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Selective population of a large-angular-momentum state in an optical lattice
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We propose a method to selectively populate a large-angular-momentum state of ultracold atoms (each with
an orbital angular momentum l ≈ 2h̄) in the Mott regime of a two-dimensional optical lattice. This is done
by periodically modulating the lattice amplitude and implementing an additional rotated rectangular lattice of
shorter wavelength. The specific pulse sequences are designed using a four-level model for each well and are
implemented sequentially. The results are confirmed with numerical simulations of the full Schrödinger equation.
These methods are another step in constructing a modular toolbox of operations for creating higher orbital states
in optical lattices.
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I. INTRODUCTION

Optical lattices are periodic potentials formed by interfer-
ing monochromatic laser beams, which can trap many ultra-
cold atoms in large arrays [1,2]. They have found applications
in building atomic clocks [3] and as a possible architecture
for quantum computing [4–7]. It has even been made possible
to perform single site addressing with the invention of the
quantum-gas microscope [8,9]. Detailed reviews of quantum
gases in optical lattices can be found in [7,10,11].

They are predicted to be useful quantum simulators for
condensed matter physics since they are highly controllable,
i.e., one can easily adjust both the periodicity, depth, and
dimensionality of the potential. A particular milestone in in-
vestigating quantum many-body physics was the observation
of the phase transition between a superfluid and a Mott-
insulator state [12,13].

For bosonic atoms, the ground states possible in optical
lattices are necessarily positive definite, which is a general
property of bosonic ground-state wave functions [14]. How-
ever, using the orbital degrees of freedom in higher Bloch
bands (which have complex nodal geometries), one can ex-
plain many complex phases [15] and mimic the orbital physics
of electronic matter, e.g., transition metal oxides [16,17].
Hence, there has been much interest in studying the effects
of higher bands of optical lattices [18,19], e.g., extending the
bosonic Hubbard model to include higher Bloch bands [20]
and examining exotic phases arising from the interplay of
interactions and the higher bands [21]. Experiments have been
performed realizing multiorbital systems with ultracold atoms
[22–26] where the lifetimes of atoms were several tunneling
times. Properties of atoms loaded in the higher states have
been examined theoretically in [27,28].

Engineering quantum states in higher bands is therefore
clearly of large interest and several techniques have been
developed to manipulate the orbital state of atoms in optical
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lattices [19]. The idea of oscillating the lattice position or the
lattice depth was first investigated and utilized in [29].

Shaking a lattice in one direction (i.e., a periodic modula-
tion of the position of the trap minima) was initially used for
renormalizing the tunneling rate [30,31]. This allows for dy-
namical control over the Mott-insulator–superfluid transition
[32,33] and has also been used to realize the Haldane [34,35]
and Hofstadter [36,37] models. However, it has also been
proposed to prepare higher orbital states [38–42] with appli-
cations to quantum computation [43], and interferometry of
condensates [44] and noninteracting ultracold atoms [45,46].
Shaking a lattice has also been implemented experimentally
[47,48].

Periodic modulation of the lattice amplitudes has been used
in order to induce controlled transitions to higher orbital states
[49,50], e.g., creating a cluster of bipartite entangled atom
pairs in an optical superlattice [51] and for the purpose of
spectroscopy of the excitation spectrum [52–54]. Polychro-
matic amplitude modulation has also been shown to enhance
transport in an optical lattice [55].

In [41], a four-level model of the motional states of an
atom was used to design a protocol of shaking the lattice and
varying the interference term in order to create a staggered
state of atoms each with angular momentum l ≈ ±h̄ [56].
A four-band effective Hamiltonian was also used to describe
interacting fermions in a shaken square lattice [42].

In this paper, we wish to extend these methods to create a
similar state which has the same angular momentum per atom.
Our target state is a complex state which consists of each
potential well occupied by a single atom, carrying angular
momentum of ≈2h̄ (see Fig. 1). By comparison, this state
has a large total orbital angular momentum (≈2Nh̄ for N

particles) since the magnitude of the total angular momentum
in the previous case is maximally ≈h̄.

In particular, we propose a method which, starting from a
Mott-insulator ground state, prepares such a target state only
by dynamically modulating lattice amplitudes. By restricting
to the case of single site occupation it has the advantage that
heating due to collisions between several oscillating atoms
in a single site is avoided in our scheme. Specifically, the
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FIG. 1. Diagram of the counterpropagating incident laser beams
creating the two modulated lattices. The primary lattice is created
by beams in the x direction (blue horizontal lines) and y direction
(red vertical lines); the corresponding lattice sites are indicated by
green, solid circles. The rotated, temporary lattice is created by the
additional beams (orange diagonal lines) of shorter wavelength at an
angle of π/4 relative to the primary lattice; the corresponding lattice
sites are indicated by black, dashed circles. In the target state, each
site of the primary lattice contains one atom in state |+〉 with angular
momentum ≈2h̄ (indicated by solid black arcs).

atoms are first excited by amplitude modulation. Then in a
second step, angular momentum is transferred to them using
an additional rotated lattice. The methods proposed here could
also be used together with the results from [41] to form a
modular system (or building blocks) for creating different
higher orbital states.

In [49], periodic modulation of the lattice amplitudes is
used in order to induce controlled transitions to higher orbital
states. However, in that work, a filling factor of two is assumed
and the contact interaction strength between the particles
plays an important role. This work differs from the results
in [49] as we assume a filling factor of one and use no
interaction effects in order to generate the state. The methods
presented here are intended to complement those in [41],
constructing a modular toolbox of operations for creating
higher orbital states in optical lattices. The use of atoms with
angular momentum in an optical lattice has been explored
in [57,58]. Creating systems of interacting rotating ultracold
atoms in optical lattices could prove useful for investigating
quantum Hall effects [59]. Instead of applying the results to an
optical lattice, the required potentials could also be produced
by using optical tweezers [60–66].

The remainder of this paper is structured as follows. In
the next section, we derive our approximate model for the
optical lattice. In Sec. III, we used this model to construct
a sequential scheme which prepares the target angular
momentum state, using effective fixed area pulses coupling
the states. In Sec. III B, we perform numerical simulation of
the full Schrödinger equation for a single atom in one site
of an optical lattice in order to substantiate the assumptions
of our model. In Sec. IV, we comment on the experimental
parameter values required. Finally in Sec. V, we summarize
our results and discuss future extensions.

II. MODEL

In this section, we will first present the physical model
in detail. Then, a four-level approximation of this setting
is derived which will later allow us to design the required
scheme to achieve the target state.

A. Optical lattice

We consider a two-dimensional optical lattice (in the x − y

plane) generated by two pairs of counterpropagating laser
beams (which we will call the primary lattice). We assume
a strong confinement in the z direction such that only dy-
namics in the x − y plane are relevant. This is implemented
experimentally by a simple harmonic confinement in the z

direction, with a trapping frequency much greater than the
other directions (see [1,12,13], for example). This primary
lattice should have a wavelength λ = 2π/k.

The Hamiltonian for this lattice alone is separable in x

and y and therefore unable to couple the x and y degrees of
freedom, which is necessary to generate angular momentum.
On account of this, there is an additional rectangular lattice
at an angle of π/4 relative to the primary lattice whose
intensity can be varied in time (see diagram in Fig. 1). This
will be referred to as the rotated lattice and it is used to
transfer angular momentum to the atoms during the prepa-
ration scheme of the target state. The rotated lattice is only
temporary as it is switched off initially and also again when
the preparation of the target state is completed. The rotated
lattice has a shorter wavelength λs = 2π/ks = λ/

√
2 with

ks = √
2k. Hence, there is always a well of the rotated lattice

at each well of the primary lattice, as shown in Fig. 1.
Before continuing, we note that there may be alternative

ways to implement the resulting potential, other than optical
lattices. One such possibility is optical tweezers which have
been previously used for transporting atoms [60,61]. Cool-
ing of a single atom to its quantum ground state [62] and
preparation of a single atom in an optical microtrap with high
fidelity has been shown [63]. Even two-dimensional arrays of
microtraps with arbitrary geometries [64] and reconfigurable
arrays of optical tweezers have been demonstrated for single
atoms [65]. Optical microtraps could be alternatively used to
implement the resulting potential below for a single atom.

Returning to the optical lattice setting, we also assume that
the atoms are in the Mott insulator regime with filling factor
of one, i.e., each site is occupied by a single atom which is
essentially independent of all the others. One can ensure such
a regime by having a large lattice amplitude so that tunneling
rates are negligible. While it is sufficient to consider each
atom separately in the following, it is important to note that
all the operations presented here are global and will affect all
the atoms and sites simultaneously.

The potential of the primary and the rotated lattices to-
gether is given by

V (x, y) = [V0 + fx (t )] sin2 (kx) + V0 sin2 (ky) + Vc(t )

×
[

sin2

(
ks

x + y√
2

)
+ sin2

(
ks

x − y√
2

)]
(1)

= [V0 + fx (t )] sin2 (kx) + V0 sin2 (ky)

−Vc(t ) cos (2kx) cos (2ky) + Vc(t ), (2)
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where V0 + fx (t ) is the time-dependent lattice amplitude in
the x direction of the primary lattice and Vc(t ) is the time-
dependent amplitude of the rotated lattice potential. We will
ignore the time-dependent energy shift of Vc(t ) in (2) in
the following. Note that we assume that the lasers of the
unperturbed lattice are blue-shifted (i.e., V0 > 0) and we
design the protocol so that Vc � 0 during the process to avoid
any problems with the wells becoming too shallow. We also
assume that there is no significant interference terms so the
potentials simply add up. This could be achieved, for example,
by orthogonal polarizations of the lasers or different detunings
that cause a rapid time-dependent interference that averages
out on the scale of the atomic motion [67].

The single-particle Hamiltonian is given by

H (t ) = H0 + H1(t ), (3)

H0 = − h̄2

2m
∇2 + V0 sin2(kx) + V0 sin2(ky), (4)

H1(t ) = fx (t ) sin2(kx) − Vc(t ) cos (2kx) cos (2ky). (5)

The main goal is to design control schemes, i.e., the time
dependence of the functions fx (t ) and Vc(t ), which lead to
the desired final state.

More specifically, the amplitude modulation presented here
can create two excitations in a given spatial direction. The po-
sition modulation (or shaking) outlined in [41] can create one
excitation in a given spatial direction. In both cases, the part of
the wave functions in the orthogonal direction must have the
same parity for the coupling to be nonzero. In order to couple
degenerate states, one can use the cos(x) cos(y) type term
arising from an extra lattice [see Eq. (2)], to couple degenerate
states which have even-even or odd-odd parity. If the states
have an even-odd parity, one can then use the sin(x) sin(y)
type term arising from a difference in polarization of the laser
beams (see [41]).

B. Four-level approximation

We focus on an individual atom in a single well of the
lattice region defined by −� � x � � and −� � y � �, where
� = λ/4 is the lattice constant. Interaction effects of other
atoms are neglected as we are in the Mott insulator regime
with unit filling.

Analogous to [41], we make a four-level approximation
assuming that it is sufficient to considerer only the four
most relevant eigenstates of H0 localized in the central
site. Different from [41], these four eigenstates are now
{|00〉, |20〉, |02〉, |22〉} (see Fig. 2); in coordinate representa-
tion, these four basis states are given by 〈�r|ij 〉 = �i (x)�j (y),
where �0(x) and �2(x) are, respectively, the localized ground
and second excited states of a one-dimensional unperturbed
optical lattice site. The respective energies of |ij 〉 are Eij =
h̄ωij , where E00 < E02 = E20 < E22. Clearly the lattice must
be deep enough to support this many bound states. The
number of bound states in one dimension is plotted against
V0 in Fig. 3. In this paper, we consider a different physical
operation, namely amplitude modulation, than the shaking ex-
amined in [41]. This leads to a different driving Hamiltonian
H1(t ).

|20〉

|00〉

|02〉

Ω(1)
x

|22〉

Ω(2)
x

Ωc

FIG. 2. Energy level diagram for the four chosen energy eigen-
states of H0 and the various couplings between them.

We assume that fx (t ) = gx (t ) cos(ωxt ) where the am-
plitude gx (t ) varies slowly relative to cos(ωxt ). Moreover,
the fast oscillations should be done on resonance with the
transition |00〉 → |20〉 and so ωx = ωd ≡ ω20 − ω00. After
neglecting fast-oscillating terms, we arrive at the following
four-level Hamiltonian:

H4L(t ) = h̄

2

[
�(1)

x (t )|20〉〈00| − �c(t )|02〉〈20|
+�(2)

x (t )|02〉〈22| + H.c.
]
, (6)

where the relevant Rabi frequencies are

�(1)
x (t ) = gx (t )γ0

h̄
G2,0,0,0(t ),

�(2)
x (t ) = gx (t )γ0

h̄
G0,2,2,2(t ), (7)

�c(t ) = 2Vc(t )γ1

h̄
.

The full derivation and technical details, as well as the def-
initions of γ0, γ1 and Gn,m,p,q (t ) can be found in Appendix.
It is clear from this result that the state |22〉 cannot be
neglected and should be included in the approximation, as it
is resonantly coupled to |02〉.

The validity of the rotating wave and slowly varying en-
velope approximations can be heuristically combined in the
single condition T 
 ω−1

d ≈ (2ω)−1 where ω =
√

2V0k2/m

is the frequency of the harmonic approximation. The effec-
tiveness of these approximations will be checked in the next

FIG. 3. Number of bound states in one dimension against lattice
depth V0.
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section by comparing with the numerical integration of the
full Schrödinger equation.

C. Initial and target states

Our goal is to perform a state transfer from the ground state
|00〉 to the angular momentum state,

|+〉 = 1√
2

(|20〉 + i|02〉). (8)

In the harmonic limit, Lz|+〉 = 2h̄|+〉 where Lz is the z

component of the angular momentum operator.
We can see that H1(t ) is the same at every lattice site.

This is apparent since the term is invariant under the lattice
shift operations x → x ± 2� and y → y ± 2�. This ensures
the ferromagnetic pattern shown in Fig. 1.

Note that if one were interested in creating angular momen-
tum states in an alternating or checkerboard pattern (similar
to the one in [41]), one could choose a longer wavelength
λs = √

2λ, so that �c would alternate sign at every lattice site.

III. SEQUENTIAL SCHEME FOR PREPARING AN
ANGULAR MOMENTUM STATE

In this section, we present a sequential scheme which
allows us to prepare our target state in the four-level approx-
imation, i.e., �x (t ) and �c(t ). By construction, this scheme
will give fidelity one exactly in the four-level approximation.
We then convert the effective couplings �x (t ) and �c(t ) back
to the physical quantities: oscillation of the primary lattice
amplitude in the x direction fx (t ), and the amplitude of the
rotated lattice Vc(t ). This will allow us to verify if the scheme
also works in the full Schrödinger equation with high fidelity.

A. Scheme in the four-level approximation

The idea is first to perform a π pulse in �x (of duration tS)
which transfers all the population from |00〉 to |20〉, followed
by a −π/2 pulse in �c (of duration T − tS) which leads to the
superposition |+〉. This method also has the advantage that
the state |22〉 is never populated, which reduces the loss of
population to higher levels.

If we are using sequential pulses (i.e., if either gx or Vc

is nonzero, then the other must be zero) the Rabi frequencies
simplify to

�x = �(1)
x = �(2)

x = gxγ0

h̄
, (9)

where we assume gx (t ) is first implemented and only af-
terwards is Vc(t ) performed. The amplitudes of the Rabi
frequencies are determined by the switch time tS and are given
by (see Fig. 4)

�x (t ) =
{

30πt2(t−tS )2

t5
S

0 � t � tS,

0 tS < t � T ,

�c(t ) =
{

0 0 � t < tS,

15π (t−T )2(t−tS )2

(T −tS )5 tS � t � T .
(10)

Note that �x, �c and their respective derivative are zero
at the start and the end of the process. They also fulfill

FIG. 4. Rabi frequencies against time for different values of
tS/T : �x (blue thin lines) and �c (orange thick lines).

∫ T

0 �x (t )dt = π and
∫ T

0 �c(t )dt = π/2. Using a square en-
velope would be problematic due to its broad Fourier spec-
trum (i.e., the approximation that gx is slowly varying would
not be fulfilled).

B. Numerical simulations of the sequential scheme

In order to verify the approximations used to derive this
model, we now simulate the full Schrödinger equation with
Hamiltonian Eq. (3) in coordinate space for an atom initially
in the ground state of a single lattice site. The first step is to
translate the coupling coefficients �x (t ) and �x (t ) in the four-
level approximations back to the physical control parameters
fx (t ) and Vc(t ). They relate to the Rabi frequencies as

fx (t ) = h̄

γ0
�x (t ) cos (ωdt ), (11)

Vc(t ) = h̄�c(t )

2γ1
, (12)

in the sequential case. An example of the resulting functions
for the process is shown in Fig. 5. The required strength of
amplitude modulation is only a fraction of the unperturbed
lattice amplitude V0.

The time evolution of the Schrödinger equation is per-
formed by means of the Fourier split-operator method [68],
where the initial ground state is found by imaginary-time
evolution. We restrict our simulations to the dynamics of

FIG. 5. Amplitude modulation fx (t ) with ωx = ωd (thin, blue
solid line) and amplitude of additional lattice Vc(t ) (thick, orange
dotted line) versus time for tS = 0.25T , V0 = 3h̄ω and T = 750ω−1.
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(a) (b)

(c) (d)

FIG. 6. Populations against time for V0 = 3h̄ω and T = 750ω−1. Dynamics using the four-level approximation (broken lines) and the
full Schrödinger equation (thin solid nearby lines): |〈ψ (t )|00〉|2 (red dotted), |〈ψ (t )|10〉|2 (blue dashed), |〈ψ (t )|02〉|2 (green dot-dashed), and
|〈ψ (t )|+〉|2 (purple dot-dot-dashed). (a) tS/T = 0.1, (b) tS/T = 0.25, (c) tS/T = 0.75, (d) tS/T = 0.9.

an atom in a single well since we have assumed the Mott-
insulator regime.

The results of the numerical simulations of the scheme for
several values of tS are shown in Fig. 6, together with the ideal
populations based on the four-level Hamiltonian in Eq. (6).
Each subfigure corresponds to a different switch time tS and a
fixed total time T = 750ω−1. The thin, solid lines correspond
to the full Schrödinger equation and the broken lines corre-
spond to the four-level approximation. In all the subfigures,
one can see the two distinct steps of the process for both cases.
First there is the population inversion between states |00〉(red
dotted line) and |20〉(blue dashed line). After which there is
a π/2 pulse between states |20〉(blue dashed line) and |02〉
(green dot-dashed line) leading to the superposition state |+〉
(purple dot-dot dashed line).

Note that during the whole process the maximum popu-
lation leakage is minimal (<0.02 for all subfigures) and the
four-level approximation accurately reproduces the popula-
tion dynamics of the full Schrödinger equation, not just the
final state. The population of state |22〉 is 0 throughout the
whole process for the four-level approximation as one would
expect (Sec. II B). However, it is also effectively zero (<10−6)
for the full Schrödinger equation.

The fidelity of the full Schrödinger equation leads to final
fidelities greater than 0.96 regardless of the value of tS .
This confirms that the mapping to the four-level model is
accurate and the scheme works correctly. Some values of tS
do produce higher fidelities than others. Notably tS/T = 0.9
[see Fig. 6(d)] has the worst final fidelity while tS/T = 0.25
[see Fig. 6(b)] has the best.

In Fig. 6(b), there is good agreement between the approxi-
mation and the full dynamics. While this agreement is not as

good in Fig. 6(d), this is clearly not due to population leakage.
The connection between the Rabi frequencies and physical
control parameters [see Eqs. (11) and (12)] becomes less valid
here leading to imperfect population inversion.

Of course this model is never perfectly valid, leading to
population losses which can be seen in Fig. 7. Different switch
times tS are shown in the subfigures while the total time is the
same in all. The setting shown corresponds to the previous
figure (Fig. 6).

Even though the total losses outside the four-dimensional
subspace at the final time are extremely small, it is still useful
to identify the most critical source of errors. The states |40〉
and |04〉 are the lowest energy states of the correct parity
which are neglected in the four-level approximation. Due to
the path chosen (i.e., oscillating in x rather than y in the initial
step), the most dominant source of losses and leakage is to the
state |40〉.

Therefore apart from the total loss (blue solid lines), the
loss into any state other than |40〉 (red dashed line) is also
shown in Fig. 7 such that the shaded blue region corresponds
to the loss into state |40〉. In Figs. 7(a) and 7(b), the main loss
is during the first step to state |40〉 (blue shaded area). One
can see the oscillations of this loss which originate from the
oscillations fx (t ).

In Fig. 6(d), there is an imperfect population inversion.
However, the loss [see Fig. 7(d)] during this phase is neg-
ligible. This underlines that this infidelity is not due to
leakage to other levels but to the imperfect population in-
version originating from the mapping between �x and the
coupling strength fx (t ). Even in the second step it can be
seen in Figs. 7(b)–7(d) that the state |40〉 is still the most
relevant.
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FIG. 7. Population losses outside the subspace against time for V0 = 3h̄ω and T = 750ω−1; 1 − ∑
i,j∈{0,2} |〈ψ (t )|ij〉|2 (blue solid upper

line), 1 − ∑
i,j∈{0,2} |〈ψ (t )|ij〉|2 − |〈ψ (t )|40〉|2 (red dashed lower line), and |〈ψ (t )|40〉|2 (blue shaded area). (a) tS/T = 0.1, (b) tS/T = 0.25,

(c) tS/T = 0.75, and (d) tS/T = 0.9.

Note that the maximum unwanted excitations occur at the
maximum intensities of the two sequential pulses and there
are higher losses for pulses of shorter duration.

C. Fidelity dependence on different physical parameters

We now consider how the fidelity of this scheme depends
on different physical parameters. First, the final fidelity of
the scheme for different switch times tS is shown in Fig. 8.
The highest fidelity is obtained for a switch time of tS/T ≈
0.25. This effect is likely due to the fact that the second
pulse must neglect many more transitions in the rotating wave
approximation than the first pulse [see Eq. (A2)] and hence
would require more operation time. As the choice of tS does
not affect the fidelity greatly, from this point on we will fix
tS/T = 0.25.

FIG. 8. Fidelity |〈ψ (T )|+〉|2 against tS for V0 = 3h̄ω and T =
750ω−1.

In Fig. 9, we can see the fidelity for different total times
T and different lattice depths V0. As expected, the fidelity
generally increases as the total time T increases, since the ro-
tating wave approximation becomes more valid in this regime.
This highlights that the four-level model breaks down for very
short operation times. The lattice depth also slightly affects
the fidelity, with the maximum fidelities achieved for V0 ≈
3h̄ω. For very shallow depths the target state is likely too
weakly bound and close to the continuum. However, for large
lattice depth, the energy levels become equally spaced and
other states cannot be neglected. This heuristically explains
why the optimal depth is this intermediate value, since the

FIG. 9. Fidelity |〈ψ (T )|+〉|2 against total time T for different
lattice depths V0 for a fixed trapping frequency ω with tS = 0.25T .
Points joined with lines: V0 = 2.5h̄ω (red circles), V0 = 3.0h̄ω (blue
squares), V0 = 3.5h̄ω (green diamonds), and V0 = 4.0h̄ω (black
triangles).
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FIG. 10. Fidelity |〈ψ (T )|+〉|2 against the deviation from reso-
nant oscillation (ωx − ωd )/ω for V0 = 3h̄ω, T = 750ω−1, and tS =
0.25T . Red points correspond to the full Schrödinger equation,
dashed blue line to the four-level model, and dotted green line to
the four-level model shifted by ≈0.0021.

four-level model does not account for the effect of all these
other levels.

Finally, in Fig. 10, we can see the resonance curve for the
processes, i.e., the fidelity against the detuning of the ampli-
tude modulation frequency. We compare the four-level model
after applying the rotating wave approximation but without
assuming ωx = ωd , against the full Schrödinger equation
dynamics. As expected, one achieves high fidelity when the
amplitude oscillation frequency is essentially on resonance.
One can see that the process is highly selective (full width at
half maximum ≈0.0427ω−1).

By assuming a constant Rabi frequency and considering
the detuned transitioned transition between |00〉 and |20〉, one
can obtain an explicit formula for the fidelity as a function of
detuning. It roughly varies as shifted sinc2(x) = sin2(x)/x2.
Motivated by this, we have fit our data with this curve and
obtain an R squared value of 0.99997. Other typical reso-
nance functions such as Gaussian, Lorentzian, or Voigt do
not provide as good a fit. Hence this resonance curve is most
accurately modeled by a sinc2(x) function. Since the second
pulse is not affected by using a different frequency amplitude
modulation, this effect is not the result of multiple transitions.

However, the highest fidelity of the full dynamics is
achieved for a slightly off resonant frequency ωx ≈ ωd +
0.0021ω. This is not true in the four-level model, as the
corresponding curves have their maximum at resonance. The
reason for this shift is the presence of an off resonant coupling
to the state |40〉 (which is not present in the four-level model).
By slightly increasing the detuning of �x with respect to
the |00〉 ↔ |20〉 transition, an even greater detuning in the
coupling between |20〉 and |40〉 is created, leading to less
leakage to these higher states.

In detail, this can be seen explicitly by adiabatically elim-
inating |40〉, which adds a detuning term. Note that E40 <

E22 = 2E20 which implies that h̄ωd > E40 − (E20 + E00)
leading to a positive detuning for the state |40〉. Therefore the
adiabatic elimination leads to an effective, positive detuning
acting on state |20〉, the positive shifts the value of ωx − ωd

results in a negative detuning on state |20〉, and the maximum
fidelity corresponds roughly to a cancellation of these two
detunings. Shifting the four-level model results by 0.0021

(green dotted line) corresponds very well with the results from
the full dynamics. Similar effects can be seen in [41,51].

IV. EXPERIMENTAL CONSIDERATIONS

The optical potential in Eq. (2) could be implemented in a
number of ways. It can be implemented by superimposing two
square optical lattice potentials with wavelengths that differ
by a factor of 2. Since one is rotated with respect to the other,
the corresponding required lattice geometry is achieved; this
has been experimentally shown in [69] and references therein.

An alternative way is by shining two laser beams of the
same wavelength at an angle to generate the required one-
dimensional lattice where the well distance can be adjusted by
changing the angle (see [70] for an experimental implemen-
tation of this). This basic idea to generate one-dimensional
lattices can be generalized using an additional pair of lasers
at a right angle to the first pair to generate a two-dimensional
optical lattice with the required effective wavelength.

Another such possibility is optical tweezers, where there
are a variety of established techniques. Acousto-optic deflec-
tors allow one to control the position and intensity of a laser
beam. An acoustic wave generates a defractive pattern for the
laser leading to arbitrary two-dimensional atomic arrays [66].
Another example are liquid crystal spatial light modulators
[64] which can imprint a specific phase pattern on the laser
beam being focused by a lens. In such a way the intensity
profile in the focal place is the Fourier transformation of
this phase-modified beam. Digital mirror devices, which are
arrays of micromechanical mirrors, allow a holographically
generation of arrays of dipole traps [65]. This device imprints
a binary (mirrors can be “on” or “off”) amplitude hologram
of the desired trapping potential on the beam. This is then
transformed on to an asperic lens and the trapping potential
is again formed in the focal plane of the lens. With such a
variety of techniques available, optical tweezers could prove
to be a useful alternative implementation.

A state of atoms with nonzero orbital angular momentum
can be detected by measuring the density-density correlation
function [71]. Parameter values of V0/(h̄ω) = 3.5 and ωT =
500 could, for example, be experimentally realized using
133Cs atoms with lasers of wavelength λ = 1064 nm and a
lattice depth of 49Er for the unperturbed lattice, where Er =
h̄2k2

2m
is the recoil energy. The amplitude oscillation frequency

required would be ωd/(2π ) ≈ 31 kHz and the total operation
time would be T ≈ 4.3 ms.

We have estimated the tunneling frequency by simulating
the central atom alone on a 3 × 3 lattice. The tunneling rate
for the second excited state between two sites is given by
R2 ≈ 0.00157ω ≈ 183 Hz for V0/(h̄ω) = 3.5. The time scale
associated with this is 1/R2 ≈ 5.5 ms which is longer than the
operation time T . This could also have been approximated by

R2 ≈ 2

h̄

∫ 3�

−�

�2(x)V0 sin2(kx)�2(x − 2�)dx. (13)

Note that the effective tunneling rate for the atom during
the process is overestimated here since the natural repulsive
interaction between the atoms is not accounted for and R2 is
assumed to be the relevant tunneling rate during the whole
process. While the ground-state tunneling rate R0 is also
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relevant, R2 > R0 so R2 provides the strictest estimate of the
operation time needed.

V. CONCLUSIONS

We have developed a scheme to prepare a large-angular-
momentum state, namely one with each atom having approx-
imately two units of orbital angular momentum, starting from
a Mott insulator state in an optical lattice. This is done by
modulating the lattice amplitude and the addition of a rotated
rectangular lattice.

The methods proposed here could be used in conjunction
with the results from [41] to form a modular system (or
building blocks) for creating different higher orbital states.
Each particular operation fulfills a different general role.

This work can be extended by using nonsequential pulses
designed using Lewis-Riesenfeld invariants [72] for four-level
systems [41,73]. Designing the pulses in this way would have
the important advantage that they could be optimized against
noise, systematic errors or unwanted transitions to higher
levels [74,75]. The four-level model derived is quite general
and could be used to prepare other superpositions of the basis
states.

Since these results are for the Mott insulator regime (where
only one atom populates each potential well), they could also
be useful in single atom optical tweezer experiments where
one can achieve ∼90% single atom occupancy in such a trap
or collection of traps [63]. This would be an attractive option
for studying two atom interactions in the context of angular
momentum.
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APPENDIX: DERIVATION OF THE FOUR–LEVEL
APPROXIMATION

In this Appendix we will provide the full deriva-
tion of the four-level model in Eq. (6). Let H̃ (t ) =∑

j=00,02,20,22

∑
k=00,02,20,22 |j 〉〈j |H (t )|k〉〈k|. We want to re-

move most of the diagonal terms of H̃ (t ). Therefore, we
define a unitary transformation of the form,

U (t ) = ei(ωx−ω20 )tχ00(t )|00〉〈00| + e−iω20tχ02(t )|02〉〈02|
+ e−iω20tχ20(t )|20〉〈20| + e−iω22tχ22(t )|22〉〈22|,

(A1)

under which the Hamiltonian changes as H → U †HU −
ih̄U †U̇ = H4L. Note that the unperturbed lattice is separable
which gives ω22 = 2ω20 − ω00. This leads to

H4L = h̄(ωx − ωd )|00〉〈00|
+ [γ0fx (t ) − Vc(t )γ2]eiωx t χ̃2,0,0,0(t )|20〉〈00|
+ [γ0fx (t ) − Vc(t )γ3]e−iωd t χ̃0,2,2,2(t )|02〉〈22|
−Vc(t )γ1e

−i(ωx+ωd )t χ̃0,0,2,2(t )|00〉〈22|

−Vc(t )γ2e
−iωx t χ̃0,0,0,2(t )|00〉〈02|

−Vc(t )γ1χ̃2,0,0,2(t )|20〉〈02|
−Vc(t )γ3e

−iωd t χ̃2,0,2,2(t )|20〉〈22| + H.c., (A2)

where we have defined

αn =
∫ �

−�

�2
n(x) sin2(kx)dx, (A3)

βn =
∫ �

−�

�2
n(x) cos(2kx)dx, (A4)

χn,m(t ) = exp

{
− i

h̄

[
αn

∫ t

0
dsfx (s) − βnβm

∫ t

0
dsVc(s)

]}
.

(A5)

and

χ̃n,m,p,q (t ) = χ∗
n,m(t )χp,q (t ), (A6)

γ0 =
∫ �

−�

�0(x) sin2(kx)�2(x)dx, (A7)

γ1 =
[∫ �

−�

�0(x) cos(2kx)�2(x)dx

]2

, (A8)

(a)

(b)

(c)

FIG. 11. Parameters (a) αn and βn, (b) γn, and (c) ωd (solid blue
line) and A0,2 (dashed red line) against lattice depth V0.
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γ2 =
∫ �

−�

�0(x) cos(2kx)�0(x)dx

×
∫ �

−�

�0(y) cos(2ky)�2(y)dy, (A9)

γ3 =
∫ �

−�

�0(x) cos(2kx)�2(x)dx

×
∫ �

−�

�2(y) cos(2ky)�2(y)dy. (A10)

The parameters α0,2 and β0,2 (which determine to what
extent some terms can be neglected) are plotted for different
values of V0 in Fig. 11(a). In the harmonic limit (V0 → ∞),
α0,2 → 0, and β0,2 → 1. The parameters γn (which determine
how strongly states are coupled) are shown in Fig. 11(b) where
one can clearly see that γn → 0 ∀n in the harmonic limit.

We assume that fx (t ) = gx (t ) cos(ωxt ), i.e., it consists of
a slowly varying envelope gx (t ) and a fast oscillating term
cos (ωxt ) with ωx = ωd . This resonant frequency ωd → 2ω

in the harmonic limit is shown in Fig. 11(c).

This allows us to simplify the χ̃n,m,p,q (t ) terms. First, using
partial integration we have∫ t

0
fx (s)ds =

∫ t

0
gx (s) cos(ωds)ds

= 1

ωd

[
gx (t ) sin(ωdt ) −

∫ t

0
ġx (s) sin(ωds)ds

]

≈ 1

ωd

gx (t ) sin(ωdt ). (A11)

Second, we make use of the Jacobi-Anger expansion [76],

e−iκ sin(�t ) =
∞∑

k=−∞
Jk (κ )e−ik�t , (A12)

where Jk (κ ) is a Bessel function of the first kind and κ

is constant in time. We assume that this relation is also
approximately valid for κ slowly varying relative to a fast
oscillating sin(�t ) term. If we now define Ap,n = αp−αn

h̄ωd
, we

can write the first type of term in H4L [see Eq. (A2)] as

e±iωd t γ0fx (t )χ̃n,m,p,q = gx (t )

2
γ0(1 + e±2iωd t )χ̃n,m,p,q

≈ gx (t )

2
γ0

{ ∞∑
k=−∞

Jk[Ap,ngx (t )][e−ikωd t + e−i(k∓2)ωd t ]

}
Gn,m,p,q (t )

≈ gx (t )

2
γ0

{
J0[Ap,ngx (t )] + J±2[Ap,ngx (t )]

}
Gn,m,p,q (t ), (A13)

where in the last step we have assumed that all fast rotating terms can be ignored (i.e., a rotating wave approximation) and used
the definition,

Gn,m,p,q (t ) = exp

[
i

h̄
(βpβq − βnβm)

∫ t

0
dsVc(s)

]
. (A14)

Note that Gn,m,p,q (t ) survives the rotating wave approxi-
mation since βpβq − βnβm � ωd/ω.

The second type of term in H4L is given for a ∈ {1, 2, 3}
and b ∈ {0, 1, 2} as

Vcγae
±biωd t χ̃n,m,p,q

≈ Vcγae
±biωd t

{ ∞∑
k=−∞

Jk

[
Ap,ngx (t )

]
e−ikωd t

}
Gn,m,p,q (t )

≈ VcγaJ±b

[
Ap,ngx (t )

]
,

where in the last step we have again made a rotating wave
approximation.

In order to get the desired coupling structure, we use
the fact that |Ap,n| � 1. This is easy to see since A0,0 =
A2,2 = 0 and |A2,0| = |A0,2| � 1 [see Fig. 11(c)]. Using this
approximation we set J0(A0,2gx ) ≈ 1 and J1,2(A0,2gx ) ≈ 0.
After making these last approximations, one arrives at the
four-level model Hamiltonian in Eq. (6).

To summarize, we have used the following approximations
in this derivation: There are only four relevant basis states,
the function gx (t ) varies slowly relative to cos(ωdt ), i.e.,
| ∫ t

0 ġx (s) sin(ωds)ds| � 1, and A0,2 � 1.
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[42] A. Keleş, E. Zhao, and W. V. Liu, Phys. Rev. A 95, 063619
(2017).

[43] P. I. Schneider and A. Saenz, Phys. Rev. A 85, 050304(R)
(2012).

[44] S. van Frank, A. Negretti, T. Berrada, R. Bücker, S. Mon-
tangero, J. F. Schaff, T. Schumm, T. Calarco, and J. Schmied-
mayer, Nat. Commun. 5, 400 (2014).

[45] C. A. Weidner, H. Yu, R. Kosloff, and D. Z. Anderson, Phys.
Rev. A 95, 043624 (2017).

[46] C. A. Weidner and D. Z. Anderson, Phys. Rev. Lett. 120,
263201 (2018).

[47] C. V. Parker, L. C. Ha, and C. Chin, Nat. Phys. 9, 769 (2013).
[48] M. A. Khamehchi, C. Qu, M. E. Mossman, C. Zhang, and P.

Engels, Nat. Commun. 7, 10867 (2016).
[49] T. Sowinski, Phys. Rev. Lett. 108, 165301 (2012).
[50] M. Lacki and J. Zakrzewski, Phys. Rev. Lett. 110, 065301

(2013).
[51] L. Cao, X. Deng, Q.-R. Zhu, X.-F. Xu, X.-T. Fang, X. Gao,

P. Schmelcher, and Z.-K. Hu, Phys. Rev. A 97, 063620
(2018).

[52] T. Stoferle, H. Moritz, C. Schori, M. Kohl, and T. Esslinger,
Phys. Rev. Lett. 92, 130403 (2004).

[53] C. Kollath, A. Iucci, T. Giamarchi, W. Hofstetter, and U. Scholl-
wock, Phys. Rev. Lett. 97, 050402 (2006).

[54] P. L. Pedersen, M. Gajdacz, N. Winter, A. J. Hilliard, J. F.
Sherson, and J. Arlt, Phys. Rev. A 88, 023620 (2013).

[55] R. A. Pepino, W. P. Teh, and L. J. Magness, New J. Phys. 18,
013031 (2016).

[56] A. Collin, J. Larson, and J. P. Martikainen, Phys. Rev. A 81,
023605 (2010).

[57] G. Pelegri, J. Polo, A. Turpin, M. Lewenstein, J. Mompart, and
V. Ahufinger, Phys. Rev. A 95, 013614 (2017).

[58] J. Pietraszewicz, T. Sowinski, M. Brewczyk, J. Zakrzewski, M.
Lewenstein, and M. Gajda, Phys. Rev. A 85, 053638 (2012).

[59] N. Gemelke, E. Sarajlic, and S. Chu, arXiv:1007.2677.
[60] J. Beugnon et al., Nat. Phys. 3, 696 (2007).
[61] A. Couvert, T. Kawalec, G. Reinaudi, and D. Guéry-Odelin,

Europhys. Lett. 83, 13001 (2008).
[62] A. M. Kaufman, B. J. Lester, and C. A. Regal, Phys. Rev. X 2,

041014 (2012).
[63] A. V. Carpentier, Y. H. Fung, P. Sompet, A. J. Hilliard, T. G.

Walker, and M. F. Andersen, Laser Phys. Lett. 10, 125501
(2013).

[64] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A.
Vernier, T. Lahaye, and A. Browaeys, Phys. Rev. X 4, 021034
(2014).

[65] D. Stuart and A. Kuhn, New J. Phys. 20, 023013 (2018).
[66] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A.

Browaeys, Science 354, 1021 (2016).
[67] D. J. Han, M. T. DePue, and D. S. Weiss, Phys. Rev. A 63,

023405 (2001).
[68] J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129

(1976).
[69] M. Di Liberto, A. Hemmerich, and C. Morais Smith, Phys. Rev.

Lett. 117, 163001 (2016).
[70] P. Krüger, Z. Hadzibabic, and J. Dalibard, Phys. Rev. Lett. 99,

040402 (2007).
[71] S. Liu, H. Xiong, and B. Lu, Phys. Rev. A 77, 063619 (2008).

053616-10

https://doi.org/10.1143/JJAP.43.8376
https://doi.org/10.1143/JJAP.43.8376
https://doi.org/10.1143/JJAP.43.8376
https://doi.org/10.1143/JJAP.43.8376
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1016/S1049-250X(05)52001-9
https://doi.org/10.1016/S1049-250X(05)52001-9
https://doi.org/10.1016/S1049-250X(05)52001-9
https://doi.org/10.1016/S1049-250X(05)52001-9
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1038/nature08244
https://doi.org/10.1038/nature08244
https://doi.org/10.1038/nature08244
https://doi.org/10.1038/nature08244
https://doi.org/10.1142/S0217984909017777
https://doi.org/10.1142/S0217984909017777
https://doi.org/10.1142/S0217984909017777
https://doi.org/10.1142/S0217984909017777
http://arxiv.org/abs/arXiv:1707.4756
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1038/nphys1894
https://doi.org/10.1038/nphys1894
https://doi.org/10.1038/nphys1894
https://doi.org/10.1038/nphys1894
https://doi.org/10.1088/0034-4885/79/11/116401
https://doi.org/10.1088/0034-4885/79/11/116401
https://doi.org/10.1088/0034-4885/79/11/116401
https://doi.org/10.1088/0034-4885/79/11/116401
https://doi.org/10.1103/PhysRevA.72.053604
https://doi.org/10.1103/PhysRevA.72.053604
https://doi.org/10.1103/PhysRevA.72.053604
https://doi.org/10.1103/PhysRevA.72.053604
https://doi.org/10.1103/PhysRevB.87.224505
https://doi.org/10.1103/PhysRevB.87.224505
https://doi.org/10.1103/PhysRevB.87.224505
https://doi.org/10.1103/PhysRevB.87.224505
https://doi.org/10.1103/PhysRevA.72.053605
https://doi.org/10.1103/PhysRevA.72.053605
https://doi.org/10.1103/PhysRevA.72.053605
https://doi.org/10.1103/PhysRevA.72.053605
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1088/0953-4075/49/4/042001
https://doi.org/10.1088/0953-4075/49/4/042001
https://doi.org/10.1088/0953-4075/49/4/042001
https://doi.org/10.1088/0953-4075/49/4/042001
https://doi.org/10.1103/PhysRevA.87.063638
https://doi.org/10.1103/PhysRevA.87.063638
https://doi.org/10.1103/PhysRevA.87.063638
https://doi.org/10.1103/PhysRevA.87.063638
http://arxiv.org/abs/arXiv:1712.7520
https://doi.org/10.1103/PhysRevLett.111.215302
https://doi.org/10.1103/PhysRevLett.111.215302
https://doi.org/10.1103/PhysRevLett.111.215302
https://doi.org/10.1103/PhysRevLett.111.215302
https://doi.org/10.1088/1367-2630/17/5/053004
https://doi.org/10.1088/1367-2630/17/5/053004
https://doi.org/10.1088/1367-2630/17/5/053004
https://doi.org/10.1088/1367-2630/17/5/053004
https://doi.org/10.1088/0953-4075/35/14/307
https://doi.org/10.1088/0953-4075/35/14/307
https://doi.org/10.1088/0953-4075/35/14/307
https://doi.org/10.1088/0953-4075/35/14/307
https://doi.org/10.1103/PhysRevLett.95.170404
https://doi.org/10.1103/PhysRevLett.95.170404
https://doi.org/10.1103/PhysRevLett.95.170404
https://doi.org/10.1103/PhysRevLett.95.170404
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevLett.107.255301
https://doi.org/10.1103/PhysRevLett.107.255301
https://doi.org/10.1103/PhysRevLett.107.255301
https://doi.org/10.1103/PhysRevLett.107.255301
https://doi.org/10.1103/PhysRevA.90.051601
https://doi.org/10.1103/PhysRevA.90.051601
https://doi.org/10.1103/PhysRevA.90.051601
https://doi.org/10.1103/PhysRevA.90.051601
https://doi.org/10.1103/PhysRevA.91.053602
https://doi.org/10.1103/PhysRevA.91.053602
https://doi.org/10.1103/PhysRevA.91.053602
https://doi.org/10.1103/PhysRevA.91.053602
https://doi.org/10.1103/PhysRevLett.115.225301
https://doi.org/10.1103/PhysRevLett.115.225301
https://doi.org/10.1103/PhysRevLett.115.225301
https://doi.org/10.1103/PhysRevLett.115.225301
https://doi.org/10.1088/0953-4075/49/21/215003
https://doi.org/10.1088/0953-4075/49/21/215003
https://doi.org/10.1088/0953-4075/49/21/215003
https://doi.org/10.1088/0953-4075/49/21/215003
https://doi.org/10.1103/PhysRevA.95.063619
https://doi.org/10.1103/PhysRevA.95.063619
https://doi.org/10.1103/PhysRevA.95.063619
https://doi.org/10.1103/PhysRevA.95.063619
https://doi.org/10.1103/PhysRevA.85.050304
https://doi.org/10.1103/PhysRevA.85.050304
https://doi.org/10.1103/PhysRevA.85.050304
https://doi.org/10.1103/PhysRevA.85.050304
https://doi.org/10.1038/ncomms5009
https://doi.org/10.1038/ncomms5009
https://doi.org/10.1038/ncomms5009
https://doi.org/10.1038/ncomms5009
https://doi.org/10.1103/PhysRevA.95.043624
https://doi.org/10.1103/PhysRevA.95.043624
https://doi.org/10.1103/PhysRevA.95.043624
https://doi.org/10.1103/PhysRevA.95.043624
https://doi.org/10.1103/PhysRevLett.120.263201
https://doi.org/10.1103/PhysRevLett.120.263201
https://doi.org/10.1103/PhysRevLett.120.263201
https://doi.org/10.1103/PhysRevLett.120.263201
https://doi.org/10.1038/nphys2789
https://doi.org/10.1038/nphys2789
https://doi.org/10.1038/nphys2789
https://doi.org/10.1038/nphys2789
https://doi.org/10.1038/ncomms10867
https://doi.org/10.1038/ncomms10867
https://doi.org/10.1038/ncomms10867
https://doi.org/10.1038/ncomms10867
https://doi.org/10.1103/PhysRevLett.108.165301
https://doi.org/10.1103/PhysRevLett.108.165301
https://doi.org/10.1103/PhysRevLett.108.165301
https://doi.org/10.1103/PhysRevLett.108.165301
https://doi.org/10.1103/PhysRevLett.110.065301
https://doi.org/10.1103/PhysRevLett.110.065301
https://doi.org/10.1103/PhysRevLett.110.065301
https://doi.org/10.1103/PhysRevLett.110.065301
https://doi.org/10.1103/PhysRevA.97.063620
https://doi.org/10.1103/PhysRevA.97.063620
https://doi.org/10.1103/PhysRevA.97.063620
https://doi.org/10.1103/PhysRevA.97.063620
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.97.050402
https://doi.org/10.1103/PhysRevLett.97.050402
https://doi.org/10.1103/PhysRevLett.97.050402
https://doi.org/10.1103/PhysRevLett.97.050402
https://doi.org/10.1103/PhysRevA.88.023620
https://doi.org/10.1103/PhysRevA.88.023620
https://doi.org/10.1103/PhysRevA.88.023620
https://doi.org/10.1103/PhysRevA.88.023620
https://doi.org/10.1088/1367-2630/18/1/013031
https://doi.org/10.1088/1367-2630/18/1/013031
https://doi.org/10.1088/1367-2630/18/1/013031
https://doi.org/10.1088/1367-2630/18/1/013031
https://doi.org/10.1103/PhysRevA.81.023605
https://doi.org/10.1103/PhysRevA.81.023605
https://doi.org/10.1103/PhysRevA.81.023605
https://doi.org/10.1103/PhysRevA.81.023605
https://doi.org/10.1103/PhysRevA.95.013614
https://doi.org/10.1103/PhysRevA.95.013614
https://doi.org/10.1103/PhysRevA.95.013614
https://doi.org/10.1103/PhysRevA.95.013614
https://doi.org/10.1103/PhysRevA.85.053638
https://doi.org/10.1103/PhysRevA.85.053638
https://doi.org/10.1103/PhysRevA.85.053638
https://doi.org/10.1103/PhysRevA.85.053638
http://arxiv.org/abs/arXiv:1007.2677
https://doi.org/10.1038/nphys698
https://doi.org/10.1038/nphys698
https://doi.org/10.1038/nphys698
https://doi.org/10.1038/nphys698
https://doi.org/10.1209/0295-5075/83/13001
https://doi.org/10.1209/0295-5075/83/13001
https://doi.org/10.1209/0295-5075/83/13001
https://doi.org/10.1209/0295-5075/83/13001
https://doi.org/10.1103/PhysRevX.2.041014
https://doi.org/10.1103/PhysRevX.2.041014
https://doi.org/10.1103/PhysRevX.2.041014
https://doi.org/10.1103/PhysRevX.2.041014
https://doi.org/10.1088/1612-2011/10/12/125501
https://doi.org/10.1088/1612-2011/10/12/125501
https://doi.org/10.1088/1612-2011/10/12/125501
https://doi.org/10.1088/1612-2011/10/12/125501
https://doi.org/10.1103/PhysRevX.4.021034
https://doi.org/10.1103/PhysRevX.4.021034
https://doi.org/10.1103/PhysRevX.4.021034
https://doi.org/10.1103/PhysRevX.4.021034
https://doi.org/10.1088/1367-2630/aaa634
https://doi.org/10.1088/1367-2630/aaa634
https://doi.org/10.1088/1367-2630/aaa634
https://doi.org/10.1088/1367-2630/aaa634
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1103/PhysRevA.63.023405
https://doi.org/10.1103/PhysRevA.63.023405
https://doi.org/10.1103/PhysRevA.63.023405
https://doi.org/10.1103/PhysRevA.63.023405
https://doi.org/10.1007/BF00896333
https://doi.org/10.1007/BF00896333
https://doi.org/10.1007/BF00896333
https://doi.org/10.1007/BF00896333
https://doi.org/10.1103/PhysRevLett.117.163001
https://doi.org/10.1103/PhysRevLett.117.163001
https://doi.org/10.1103/PhysRevLett.117.163001
https://doi.org/10.1103/PhysRevLett.117.163001
https://doi.org/10.1103/PhysRevLett.99.040402
https://doi.org/10.1103/PhysRevLett.99.040402
https://doi.org/10.1103/PhysRevLett.99.040402
https://doi.org/10.1103/PhysRevLett.99.040402
https://doi.org/10.1103/PhysRevA.77.063619
https://doi.org/10.1103/PhysRevA.77.063619
https://doi.org/10.1103/PhysRevA.77.063619
https://doi.org/10.1103/PhysRevA.77.063619


SELECTIVE POPULATION OF A LARGE-ANGULAR- … PHYSICAL REVIEW A 98, 053616 (2018)

[72] H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458
(1969).

[73] Y. C. Li, D. Martínez-Cercos, S. Martínez-Garaot, X. Chen, and
J. G. Muga, Phys. Rev. A 97, 013830 (2018).

[74] A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, New J.
Phys. 14, 093040 (2012).

[75] A. Kiely and A. Ruschhaupt, J. Phys. B 47, 115501
(2014).

[76] M. Abramowitz and I. A. Stegun, Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathemati-
cal Tables (Dover Publications, Washington, DC/New York,
1983).

053616-11

https://doi.org/10.1063/1.1664991
https://doi.org/10.1063/1.1664991
https://doi.org/10.1063/1.1664991
https://doi.org/10.1063/1.1664991
https://doi.org/10.1103/PhysRevA.97.013830
https://doi.org/10.1103/PhysRevA.97.013830
https://doi.org/10.1103/PhysRevA.97.013830
https://doi.org/10.1103/PhysRevA.97.013830
https://doi.org/10.1088/1367-2630/14/9/093040
https://doi.org/10.1088/1367-2630/14/9/093040
https://doi.org/10.1088/1367-2630/14/9/093040
https://doi.org/10.1088/1367-2630/14/9/093040
https://doi.org/10.1088/0953-4075/47/11/115501
https://doi.org/10.1088/0953-4075/47/11/115501
https://doi.org/10.1088/0953-4075/47/11/115501
https://doi.org/10.1088/0953-4075/47/11/115501

