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Light-cone-like spreading of single-particle correlations in the Bose-Hubbard model after a
quantum quench in the strong-coupling regime
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We study the spreading of correlations in space and time after a quantum quench in the Bose-Hubbard model.
We derive equations of motion for the single-particle Green’s function within the contour-time formalism,
allowing us to study dynamics in the strong-coupling regime. We discuss the numerical solutions of these
equations and calculate the single-particle density matrix for quenches in the Mott phase. We demonstrate
light-cone-like spreading of correlations in the Mott phase in one, two, and three dimensions and calculate
the propagation velocities in each dimension.

DOI: 10.1103/PhysRevA.98.053618

I. INTRODUCTION

The out-of-equilibrium dynamics of interacting quantum
systems has become a major subject of interest in many-body
physics. Experimental advances have made ultracold atoms
in optical lattices a favorable setting for the study of out-of-
equilibrium phenomena and attracted considerable attention
in recent years [1–6]. These systems are highly versatile
in that experimental parameters can be tuned over a wide
range of values in real time. This facilitates the study of
quantum quenches, in which parameters in the corresponding
Hamiltonian are varied in time more rapidly than the system
can respond adiabatically. Such protocols open the door to
a rich range of many-body physics and have been studied
intensely both theoretically and experimentally.

Jaksch et al. [7] showed that ultracold bosons trapped in
optical lattices can be described by the Bose-Hubbard model
(BHM)—a minimal model of interacting bosons on a lattice.
The BHM exhibits a quantum phase transition between a
superfluid and a Mott insulator as the ratio of the hopping
strength, J , to the on-site interaction strength, U , is varied
[8], which was demonstrated experimentally for cold atoms
by Greiner et al. [9]. This allows for the study of quan-
tum quenches across a quantum critical point, in addition to
quenches within a particular phase.

A variety of quench protocols have been suggested and
implemented [9–12] for the BHM in order to study out-
of-equilibrium phenomena such as the Kibble-Zurek effect
[10,13–15] and relaxation after a quench [16–32]. Our par-
ticular interest here is the light-cone-like spreading of cor-
relations after a quantum quench. Several analytical and
numerical studies have shown a Lieb-Robinson-like [33]
maximal propagation velocity for the spreading of density
correlations in one-dimensional systems for quenches from
the superfluid–to–Mott-insulating regime as well as quenches
solely within the superfluid [34] or Mott-insulating regimes
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[20,27,35–37]. The latter case was recently observed by
Cheneau et al. [38] for an array of decoupled one-dimensional
chains. Some theoretical predictions have also been made for
higher-dimensional systems [28,34,37,39] but these have not
yet faced experimental scrutiny.

A generic problem in the theoretical description of quan-
tum quenches is that it is necessary to have a formalism that is
able to describe the physics in a broad area of parameter space.
In the case of the BHM, numerical approaches such as exact
diagonalization (ED) and the time-dependent density matrix
renormalization group (t-DMRG) [16,17,27,29,35,36,38,40]
can be essentially exact in all parts of parameter space but
are limited by the system size and usually are practical only in
one dimension. For dimensions higher than 1, methods such
as time-dependent Gutzwiller mean-field theory [4,26,30,41]
and dynamical mean-field theory [23] have been used, which
can capture the presence of a quantum phase transition but,
in their simplest form, do not capture spatial correlations.
However, there has been work on including perturbative cor-
rections [31,32,37,39,42–44] to remedy this weakness.

In previous work [45], we developed a real-time two-
particle irreducible (2PI) effective action approach to the
BHM based on a strong-coupling theory of the BHM [22,46]
that is exact in both the weak- and the strong-coupling limits.
We verified that by using a Hartree-Fock-Bogoliubov (HFB)
approximation we were able to obtain considerable improve-
ments beyond mean-field theory in calculating equilibrium
properties of the BHM [45]. We also derived equations of
motion for the single-particle Green’s function using the
contour-time formalism [47]. In this paper we use the equa-
tions of motion to investigate the case of a quench in the Mott-
insulating regime. We demonstrate light-cone spreading of
single-particle correlations in one, two, and three dimensions.
We also study the dependence of the maximal propagation
velocity on the quench protocol, chemical potential, tem-
perature, and dimensionality, which should be relevant for
comparisons with experiment.

The paper is structured as follows. In Sec. II, we describe
the model that we study and the theoretical formalism we
use to calculate correlations after a quench. In Sec. III, we
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briefly discuss the equations of motion for the single-particle
Green’s function that we obtained in our previous work [45]
and show how they simplify for quenches that are confined
to the Mott regime. In Sec. IV, we present numerical results
obtained from integrating the equations of motion, and finally,
in Sec. V, we discuss our results and present our conclusions.

II. MODEL AND FORMALISM

In this section we introduce the Bose-Hubbard model and
the effective theory (ET) we use to study quench dynamics
in the strong-coupling regime, all within the context of the
contour-time formalism. The Hamiltonian for the BHM, al-
lowing for a time-dependent hopping term, is

ĤBHM(t ) = ĤJ (t ) + Ĥ0, (1)

where

ĤJ (t ) = −
∑

〈�r1,�r2〉
J�r1�r2 (t )

(
â
†
�r1
â�r2 + â

†
�r2
â�r1

)
(2)

and

Ĥ0 = ĤU − μN̂ = U

2

∑
�r

n̂�r (n̂�r − 1) − μ
∑

�r
n̂�r , (3)

with â
†
�r and â�r annihilation and creation operators for bosons

at lattice site �r , respectively, n̂�r ≡ â
†
�r â�r the number operator,

U the interaction strength, and μ the chemical potential.
The notation 〈�r1, �r2〉 indicates a sum over nearest neighbors
only. We allow J�r1�r2 (t ), the hopping amplitude between site
�r1 and site �r2, to be time dependent. We have specified the
model for a uniform lattice but could consider a trap as
used in experiments by introducing a site-dependent chemical
potential. This leads to more complicated calculations than we
consider here but is conceptually straightforward to include.

A. Contour-time formalism

The general formalism that we discuss and adopt in this
paper was developed in a previous paper of ours; we refer
the reader to Ref. [45] for details on the formalism. We
use the contour-time formalism [48–53], which treats time
as a complex variable lying along a contour in a way that
allows the description of out-of-equilibrium and equilibrium
quantum phenomena within the same formalism. For systems
initially prepared in thermal states, which we consider here,
one can work with a contour C of the form illustrated in Fig. 1,
which is sometimes referred to as the Konstantinov and Perel’
(KP) contour [47]. A popular alternative to the KP contour is
the Schwinger-Keldysh (SK) closed-time path [48,49], which
is also suitable for initially thermalized systems. However,
unlike the KP contour, the SK contour ignores transient phe-
nomena, being more suitable for calculating steady states or
other long-time phenomena. Given that transient effects are
important in the spreading of space-time correlations after a
quantum quench, the KP contour is a more appropriate choice.
A number of authors have applied contour-time approaches to
the BHM in out-of-equilibrium scenarios [22,23,45,54–64].
Similarly to Refs. [23], [45], and [55], we use an ET that
arises from a contour approach suitable for strong and weak
coupling but focusing on the spreading of correlations.

FIG. 1. Contour for a system initially prepared at time ti in a
thermal state with inverse temperature β. tf is the maximum real time
considered in the problem, which may be set to tf → ∞ without loss
of generality.

In our work, we develop an approach that is appropriate
for strong and weak coupling that goes beyond previous work
using the KP formalism [23] by including spatial fluctuations.

B. Contour-ordered Green’s functions

To characterize spatiotemporal correlations in the BHM
we calculate contour-ordered Green’s functions (COGFs). We
define the n-point COGF as [53]

G
a1...an

�r1...�rn
(τ1, . . . , τn) ≡ (−i)n−1Tr

{
ρ̂iTC

[
â

a1
�r1

(τ1) . . . â
an

�rn
(τn)

]}
≡ (−i)n−1

〈
TC

[
â

a1
�r1

(τ1) . . . â
an

�rn
(τn)

]〉
ρ̂i
,

(4)

where ρ̂i is the state operator for a thermal state representing
the initial state of our system,

ρ̂i = e−βĤBHM(ti )

Tr{e−βĤBHM(ti )} , (5)

the ai upper indices are defined such that

â1
�r ≡ â�r , â2

�r ≡ â
†
�r , (6)

and âa
�r (τ ) are the bosonic fields in the Heisenberg picture with

respect to ĤBHM(τ ) [Eq. (1)]:

âa
�r (τ ) = U †(τ, τi )â

a
�r U (τ, τi ), (7)

U (τ, τ ′) = TC[e− ∫
C(τ,τ ′ ) dτ ′′ĤBHM(τ ′′ )]. (8)

Here we have introduced explicitly the complex contour time
argument τ , the subcontour C(τ, τ ′), which goes from τ to τ ′
along contour C, and the contour time ordering operator TC ,
which orders strings of operators according to their position
on the contour, with operators at earlier contour times placed
to the right.

C. Effective theory for the Bose-Hubbard model

In order to study quench dynamics in the BHM, we make
use of an ET (expressed as an action) that can describe
both the weak- and the strong-coupling limits of the model
in the same formalism. Such an approach was developed
in imaginary time by Sengupta and Dupuis [46] by using
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two Hubbard-Stratonovich transformations, then generalized
to the SK contour in Ref. [22], and then further generalized
to the KP contour in Ref. [45] in conjunction with a 2PI
effective action approach. A similar real-time theory was also
obtained based on a Ginzburg-Landau approach using the
Schwinger-Keldysh technique [56–58] in conjunction with
a one-particle irreducible (1PI) effective action approach.
In obtaining the ET below, one assumes that the system is
dominated by the low-energy degrees of freedom, which is
valid as long as the quench is sufficiently slow. A detailed
discussion of the development of the effective theory within
the KP contour formalism is presented in Ref. [45]. The ET
obtained in Ref. [45] for z fields (which are obtained after
two Hubbard-Stratonovich transformations and have the same
correlations as the original a fields [46]) is

S[z] = 1

2!

∑
�r

∫
C

∫
C

dτ1dτ2[G−1]a1a2 (τ1, τ2)za1
�r (τ1)za2

�r (τ2)

+ 1

2!

∑
�r1�r2

∫
C

dτ
{
2J�r1�r2 (τ ) + δ�r1�r2v1

}
σ

a1a2
1 z

a1
�r1

(τ )za2
�r2

(τ )

+ 1

4!

∑
�r

∫
C

dτ {−2u1}σa1a2a3a4z
a1
�r (τ )za2

�r (τ )

× z
a3
�r (τ )za4

�r (τ ), (9)

where Ga1a2 (τ1, τ2) is the atomic (i.e., J = 0) two-point
Green’s function (see Appendix C in Ref. [45] for the full
expression), u1 is a time-independent quantity that is a com-
plicated function of the inverse temperature β and the chem-
ical potential μ (see Appendix D in Ref. [45] for the full
expression), and

v1 = (2nJ=0 + 1)u1, (10)

where nJ=0 is the average particle density in the atomic
limit. This can be calculated from the atomic kinetic Green’s
function G12,(K ) (see Appendix C in Ref. [45]) as follows:

nJ=0 = 1

2
{iG12,(K )(t ′ = 0) − 1}. (11)

The overscored index a used in Eq. (9) is defined by

f a
�r (τ ) ≡ σaa′

1 f a′
�r (τ ), (12)

where σi is the i th Pauli matrix, i.e., 1 = 2 and 2 = 1, and

σa1a2a3a4 ≡
{

1 if {am}4
m=1 ∈ P ({1, 1, 2, 2}),

0 otherwise.
(13)

We use the Einstein summation convention for the Nambu
indices; i.e., matching indices implies a summation over all
possible values of those indices.

When applied to an n PI effective action approach, where
one ultimately calculates equations of motion for various
correlation functions, the ET generates “anomalous” Feynman
diagrams [22,45,46,65,66]. These diagrams contain internal
inverse atomic propagator lines which do not correspond to
any physical processes. If one considers all orders of the
theory, they can be dropped because the different anomalous
terms cancel. If the theory is truncated (as is usually the case),
then care is required to ensure cancellation order by order. At

the level considered here, the v1 term in Eq. (9) plays this
role. For a more detailed discussion of the cancellation of
anomalous diagrams, see Ref. [45].

The effective theory introduces an effective potential v1

and a renormalized on-site interaction strength u1. Moreover,
it reassigns the role of the “bare propagator” to the atomic
propagator. The theory gives the exact two-point connected
COGF (CCOGF) in both the atomic and the noninteracting
limits, thus making it particularly appealing for the study of
quench dynamics since it gives a reasonable description of
the behavior of the system in both the superfluid and the
Mott-insulating regimes [6].

III. EQUATIONS OF MOTION

Our goal is to calculate the full two-point CCOGF (hence-
forth the “full propagator”) after a quench, which encodes
nonlocal single-particle spatial and temporal correlations. To
achieve this, we solve Dyson’s equation [45,67] for the full
propagator (the superscript “c” indicates that G is a connected
COGF),

G
a1a2,c

�k (τ1, τ2) ≡ [G0]a1a2,c

�k (τ1, τ2) +
∫

C

∫
C

dτ3dτ4[G0]a1a3,c

�k

× (τ1, τ3)�a3a4
�k (τ3, τ4)Ga4a2,c

�k (τ4, τ2), (14)

where G0 is the bare propagator and � is the self-energy of the
theory. Since we consider a translationally invariant system,
we work in quasimomentum space rather than real space. In
Ref. [45], we calculated the self-energy for the ET [Eq. (9)]
in a systematic way using a 2PI effective action approach
[67] and considered terms up to first order in u1 (loosely
corresponding to an HFB-like approximation).

The equations of motion derived in Ref. [45] are quite
general in that they can be applied to a variety of quench
protocols. Here we consider the case in which the hopping
quench is restricted to the Mott-insulating regime and the
system is initially thermalized in the atomic limit. Under these
conditions, the self-energy (and thus the equations of motion)
simplify considerably, and it is straightforward to show that
the equations of motion derived in Ref. [45] reduce to

A�k (t, t ′) = A(t − t ′) − i

∫ t

t ′
dt ′′A(t − t ′′)�(HFB)

�k (t ′′)A�k (t ′′, t ′),

(15)

G
(K )
�k (t, t ′) = G (K )(t − t ′) − i

∫ t

0
dt ′′A(t − t ′′)�(HFB)

�k (t ′′)

× G
(K )
�k (t ′′, t ′) + i

∫ t ′

0
dt ′′G (K )(t − t ′′)

× �
(HFB)
�k (t ′′)A�k (t ′′, t ′), (16)

where A�k (t, t ′) is the spectral function,

A�k (t, t ′) = 〈â�k (t )â†
�k (t ′) − â

†
�k (t ′)â�k (t )〉ρ̂i

, (17)
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and G
(K )
�k (t, t ′) is the kinetic Green’s function,

G
(K )
�k (t, t ′) = G

12,(K )
�k (t, t ′)

= −i〈â�k (t )â†
�k (t ′) + â

†
�k (t ′)â�k (t )〉ρ̂i

. (18)

The quantities A(t − t ′) and G (K )(t − t ′) that enter
Eqs. (15) and (16) are the spectral function in the atomic
limit and the kinetic Green’s function in the atomic limit,
respectively. In this limit both quantities are time transla-
tional invariant. �

(HFB)
�k (t ) is the self-energy in the HFB

approximation,

�
(HFB)
�k (t ) = ε�k (t ) + 2u1{n(t ) − nJ=0}, (19)

with

ε�k (t ) = −2J (t )
d∑

i=1

cos (kia), (20)

n(t ) = 1

Nsites

∑
�k

n�k (t ), (21)

n�k (t ) = 1

2

{
iG

(K )
�k (t, t ) − 1

}
, (22)

and a the lattice constant (assuming a d-dimensional hyper-
cube geometry). In the atomic limit, the spectral function and
kinetic Green’s functions can be written as

A(t ) = 1

Z

∞∑
n=0

e−β(En−EnMI ){(n + 1)e−i(En+1−En )t

− nei(En−1−En )t }, (23)

G (K )(t ) = − i

Z

∞∑
n=0

e−β(En−EnMI ){(n + 1)e−i(En+1−En )t

+ nei(En−1−En )t }, (24)

where En is the single-site energy,

En = U

2
n(n − 1) − μn, (25)

nMI is the zero-temperature particle density,

nMI = 
μ/U�, (26)

and Z is the partition function,

Z =
∞∑

n=0

e−β(En−EnMI ). (27)

It is noteworthy that the equations of motion, (23) and (24),
do not contain time integrals over imaginary time, even though
we work with the KP contour (Fig. 1). This is because, in
our ET, the self-energy �

a1a2
�k (τ1, τ2) vanishes if either τ1 or

τ2 lies on the imaginary part of the contour if the system is
initially thermalized in the atomic limit (see Eqs. (93) and
(94) in Ref. [45]). It is important to stress, however, that the
equations of motion above still contain information about the
initial thermal state through the bare propagator [Eqs. (23) and
(24)], which is a function of the initial temperature.

We consider quenches in which the hopping amplitude
J (t ) is tuned as a function of time. (Experimentally, this
corresponds to varying the depth of the optical lattice, since
hopping varies exponentially with the lattice depth while
interactions vary weakly with the lattice depth [68].) We
choose J (t ) to have the form

J (t ) =
(

Jf − Ji

2

)
tanh

(
t − tc

τQ

)
+

(
Jf + Ji

2

)
, (28)

which corresponds to the experimental scenario of a linear
ramp. Note that limt→−∞ J (t ) = Ji , and limt→∞ J (t ) = Jf .
The time scale τQ is the characteristic time for J (t ) to cross
from Ji to Jf , and tc is the time at which the middle of the
quench occurs. Other forms of J (t ) which are not linear may
lead to differing behavior in the long-time limit [69]. For the
quench scenario we consider in this paper, Jc > Jf > Ji = 0,
where Jc is the critical hopping strength at the superfluid–to–
Mott-insulator phase boundary (for fixed μ).

IV. NUMERICAL RESULTS

The equations of motion, Eqs. (15) and (16), form a system
of nonlinear Volterra integral equations that have no known
analytical solution, hence we take a numerical approach to
solve them. This presents more of a challenge than the one-
particle-irreducible equations of motion obtained in Ref. [22]
due to the presence of memory kernels that incorporate the
entire history of the system, making explicit the importance
of the quench protocol to the postquench state. An additional
important feature of the equations of motion is that they
are causal, i.e., all quantities at some later time tf can be
obtained by integration over the known functions for times
t � tf . We exploit this feature of the equations to develop an
implicit block-by-block scheme, closely following Ref. [70].
A detailed discussion of our numerical scheme is presented in
Appendix A.

In this section we first compare the results of the solutions
of Eqs. (15) and (16) to ED calculations. Obtaining acceptable
agreement we then present numerical results for the light-
cone-like propagation of single-particle spatial correlations
in one, two, and three dimensions for quenches in the Mott-
insulating regime.

A. Comparison to exact diagonalization calculations

First, we assess the accuracy of our ET by comparing
calculations of the single-particle density matrix ρ1(��r, t )
obtained from this theory to ED calculations for small system
sizes. ρ1(��r, t ) is a natural quantity for the study of single-
particle spatial correlations, which can be calculated from the
equal-time kinetic Green’s function G

(K )
�k (t, t ) as

ρ1(��r, t ) = 1

Ns

∑
�k

cos(�k · ��r )n�k (t )

= 1

2Ns

∑
�k

cos(�k · ��r )
{
iG

(K )
�k (t, t ) − 1

}
, (29)

where Ns is the number of sites.
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FIG. 2. Comparison of ρ1(��r, t ) obtained from our ET and from ED for (a) ��r/a = 0, (b) ��r/a = 1, (c) ��r/a = 2, (d) ��r/a = 3, and
(e) ��r/a = 4. The parameters are βU = ∞, μ/U = 0.4116, Jf /U = 0.035, tc/U−1 = 5, τQ/U−1 = 0.1, d = 1, and Ns = 8.

In Figs. 2 and 3, we display the time evolution of ρ1(��r, t ),
obtained from both the effective theory and ED, for a quench
performed on an eight-site chain (d = 1; Ns = 8) with β =
∞ (T = 0), μ/U = 0.4116, tc/U−1 = 5, and τQ/U−1 =
0.1. The only parameter that differs between the two figures
is the final hopping strength Jf /U , where Jf /U = 0.035 for
Fig. 2 and Jf /U = 0.05 for Fig. 3.

Figure 2(a) shows ρ1(��r, t ) for ��r/a = 0, which is
equivalent to the average particle density. Figure 2(a) shows
that our ET leads to small fluctuations in the particle num-
ber, typically of the order of 5%. In Appendix B, we
discuss the origin of these particle number fluctuations. The
results in Figs. 2(b)–2(e) show that this disagreement with ED
is confined to ��r/a = 0 since for ��r/a �= 0 our method is
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FIG. 3. Comparison of ρ1(��r, t ) obtained by our ET and by ED for (a) ��r/a = 0, (b) ��r/a = 1, (c) ��r/a = 2, (d) ��r/a = 3, and (e)
��r/a = 4. The parameters are the same as in Fig. 2 except that Jf /U = 0.05.
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FIG. 4. (a) Evolution of J (t )/U for quench parameters Jf /U = 0.0556, tc/U−1 = 5, and τQ/U−1 = 0.1; (b) dynamics of ρ1(��r, t ) for
��r/a = 10; (c) dynamics of ρ1(��r, t ) for ��r/a = 20; (d) scatterplot of the time t/U−1 it takes for the single-particle correlation front
to travel a distance �r/a; (e) scatterplot of (��r/a)/(t/U−1) vs t/U−1, with a comparison to results obtained from Eq. (30). To directly
compare our results with those obtained in Ref. [36] for (e), we shift our travel times by tc such that t = 0 corresponds to the middle of our
(quasi-instantaneous) quench. We show a straight-line fit to the data in both (d) and (e). In (b) and (c), solid red lines trace the envelopes of the
wavepackets, while the solid green vertical line estimates the position of the center of the first wavepacket. The parameters in (b)–(e) include
the quench parameters in (a), as well as μ/U = 0.4116, βU = 1000, d = 1, and Ns = 50.

quantitatively accurate for times up to ∼ 100U−1. At later
times, the fast oscillations calculated by our method start to
become out of phase with those obtained by ED.

Figures 3(a)–3(e) display the time evolution of ρ1(��r, t )
for a system identical to that shown in Figs. 2(a)–2(e) except
that Jf /U = 0.05. For this value of Jf , the ET is quantita-
tively accurate for times up to ∼ 50U−1 when ��r/a �= 0. This
is a sufficiently long time window to allow the identification
of the peak of the first wavepacket in ρ1(��r, t ) at a given
��r/a �= 0, which we use to determine the velocity at which
single-particle correlations spread. The good agreement with
ED results in eight-site systems gives us confidence in the
results we obtain in larger systems and higher dimensions
where comparison with ED is not possible.

B. Light-cone spreading of single-particle
spatial correlations

In this section, we demonstrate light-cone-like spreading
[33] of single-particle correlations in one, two, and three
dimensions, and we compare the velocities we obtain for
the propagation of correlations to existing results in the field
[27,28,32,35–39]. We performed calculations of the spreading
of correlations in one (50-site chains), two (50 × 50 systems),
and three (28 × 28 × 28 systems) dimensions for a variety
of model parameters and found light-cone-like spreading of
correlations in all cases. Our results are in good agreement

with previously obtained exact results in one dimension [36].
We present our detailed results below.

1. One dimension

Before presenting results for the velocity at which single-
particle correlations spread, we first discuss how we identify
this velocity. In Fig. 4(b), we display the time evolution of
the single-particle correlation function ρ1(��r, t ) for a 50-
site chain, with ��r/a = 10. In this figure, we can see the
emergence of multiple wavepackets after the quench. Solid
red lines trace the envelopes of these wavepackets which
we determine from an interpolation based on a fourth-order
spline. The solid green vertical line represents our estimation
of the center of the first wavepacket. In Fig. 4(c), where
��r/a = 20 one can see that the center of the first wavepacket
is shifted to a later time, i.e., it takes a longer time for
the single-particle correlations to spread out to larger par-
ticle separation distances �r/a. To track the propagation
of the single-particle correlations, we plot the particle sep-
aration displacement ��r/a of the first wavepacket against
time t/U−1.

We do this for the above 50-site chain system in Fig. 4(d)
and note that the data appear to be compatible with a linear fit,
which would imply that there is a propagating front of single-
particle correlations that travels through the one-dimensional
chain at a constant velocity. When we plot (��r/a)/(t/U−1)
on the y axis rather than ��r/a, as we do in Fig. 4(e), we see
that the velocity tends toward an asymptotic limit vmax. Using
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FIG. 5. Scatterplots of the propagation velocity v/(Jf a/h̄) in one dimension as a function of various model parameters. In all cases
tc/U−1 = 5 and τQ/U−1 = 0.1. (a) Scatterplot of v/(Jf a/h̄) as a function of μ/U for a 50-site chain with βU = 1000 and Jf /U = 0.0556;
(b) scatterplot of v/(Jf a/h̄) as a function of βU for a 50-site chain with μ/U = 0.4116 and Jf /U = 0.0556; (c) scatterplot of v/(Jf a/h̄) as
a function of Jf /U for a 50-site chain with βU = 1000 and μ/U = 0.4116.

an unconstrained fermionization procedure in one dimension,
Barmettler et al. found the first correlation peak time tpeak to
be approximated by [36]

tpeak

U−1
≈ 1

6

(
J

U

)−1
[

�r

a
+ 1.02

(
�r

2a

)1/3
]
, (30)

which they showed agrees quantitatively with DMRG cal-
culations for instantaneous quenches in the strong-coupling
regime. For comparison, we plot Eq. (30) in Fig. 4(e) and
find that there is good agreement with our results for larger
�r . In our calculation, the propagation velocity tends to its
asymptotic limit sooner than that obtained in the fermioniza-
tion procedure.

Performing a linear fit in Fig. 4(d) yields an estimate for the
maximal velocity of vmax = (5.6 ± 0.2) Jf a

h̄
, for this particular

set of parameters. The authors of Ref. [36] obtained vmax ≈
5.7 Jf a

h̄
for the same parameters from a DMRG calculation,

which our result agrees with to within error bars. It is note-
worthy that the quoted velocity obtained using the DMRG
in Ref. [36] is actually for the density-density correlation
function, but within the approximations used in Ref. [36]
the velocity obtained from the density-density correlation
function matches that obtained from the single-particle cor-
relation function. In our theory, these velocities only match in
the infinite interaction limit, but because we work at strong
coupling we expect that this distinction is unlikely to affect
our results significantly.

In Fig. 5 we summarize our results for the maximal propa-
gation velocity in one dimension as a function of the chemical
potential, temperature, and Jf /U for a 50-site chain. We
see that except at temperatures comparable to the melting
temperature of the Mott insulator βU ∼ 5, the velocities we
extract all lie in the range 5.5Jf a/h̄ to 6Jf a/h̄ for 0 <

μ/U < 1 (or n̄ = 1) and show little sensitivity to Jf /U

or μ/U . The velocity range we obtain for strong coupling
is consistent with that obtained in Ref. [36], where they
establish a velocity range between the two limiting cases of
the BHM: for infinitely strong interactions in one dimension,
they obtained a maximal velocity of vmax = 6Ja/h̄ for n̄ = 1,
and in the limit of no interactions they obtained a value of
vmax = 4Jf a/h̄ for n̄ = 1. Moreover, the velocities we obtain
exhibit the same bosonic enhancement with respect to the
average particle density n̄ as found in Ref. [36], namely, that

(apart from very small corrections)

vmax ∝ (2n̄ + 1). (31)

The enhancement with n̄ can be seen in Fig. 5(a),
where vn̄=1

max = (5.6 ± 0.1) Jf a

h̄
for 0 < μ/U < 1 and vn̄=2

max =
(9.2 ± 0.9) Jf a

h̄
for 1 < μ/U < 2, which yields a ratio of

vn̄=2
max /vn̄=1

max = 1.6 ± 0.1, in agreement with the expected ratio
from Eq. (31) of 5/3 ≈ 1.66 within uncertainties.

Experimental data on the spreading of density-density cor-
relations also lie in the range 5–6Ja/h̄ for quenches in the
Mott regime [38]. A recent calculation of the spreading of
density-density correlations in one dimension found a value
of vmax = 3.7Ja/h̄ for weak interactions [28] and Krutitsky
et al. [37] obtained an analytical estimate of vmax = 3Jf a/h̄

for the single-particle density matrix by performing a pertur-
bative expansion of the von Neumann equation with respect
to the inverse coordination number, 1/z, for small Jf .

2. Two dimensions

Snapshots of the spatial dependence of ρ1(��r, t ) at dif-
ferent moments in time for a 50 × 50–site system are shown
in Fig. 6, where each pixel represents a different particle
separation displacement ��r/a, and ��r/a = 0 is in the middle
of each panel. In this figure, we see that the propagation
of the single-particle correlations is anisotropic, with the
propagation velocity maximal along the diagonal and min-
imal along the crystal axes. Krutitsky et al. [37] found the
same anisotropic spreading of single-particle correlations for
a similar quench protocol. Anisotropic behavior was also
observed by Carleo et al. [34] in the spreading of density-
density correlations within the superfluid regime. However,
they found that the propagation velocity was maximal along
the crystal axes and minimal along the diagonal, opposite
to the behavior observed here and in Ref. [37] for the Mott
insulator.

We found acquiring estimates for the maximum propaga-
tion velocities in higher dimensions to be somewhat more
difficult than in one dimension. This difficulty is illustrated in
Fig. 7, where we extract the maximal propagation velocities
along a crystal axis and the diagonal for the same 50 × 50
system considered in Fig. 6. Figures 5(a) and 5(b) display
the time evolution of ρ1(��r, t ) for ��r/a = (8, 0) (i.e., along
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FIG. 6. Spatial dependency of ρ1(��r, t ) at different moments in time t/U−1 for a 50 × 50–site system. The parameters are βU = 1000,
μ/U = 0.4136, Jf /U = 0.025, tc/U−1 = 5, and τQ/U−1 = 0.1.

a crystal axis) and ��r/a = (8, 8) (i.e., along a diagonal),
respectively. Upon comparing the two figures, we see that
the wavepacket along the crystal axis is less sharp than that
along the diagonal. Consequently, there is more uncertainty
in our estimate of the center of a wavepacket (and hence the
maximal propagation velocity) along a crystal axis than along
a diagonal. This trend extends to three dimensions as well
where the wavepackets are sharpest along the main diagonals,
less sharp along the secondary diagonals, and even less sharp
along the crystal axes. The linear fits in Figs. 7(c) and 7(d)
yield the following maximal velocity estimates for Jf /U =
0.025 of

v(10)
max = (6.8 ± 0.3)

Jf a

h̄
, (32)

v(11)
max = (8.1 ± 0.1)

Jf a

h̄
, (33)

where v(10)
max and v(11)

max are the maximal propagation velocities
along the crystal axes and the diagonals, respectively.

Figures 8(a)–8(c) plot the maximal propagation velocities
for a 50 × 50 system as a function of μ/U , βU , and Jf /U ,

respectively, while keeping all the remaining parameters fixed.
From Figs. 8(a) and 8(b), we see that the propagation veloc-
ities are not very sensitive to μ (while remaining within the
same Mott lobe) or to temperatures below the full melting
of the Mott-insulating phase (β � 5U ). In Fig. 8(c), we see
that there appears to be a slight increase in the maximal
propagation velocity and a decrease in the anisotropy for
larger Jf /U . Extrapolating to larger values of Jf /U it seems
plausible that there might be a value of Jf /U where the
spreading of correlations becomes isotropic, especially given
the results of Carleo et al. [34] in the superfluid regime, where
they found the maximal propagation velocity to be along
the crystal axes, not the diagonals. In future work, we plan
to investigate quench protocols where one crosses the phase
boundary into the superfluid regime, which will allow us to
verify whether this is indeed the case. Technically this requires
the inclusion of broken symmetry terms in the equations of
motion since these terms are required for a full description of
the superfluid regime.

In two dimensions, for 0 < μ/U < 1, the velocities
v(10)

max we obtained along the crystal axes ranged from 5.7
Ja/h̄ to 7.6 Ja/h̄, whereas the velocities v(11)

max along the
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FIG. 7. Tracking the wavefront for a 50 × 50–site system. (a) Dynamics of ρ1(��r, t ) for ��r/a = (8, 0); (b) dynamics of ρ1(��r, t ) for
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straight-line fit to the data. In (b) and (c), solid red lines trace the envelopes of the wavepackets, while the solid green vertical line estimates
the position of the center of the first wavepacket. The parameters in (a)–(d) are μ/U = 0.4136, βU = 1000, Jf /U = 0.025, tc/U−1 = 5, and
τQ/U−1 = 0.1.

diagonal ranged from 7.8 Ja/h̄ to 8.7 Ja/h̄. The only other
related study that we are aware of is that by Krutitsky et al.
[37], where they obtained analytical estimates of v(10)

max =
3Ja/h̄ and v(11)

max = 3
√

2Ja/h̄ for the crystal axes and diag-
onals, respectively. It is noteworthy that Krutitsky et al. also
performed numerical calculations of the single-particle
correlation spreading beyond their lowest-order analytical

calculations, however, they did not report any velocity es-
timates based on their numerical data. One prediction of
Krutitsky et al. that does seem reasonably robust is the ra-
tio v(11)

max/v
(10)
max , for which their lowest-order estimate is

√
2.

Examination of Fig. 8(c) shows that our results are consistent
with v11/v10 � √

2 for small Jf /U , with the ratio decreasing
with increasing Jf /U .
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FIG. 8. Scatterplots of the propagation velocity v/(Jf a/h̄) in two dimensions for a 50 × 50–site system as a function of various model
parameters. In all cases tc/U−1 = 5 and τQ/U−1 = 0.1. (a) Scatterplot of v/(Jf a/h̄) as a function of μ/U with βU = 1000 and Jf /U =
0.025; (b) scatterplot of v/(Jf a/h̄) as a function of βU with μ/U = 0.4136 and Jf /U = 0.025; (c) scatterplot of v/(Jf a/h̄) as a function of
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In higher dimensions, we find that the bosonic enhance-
ment of the velocities as n̄ is increased is more pronounced
than that in the one-dimensional case. From Fig. 8(a), we
obtain vn̄=2

max /vn̄=1
max = 1.8 ± 0.1 along both the diagonals and

the crystal axes. The behavior is qualitatively similar to that
in one dimension, but we are not aware of any exact results
in higher dimensions equivalent to Eq. (30) with which to
compare our numerical results.

3. Three dimensions

We find similar behavior in three dimensions to that found
in two dimensions, as displayed in Fig. 9, where we see that
the velocity depends strongly on the crystal direction but is
otherwise relatively insensitive to changes in the chemical
potential (within the same Mott lobe), temperature, or final
hopping value Jf . The trend towards increasing isotropy in
the spread of correlations as Jf /U increases is much less
pronounced than in two dimensions, perhaps because we con-
sider smaller values of Jf than in two dimensions. Our work
calculates the maximal propagation velocities for correlations
in three dimensions for the BHM: for 0 < μ/U < 1 we obtain
v(100)

max ∼ 6Jf a/h̄, v(110)
max ∼ 8.5Jf a/h̄, and v(111)

max ∼ 10Jf a/h̄;
and for 1 < μ/U < 2 we obtain v(100)

max ∼ 11.5Jf a/h̄, v(110)
max ∼

15.5Jf a/h̄, and v(111)
max ∼ 17Jf a/h̄.

V. DISCUSSION AND CONCLUSIONS

The ability to address single sites in cold-atom experiments
[12] has allowed for experimental exploration of spatiotem-
poral correlations in the BHM [38]. This has led to theoretical
investigations of these correlations in both one [36] and higher
[28,32,34,37] dimensions in the presence of a quench. In
dimensions higher than 1, where numerical approaches are
limited, a theoretical challenge has been to develop a frame-
work which can treat correlations in both the superfluid and
the Mott-insulating phases over the course of a quench. In a
previous paper [45], we developed a formalism that allows
for such a description of the space and time dependence of
single-particle correlations. The specific approach we took
was to derive a 2PI effective action for the BHM using the KP
contour, building on the 1PI real-time strong-coupling low-
energy theory developed in Ref. [22], which generalizes the
imaginary-time theory developed in Ref. [46]. From this 2PI

effective action we were able to derive equations of motion
that treat the superfluid order parameter and the full two-point
Green’s functions on equal footing. One of the attractive
features of the formalism is that it is applicable even in the
limit of a low occupation number per site.

We used the formalism to study out-of-equilibrium dy-
namics, focusing on the light-cone-like spreading of single-
particle correlations after a quench. We considered quenches
in the Mott-insulator phase and solved the equations of mo-
tion for the single-particle density matrix ρ1(��r, t ). From
the calculation of ρ1(��r, t ), we demonstrated light-cone-like
spreading of single-particle correlations in one, two, and three
dimensions. The range of maximal propagation velocities
that we obtain in one dimension agree well with recent
theoretical [36] and experimental [38] results over the range
of parameter values we consider. In higher dimensions, we
find that there is anisotropic spreading of correlations, where
the propagation velocity is maximal along the main diago-
nal and minimal along the crystal axes. Similar anisotropic
spreading of correlations was observed in calculations in
Ref. [37]. We also observed that at least in two dimensions,
the degree of anisotropy appears to diminish with increasing
final hopping strength Jf . This raises the question whether
the spreading becomes isotropic for Jf in the vicinity of
Jc, particularly given that it has been predicted that in the
superfluid regime the propagation velocity is maximal along
the crystal axes, rather than the diagonals [34]. To address
these questions within our formalism requires a more careful
treatment of the equations of motion. One needs to include
broken symmetry terms which become relevant upon en-
tering the superfluid regime. We defer this task to future
work.

The space and time dependence of correlations after a
quantum quench give insight into the propagation of exci-
tations generated by that quench, and hence we hope that
the formalism we have developed here will allow further
theoretical investigation of the excitations after quenches in
the BHM, to complement experimental efforts in the same
direction. In future work we plan to investigate a broader
range of quench protocols and generalizations such as the
inclusion of a harmonic trap, coupling to a bath [54,55,71],
disorder [72–75], and multicomponent [76] Bose-Hubbard
models.
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APPENDIX A: NUMERICAL IMPLEMENTATION OF THE
SOLUTION OF THE EQUATIONS OF MOTION

In this Appendix, we describe in more detail the numerical
implementation of the solutions to the equations of motion.
We begin by rewriting Eqs. (15) and (16) in a slightly more
compact form,

A�k (t, t ′) = A(t − t ′)

+
∫ t

t ′
dt ′′K (1)

�k (t, t ′′, n(t ′′))A�k (t ′′, t ′), (A1)

G
(K )
�k (t, t ′) = G (K )(t − t ′)

+
∫ t

0
dt ′′K (1)

�k (t, t ′′, n(t ′′))G(K )
�k (t ′′, t ′)

+
∫ t ′

0
dt ′′K (2)

�k (t, t ′′, n(t ′′))A�k (t ′′, t ′), (A2)

where we define the kernels

K
(1)
�k

(
t, t ′′, n(t ′′)) = −iA(t − t ′′)�(HFB)

�k (t ′′), (A3)

K
(2)
�k (t, t ′′, n(t ′′)) = iG (K )(t − t ′′)�(HFB)

�k (t ′′). (A4)

We include n(t ′′) in the kernel arguments to emphasize the
fact that both kernels are functions of the particle density.
The presence of n(t ′′) in the kernels couples the equations
of motion for a fixed quasimomentum �k to the remaining
equations (with different �k) since n(t ′′) is calculated from∑

�k G
(K )
�k (t ′′, t ′′). Moreover, for t � t ′, the calculation of

A�k (t, t ′) and G
(K )
�k (t, t ′) depends on n(t ), not simply the his-

tory. These nonlinearities complicate the numerical solution,
as we must resort to implicit methods. At a general level,
the simplest method to solve such a nonlinear system is to
apply a self-consistent approach, which we do in this paper.
For each time step in t , we start by guessing the value of
n(t ), then we solve each equation separately for values of t ′
in the range t � t ′ � 0 using an explicit numerical approach,
then we use our calculation of the G

(K )
�k (t, t ) values to update

n(t ), and then we repeat until we obtain convergence. Once
convergence is achieved, we take another time step in t , then
repeat the above procedure starting with t ′ = 0 to t ′ = t . One
can guess n(t ) using the final value for n(t − �t ) or by doing
an extrapolation based on several previous time steps.

After guessing and updating the value of n(t ), we imple-
ment a modified block-by-block algorithm based on that in
Ref. [70]. The block-by-block method uses a combination of

Simpson’s rule and Lagrange interpolation points to discretize
the equations of motion in such a way as to generate a system
of equations in terms of multiple unknowns that can then
be solved simultaneously. For example, if we introduce the
discretization notation

Fm = F (m�t ), (A5)

then for fixed m � m′, after applying the block-by-
block procedure, we obtain a pair of simultaneous equa-
tions for [A�k]2m+1,2m′ and [A�k]2m+2,2m′ , a single equa-
tion for [A�k]2m+1,2m′+1, [A�k]2m+2,2m′+1, and [A�k]2m+2,2m′+2

each, a pair of simultaneous equations for [G(K )
�k ]

2m+1,2m′

and [G(K )
�k ]

2m+2,2m′ , a pair of simultaneous equations for

[G(K )
�k ]

2m+1,2m′+1
and [G(K )

�k ]
2m+2,2m′+1

, and, finally, a sin-

gle equation for [G(K )
�k ]

2m+2,2m′+2
. These “block” equations

should be solved in the order written above since each block
equation depends on the solutions to the block equations
previous to it.

In summary, our numerical solution can be outlined as
follows:

(1) Set m = 0.
(2) Guess the values for n2m+1 and n2m+2.
(3) For each �k,

For m′ = 0, . . . , m: Solve block equations.

(4) Update n2m+1 and n2m+2 from the new
[G(K )

�k ]
2m+1,2m′+1

and [G(K )
�k ]

2m+2,2m′+2
using Eqs. (21)

and (22).
(5) Check for convergence of n2m+1 and n2m+2: if it is

achieved, then set m → m + 1 and return to step 2;
otherwise, return to step 3 without incrementing m.

The algorithm outlined above is accurate to fourth order
in the time step. This self-consistent approach is advanta-
geous, as one can execute the outer �k for-loop in step 3 in
parallel, which is the most computationally intensive step of
the algorithm. The main computational constraint comes from
the time integrals, which require considerable processing and
memory resources. If d is the number of spatial dimensions,
L is the number of sites along a crystal axis, and Nt is the
number of time steps, then the memory requirements scale
like

(
d+�L/2�

d

)
N2

t . The binomial coefficient appears as a result
of the lattice symmetries and the periodic boundary condi-
tions. Previous nonequilibrium 2PI studies which integrated
similar equations of motion did not keep all of the history of
the memory kernels for large times, which was justified by
the argument that the two-time correlator would damp at an
exponential rate [59,77–80]. We do not make this assumption
since it does not always hold for the quench protocols we
consider.

APPENDIX B: PARTICLE NUMBER CONSERVATION

In this Appendix, we identify the terms in the equations of motion that break particle number conservation. We start with
Dyson’s equation [Eq. (14)], noting that the bare propagator G0 in this context is the atomic propagator G:

G
a1a2,c

�k (τ1, τ2) ≡ Ga1a2 (τ1, τ2) +
∫

C

∫
C

dτ3dτ4 Ga1a3 (τ1, τ3)�a3a4
�k (τ3, τ4)Ga4a2,c

�k (τ4, τ2). (B1)
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Next, we act on both sides with δ(τ ′
1, τ1){i∂τ1 − E�k}, where, for the moment, E�k is an unspecified function of �k. We then

integrate over τ1 and set (τ ′
1, τ2) = (τ, τ+) and (a1, a2) = (1, 2) to get

i
∂

∂τ1
G

12,c

�k (τ1 = τ, τ2 = τ+) ≡ E�kG
12,c

�k (τ1 = τ, τ2 = τ+) +
{
i

∂

∂τ1
− E�k

}
G12(τ1 = τ, τ2 = τ+)

+
∫

C

∫
C

dτ3dτ4

{
i

∂

∂τ1
− E�k

}
G12(τ1 = τ, τ3)�1a

�k (τ3, τ4)Ga2,c

�k (τ4, τ2 = τ+). (B2)

The general form of the contour-time derivative of G
12,c

�k is

∂

∂τ1
G

12,c

�k (τ1, τ2) = −i
∂

∂τ1

{
�(τ1, τ2)〈â�k (τ1)â†

�k (τ2)〉cρ̂i
+ �(τ2, τ1)〈â†

�k (τ2)â�k (τ1)〉cρ̂i

}
= −iδ(τ1, τ2) − i�(τ1, τ2)

∂

∂τ1
〈â�k (τ1)â†

�k (τ2)〉cρ̂i
− i�(τ2, τ1)

∂

∂τ1
〈â†

�k (τ2)â�k (τ1)〉cρ̂i
, (B3)

which also applies to G12.
The Dyson’s equation can also be rewritten as follows:

G
a1a2,c

�k (τ1, τ2) ≡ Ga1a2 (τ1, τ2) +
∫

C

∫
C

dτ3dτ4G
a1a3,c

�k (τ1, τ3)�a3a4
�k (τ3, τ4)Ga4a2 (τ4, τ2). (B4)

We again act on both sides with δ(τ ′
2, τ2){i∂τ2 + E�k}, integrate over τ2, and set (τ1, τ2) = (τ, τ+), (a1, a2) = (1, 2) to get

i
∂

∂τ2
G

12,c

�k (τ1 = τ, τ2 = τ+) ≡ −E�kG
12,c

�k (τ1 = τ, τ2 = τ+) + {i∂τ2 + E�k}G12(τ1 = τ, τ2 = τ+)

+
∫

C

∫
C

dτ3dτ4G
1a,c

�k (τ1, τ3)�a2
�k (τ3, τ4)

{
i∂τ2 + E�k

}
G12,c(τ4, τ2 = τ+). (B5)

Similarly to Eq. (B3), we obtain

∂

∂τ2
G

12,c

�k (τ1, τ2) = iδ(τ1, τ2) − i�(τ1, τ2)
∂

∂τ2
〈â�k (τ1)â†

�k (τ2)〉cρ̂i
− i�(τ2, τ1)

∂

∂τ2
〈â†

�k (τ2)â�k (τ1)〉cρ̂i
. (B6)

It then follows from Eqs. (B3) and (B6) that

∂

∂τ1
G

12,c

�k (τ1 = τ, τ2 = τ+) + ∂

∂τ2
G

12,c

�k (τ1 = τ, τ2 = τ+) = −i
d

dτ1
n�k (τ1 = τ ). (B7)

Note that in the special case where G
12,c

�k = G12, one can show explicitly from the analytical expressions for G12 (see Appendix
C in Ref. [45]) that the right-hand-side of Eq. (B7) vanishes.

Next, by adding Eqs. (B2) and (B5) together, summing over all �k, and using Eqs. (B3), (B6), and (B7), we get

d

dτ1
{N (τ1 = τ )} =

∑
�k

∫
C

∫
C

dτ3dτ4

{
i

∂

∂τ1
− E�k

}
G12(τ1 = τ, τ3)�1a

�k (τ3, τ4)Ga2,c

�k (τ4, τ2 = τ+)

+
∑

�k

∫
C

∫
C

dτ3dτ4G
1a,c

�k (τ1, τ3)�a2
�k (τ3, τ4)

{
i∂τ2 + E�k

}
G12(τ4, τ2 = τ+). (B8)

Now, if we set E�k = ε�k − μ (i.e., we set E�k to the single-particle excitation energy of a free particle) and replace G12 by the
free propagator for the BHM obtained when U = 0, then{

i
∂

∂τ1
− E�k

}
G12(τ1 = τ, τ3) → δ(τ, τ3), (B9){

i
∂

∂τ2
+ E�k

}
G12,c(τ4, τ2 = τ+) → −δ(τ4, τ

′), (B10)

and Eq. (B8) would become

d

dτ1
N (τ1 = τ ) =

∑
�k

∫
C

dτ3
{
�1a

�k (τ, τ3)Ga2,c

�k (τ3, τ
+) − G1a

�k (τ, τ3)�a2
�k (τ3, τ

+)
}
. (B11)

Baym showed that the term on the right-hand-side of Eq. (B11) vanishes as long as the self-energy � is of the form δ�/δG,
with � a functional of G [81,82]. As we mention in Sec. III, we obtained our self-energy by taking a functional derivative of the
2PI effective action, which is indeed a functional of G, hence the right-hand-side of Eq. (B11) vanishes and the particle number
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is conserved. It is worth stressing that in this scenario, the self-energy need not be calculated to all orders so that the particle
number is conserved. As long as the approximation of the self-energy is of the form δ�/δG, even after taking some low-energy
approximation as we do in our ET, conservation will still be guaranteed.

In our case, G12 is not the free propagator for the BHM obtained when U = 0 but, instead, is the atomic propagator obtained in
the limit when J = 0. Hence there exists no function E�k in which Eqs. (B9) and (B10) could possibly be satisfied. The reason for
this is due to the asymmetry between the single-particle and the hole excitation energies. For the free propagator, E(+) = −E(−),
where E(+) and E(−) are the single-particle and hole excitation energies, respectively, whereas for the atomic propagator G12,
E(+) �= −E(−) for all values of μ. Due to this asymmetry, additional terms are generated, leading to

d

dτ1
N (τ1 = τ ) = i

∑
�k

∫
C

∫
C

dτ3dτ4
[
∂τ1G12

]
(τ1 = τ, τ3)�1a

�k (τ3, τ4)Ga2,c

�k (τ4, τ2 = τ+)

+ i
∑

�k

∫
C

∫
C

dτ3dτ4G
1a,c

�k (τ1, τ3)�a2
�k (τ3, τ4)[∂τ2G12](τ4, τ2 = τ+), (B12)

where we introduce the shorthand notation

[
∂τ1

]
G

12,c

�k (τ1, τ2) = −i�(τ1, τ2)
∂

∂τ1
〈â�k (τ1)â†

�k (τ2)〉cρ̂i
− i�(τ2, τ1)

∂

∂τ1
〈â†

�k (τ2)â�k (τ1)〉cρ̂i
, (B13)

[
∂τ2

]
G

12,c

�k (τ1, τ2) = −i�(τ1, τ2)
∂

∂τ2
〈â�k (τ1)â†

�k (τ2)〉cρ̂i
− i�(τ2, τ1)

∂

∂τ2
〈â†

�k (τ2)â�k (τ1)〉cρ̂i
, (B14)

where we now set E�k → 0, as it serves no purpose for us anymore. The terms on the right-hand side of (B12) are in general
not 0. If we kept all terms in the ET and did not make the low-energy approximation, then the right-hand-side of (B12) should
equal 0. However, because the bare propagator we use is the atomic propagator, Baym’s arguments do not hold in the low-energy
theory and there is not conservation of the particle number.
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