; see Appendix C
for further discussion.

retained in our analysis. This could prevent the activation of
additional channels for cooling and could affect the overall
heating behavior. The intriguing lack of heating in the SP and
the general question of thermalization of the parametrically
driven system merits further analysis, which is beyond the
scope of the work presented here.

E. Limitations of the two-level description in the MaPaReP

In this section, we investigate the validity of the two-level
picture in momentum space for the many-body parametric
resonance phase (MaPaReP). In the regimes where the two-
level description is valid the problem can be mapped to an
effective parametrically driven Dicke model. A breakdown
of the two-level description thus implies the appearance of
physics beyond that of the Dicke model.

In both the normal and superradiant phases, the underlying
physics is well approximated by a truncation of the description
of the atoms to only contain the two lowest momentum
states [17,28,44]. In the NP the momentum density ρ(k, t )
displays a single peak at k = 0, while in the SP it shows two
additional peaks at k = ±kc, where kc ≈ 3.8 is the quasimo-
mentum of the spontaneously generated periodic potential.

While the two-level picture remains approximately valid
for many points in the MaPaReP, the situation changes for
certain thermalizing regions, where higher k modes appear
and the two-level picture breaks down. As presented in Fig. 6,
where we plot the time evolution of ρ(k, t ) for times where
the pump power is modulated in the MaPaReP [cf. Fig. 1(b)],
the heating in the MaPaReP is concomitant with an increasing
population of other momentum states beyond the integrable
subspace of the ±k states [35], such as ±kc/2 and ±3kc/2,
which are not included in the effective Dicke model descrip-
tion. Before the periodic modulation starts the system is un-
driven and in the SP with parameters η0,SP

p = 2π × 4.54 kHz
and �c = −2π × 10.08 MHz. Shortly after the laser modula-
tion starts, apart from the large peak at k = 0 corresponding
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FIG. 6. Breakdown of the two-level picture in momentum space.
Shown is the time evolution of the momentum density ρ(k, t )
for times where the pump power is modulated in the many-body
parametric resonance phase. The condensate was driven starting
from the (static) superradiant phase with fixed parameters η0,SP

p =
2π × 4.54 kHz and �c = −2π × 10.08 MHz. Snapshots for three
different representative times (t = 41, 64, 69) are shown. The time
evolution is characterized by the emergence of peaks around mul-
tiples of ±kc/2 and later at arbitrary positions, signaling a self-
interference of the condensate. All quantities shown are dimension-
less; see Appendix C for further discussion.

to a flat density, ρ(k, t ) shows two sizable side peaks at
k = ±kc and emerging peaks at k = ±kc/2 (see Fig. 6, left
panel). At a later time ρ(k, t ) displays sizable peaks around
k = 0, ±kc/2 and smaller peaks at k = ±kc, ±3kc/2 (see
Fig. 6, middle panel). Even later, ρ(k, t ) develops additional
peaks at momenta which are not integer multiples of ±kc/2,
signaling a self-interference of the condensate. The increasing
population of states beyond momenta ±kc clearly indicates
the inadequacy of the two-level description and hence the
limitation of the mapping to the Dicke model in the MaPaReP.

IV. CONCLUSIONS

We have investigated the full time evolution of a BEC
coupled to a dissipative high-finesse optical cavity subject
to a time-dependent transverse pumping laser power. We
show that in addition to the static normal and superradiant
phases, parametric driving leads to the formation of a new
many-body parametric resonance phase (MaPaReP) where
the atoms switch quasiperiodically between the even- and
odd-symmetric configurations. Such oscillations, which are
explicitly forbidden in the undriven system, herald physics
beyond the Dicke model picture. The boundaries of this dy-
namical phase are delineated by Arnold instability lobes. The
driven NP and SP are resistant to heating—possibly pointing
towards the existence of a generalized Gibbs ensemble and/or
interesting prethermalization regimes. The MaPaReP, instead,
shows prethermalization and eventually thermalizes fully de-
spite the presence of dissipation. Possible future directions of
research include investigations of the nature of the MaPaReP
phase transition, its heating characteristics, analyses of the
correlation functions within the condensate, probing the ef-
fect of fluctuations beyond mean field, and the inclusion of
additional optical potential landscapes to compete with the

MaPaReP. An important outlook would be the generalization
of such switching phases to other symmetry classes.
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APPENDIX

The results of the article are based on the numerical method
and the Hamiltonian described in Secs. A and B of the
appendixes. In Sec. C we discuss the parameters used for
the computations, while in Sec. D we present the mapping of
the driven Bose-Einstein condensate in a cavity to the driven
Dicke model.

APPENDIX A: NUMERICAL METHOD: MCTDH-X

The multiconfigurational time-dependent Hartree method
for indistinguishable particles (MCTDH-X), which we use to
compute the time-evolution of the many-body wave function,
is based on the following ansatz:

|�(t )〉 =
∑

n

Cn(t )|n, t〉. (A1)

|�(t )〉 is written in the basis of symmetrized states (per-
manents) |n, t〉, which consist of products of N particles
in M single-particle functions (orbitals) �i (r, t ), with i =
1, . . . ,M . The number of orbitals M can be chosen at will and
in the limit of M → ∞ the expansion in Eq. (A1) becomes
exact. Note that both the weights Cn(t ) and the permanents
|n, t〉 appearing in Eq. (A1) are explicitly time dependent. We
can express the configurations |n, t〉 as

|n, t〉 =
M∏
i=1

[
(b̂†i (t ))ni

√
ni!

]
|vac〉, (A2)

where the operator b̂
†
i (t ) creates a boson in the ith single-

particle state �i (r, t ) and |vac〉 is the vacuum.
Using the time-dependent variational principle [45] the

time-dependent many-body Schrödinger equation with the
ansatz in Eq. (A1), one finds the following time evolution of
the coefficients {Cn(t )} and orbitals {�i (r, t )}Mi=1:

i∂t |�j 〉 = P̂

⎡
⎣ĥ|�j 〉 + λ0

M∑
k,s,q,l=1

{ρ}−1
jk ρksqlŴsl|�q〉

⎤
⎦, (A3)

i∂tC(t ) = H(t )C(t ). (A4)

These are the coupled equations of motion of the MCTDH-
X [34,36] method. Here, ρkq = 〈�|b̂†kb̂q |�〉 and ρkqsl =
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〈�|b̂†kb̂†s b̂l b̂q |�〉 are the matrix elements of the reduced one-
body and two-body density matrix. The one-body Hamilto-
nian is given by ĥ (see definition in Sec. B) and Ŵsl (r) =∫

dr′�∗
s (r′, t )Ŵ (r, r′, t )�l (r′, t ) are local time-dependent in-

teraction potentials, in which Ŵ (r, r′, t ) is the two-body in-
terparticle interaction, and P̂ is a projection operator onto the
subspace orthogonal to that spanned by the orbitals {�i (r, t )}.
All coefficients {Cn(t )} are collected into the vector C(t ) and
Hn,n′ = 〈n′, t |Ĥ |n, t〉 is the Hamiltonian represented in the
chosen many-body basis. For the details of the derivation of
Eqs. (A3) and (A4), see Refs. [34,36].

APPENDIX B: HAMILTONIAN OF A MANY-BODY
SYSTEM COUPLED TO A SINGLE-MODE CAVITY

When situated inside an optical cavity, the one-body
Hamiltonian ĥ [cf. Eq. (A3)] has the form ĥ = T̂ + V = T̂ +
Vtrap + Vcavity, where T̂ is the kinetic energy and Vtrap is the
external potential. The potential Vcavity modifies the one-body
Hamiltonian ĥ in a time-dependent way: the atoms interact
with the cavity field a(t ).

Since our numerical results in the main text are for a one-
dimensional system, we use the coordinate x instead of r in
the following.

The cavity’s field generates a potential U (x) which con-
tributes to the one-body potential Vcavity,

U (x) = g2
0

�a

cos2 (kx). (B1)

In addition, photons are scattered from the pump into the
cavity field by the atoms, resulting in a cavity photon source
term of the form

η(x, t ) = g0�p(t )

�a

cos(kx). (B2)

Here g0 is the atom-cavity coupling, �a is the atomic detun-
ing, and �p is the pump Rabi frequency, which depends on the
pump laser power and in our case is explicitly time dependent.
The combined one-body potential entering the many-body
Hamiltonian of the combined system then reads

V (x, t ) = Vtrap(x) + Vcavity

= Vtrap(x) + V0(t ) + |a(t )|2U (x)

+[a(t ) + a∗(t )]η(x, t ).

Here, Vtrap(x, t ) = 1
2ω2

xx
2 is the external trapping potential

for the bosons, without the cavity, and V0(t ) = �2
p (t )
�a

is the
potential created by the pump field.

The equation of motion of the cavity field a(t ) is given by

i∂ta(t ) =
⎡
⎣−�c +

M∑
k,q=1

(
ρkq (t )Ukq

) − iκ

⎤
⎦a(t )

+
M∑

k,q=1

[ρkq (t )ηkq (t )], (B3)

where we have introduced the matrix elements Ukq (t ) ≡
〈�k|U (x)|�q〉 and ηkq (t ) ≡ 〈�k|η(x, t )|�q〉 using the or-
bitals �i (see Sec. A) and �c is the cavity detuning. The

complex damping term −iκ has been introduced in order to
deal with photon losses using the settled set of equations of
motion; cf. (A3), (A4), (B3).

APPENDIX C: PARAMETERS

We have simulated the full-time evolution of the BEC-
cavity system with N = 1000 atoms in a cavity driven by a
transverse pump laser; cf. Fig. 1 of the main text. The dimen-
sionless parameters used throughout the work are computed as
follows. First we fix the length scale L = 0.48 μm. The scale
of energy for the specific choice of 87Rb atoms is h̄2/2mL2 ≈
1.67 × 10−31 J. Similarly, the scale of time is 2mL2/h̄ ≈
0.63 ms. In our computations the atoms have been chosen to
interact weakly with each other with an interaction strength
of λ0 ≈ 0.01 [cf. Eq. (A3)]. In experiments λ0 can be chosen
by tuning the frequency of the transverse confining harmonic
potential ω⊥. The one-dimensional scattering strength λ0 is
related to the three-dimensional scattering length a through
λ0 = 4Lmω⊥a/h̄ [26]. Using the listed parameters, and the
fact that a ≈ 100a0 for 87Rb, one obtains ω⊥ ≈ 718 Hz. The
atom-cavity coupling U0 ≈ 338.22 Hz, the cavity resonance
frequency ωk ≈ 2π × 382.41 THz, and the loss rate κ ≈
2π × 1.3 MHz have been chosen in accordance with exper-
imental values [17].

By measuring the order parameter � ≡ 〈ψ | cos kx|ψ〉 for
this set of parameters we have first obtained the static phase
diagram (see inset of Fig. 7) as a function of pump rate ηp

and detuning �c. Subsequently, we have fixed the detuning
at a value �c = −2π × 10.08 MHz and chosen two repre-
sentative pump rates ηNP

p = 2π × 3.28 kHz and ηSP
p = 2π ×

4.79 kHz to investigate the effect of a sinusoidal modulation
of the drive in the plateau region. We have again extracted the
order parameter � and then obtained the phase diagram of
the driven BEC-cavity system as a function of period T and
intensity α of the drive (see Fig. 7). A point in the (α, T )-
phase diagram is classified as belonging to the MaPaReP if
its order parameter oscillates in time between positive and
negative values while its long-time average is vanishingly
small.

APPENDIX D: MAPPING TO THE DRIVEN DICKE MODEL

The Hamiltonian of the periodically driven Dicke model is
given by [22,23]

HS (t ) = ωcâ
†â + ωaĴz + μ(t )√

N
(â† + â)(Ĵ+ + Ĵ−), (D1)

where ωc is the cavity resonance frequency and ωa is the
level spacing of the two-level atoms. The operators â(†) are
the standard annihilation or creation operators of the cavity
field, while Ĵz, Ĵ+, Ĵ− are the atomic collective operators. The
atom-cavity coupling is time dependent and has the following
explicit form: μ(t ) = μ0 + α cos(2�t ). Using the standard
Holstein-Primakoff transformation [38,46], and assuming the
number of particles N to be very large, allows us to write the
Hamiltonian (D1) in terms of bosonic operators d̂ (†) as

HS (t ) = ωca
†a + ωad

†d + μ(t )(a† + a)(d† + d ). (D2)
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FIG. 7. Illustration of the many-body resonances (Arnold lobes) and the corresponding phase transition to the MaPaReP for driving from
the NP and from the SP. The parameters that drive this phase transition are the amplitude α of the drive and its period T . The inset shows the
static NP or SP phase diagram as a function of pump rate ηp and detuning �c. All quantities shown are dimensionless; see Appendix C for
further discussion.

The Hamiltonian (D2) can be decoupled through a normal-
mode transformation, leading to

HS (t ) = �1c
†
1c1 + �2c

†
2c2, (D3)

which is the Hamiltonian of two parametrically driven os-
cillators. The normal-mode (polariton) dispersions for the
experimental case (ωc � ωa) for the NP are given by(

�NP
1

)2 = ω2
c + 4μ2(t )

ωa

ωc

, (D4)

(
�NP

2

)2 = ω2
a − 4μ2(t )

ωa

ωc

, (D5)

and for the SP by

(
�SP

1

)2 = ω2
c − ω2

a, (D6)

(
�SP

2

)2 = 16
μ4(t )

ω2
c

− ω2
a. (D7)

Even though the system we study is more complex than the
simple driven Dicke model studied in Ref. [23], this mapping
helps us to estimate the periods at which the parametric
instabilities emerge (cf. main text).
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