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Virial coefficients of one-dimensional and two-dimensional Fermi gases by
stochastic methods and a semiclassical lattice approximation
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We map out the interaction effects on the first six virial coefficients of one-dimensional Fermi gases with
zero-range attractive and repulsive interactions and the first four virial coefficients of the two-dimensional analog
with attractive interactions. To that end, we use two nonperturbative stochastic methods: projection by complex
stochastic quantization, which allows us to determine high-order coefficients at weak coupling and estimate
the radius of convergence of the virial expansion, and a path-integral representation of the virial coefficients. To
complement our numerical calculations, we present leading-order results in a semiclassical lattice approximation,
which we find to be surprisingly close to the expected answers.
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I. INTRODUCTION

The thermodynamics of strongly coupled matter is a topic
of current interest in areas of physics that cover a wide range
of scales, from quantum chromodynamics (QCD) [1] to ultra-
cold atoms [2–4]. The finite temperature and density behavior
of QCD is, in fact, one of the pressing challenges of that field
as QCD at the finite baryon chemical potential is realized
in relativistic heavy-ion collisions and deep inside neutron
stars [1,5]. On the other hand, ultracold atoms have become
an especially appealing laboratory to probe the properties of
strongly coupled matter due to their purity and malleability
and, in particular, due to the experimentalists’ power to mod-
ify the interaction by dialing an external magnetic field across
a Feshbach resonance [6]. Naturally, this amount of control
on the experimental side poses a challenge to theoretical
approaches. Indeed, strongly coupled atoms can be routinely
studied, but their precise quantitative analysis on the theory
side usually requires ab initio nonperturbative tools, such as
the quantum Monte Carlo methods.

An alternative way to characterize the thermodynamics of
a many-body system has historically been given by the virial
expansion (VE), which is nonperturbative and valid in the
dilute limit. The VE is an expansion in powers of the fugacity
z = eβμ (where β is the inverse temperature and μ is the
chemical potential) such that the grand-canonical partition
function is written as

Z =
∞∑

n=0

Qnz
n, (1)

where Qn’s are the n-particle canonical partition functions.
We arrive at the most common form of the VE by expanding
the pressure P in powers of z,

βPV = ln Z = Q1

∞∑
n=1

bnz
n, (2)

where V is the (d-dimensional, spatial) volume and bn are
the virial coefficients. Other quantities of interest besides P

can also be expanded in powers of z (see, e.g., Ref. [7]).
The appeal of the VE is that it encodes, at order n, how
the two- through n-body problems govern the physics of the
many-body system. Using Eq. (1) in Eq. (2) one sees this
explicitly,

b2 = Q2

Q1
− Q1

2
, (3)

b3 = Q3

Q1
− Q2 + Q2

1

3
, (4)

b4 = Q4

Q1
− Q3 − Q2

2

2Q1
+ Q2Q1 − Q3

1

4
, (5)

and so forth. The above equations are entirely based on
thermodynamics and valid for arbitrary interaction and spatial
dimension.

The task of calculating bn has typically been equated with
solving the n-body problem, constructing the Qn, and insert-
ing those in the above equations. It is therefore not surprising
that second-order calculations are easily carried out as all that
is needed for b2 is the solution to the two-body problem. In
fact, formulas exist for b2 for many cases, some of which
we quote below, based on the celebrated Beth-Uhlenbeck re-
sult [8]. Obtaining b3 and beyond, however, typically requires
numerical methods (see, e.g., Refs. [9–11]). Although the bn’s
are a proxy for other quantities, their calculation has become
an attractive challenge per se, especially in cases, such as
the unitary limit [12] (the universal limit of zero interaction
range and infinite scattering length), where the bn’s represent
universal constants of quantum many-body physics. For that
reason, the calculation of the bn’s has been vigorously pursued
by several groups [11,13–18].

In this paper we focus on the virial coefficients of the
generic lattice Hamiltonian of two-species nonrelativistic
fermions with zero-range interactions, i.e.,

Ĥ =
∑

p

p2

2m
n̂p − g

∑
x

n̂↑(x)n̂↓(x), (6)
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where the total density operator in momentum space is n̂p =
n̂↑,p + n̂↓,p and n̂s (x) is the density for spin s at position x.
We will use units such that h̄ = kB = m = 1.

For the above Hamiltonian, we obtain the first six virial co-
efficients of the one-dimensional (1D) case, i.e., the Gaudin-
Yang model [19] and the first four virial coefficients of the
two-dimensional (2D) case. Although the former is a classic
problem that has been extensively studied (see, e.g., Ref. [20]
for a recent review of 1D Fermi gases), its virial coeffi-
cients beyond b2 are calculated here (see also a perturbative
estimate in Ref. [21]). The 2D case, in contrast, has been
under intense scrutiny in recent years as it has been real-
ized experimentally with ultracold atoms by several groups
[22–28]. Moreover, its thermal properties have been explored
theoretically as well by various authors (see Ref. [29] for a
review), and its virial coefficients b2 and b3 have been known
for a few years.

To determine bn, we developed two stochastic methods
which bypass the direct solution of the n-body problem. One
of our objectives is to show that it is possible to design
methods that allow to calculate high-order virial coefficients
without solving the n-body problem at the price of reduced
precision. The first method is based on the idea of Fourier
particle-number projection of nuclear physics [30] as applied
to the auxiliary field path-integral representation of Z . That
approach naturally yields a complex measure, and for that
reason we implement the complex Langevin algorithm to
sample the field [31]. The resulting method is able to com-
pute high-order virial coefficients at weak couplings and can
estimate the radius of convergence α0 of the VE as a function
of the coupling strength. The second method consists in the
stochastic evaluation of the change in the virial coefficients
due to interaction effects �bn. This second method uses the
definition of the bn in their path-integral form derived from
Z , but it does not use Z directly. Thus, it is able to evaluate
bn at stronger couplings than the projection method but gives
no information about the radius of convergence. Besides those
two stochastic methods, we implement a semiclassical lattice
approximation (SCLA) at leading order (LO). In all cases we
use the known results for �b2 as the renormalization con-
dition that connects the bare lattice coupling to the physical
coupling.

The generalization of our approaches to higher dimensions
is straightforward. In fact, the generic system studied here (a
nonrelativistic gas with zero-range interactions) has been un-
der intense investigation both theoretically and experimentally
in the past decade in 1D, 2D, and three dimensions (3D), and
analytic results exist for b2 in all dimensions based on the
Beth-Uhlenbeck formula mentioned above [8,13,32–34].

II. FORMALISM

A. Stochastic methods

Using Eq. (2), bn can be obtained by Fourier projection.
Following that route, we define the function,

bn(α) ≡ 1

Q1

∫ 2π

0

dφ

2π
eiφn ln Z[z → αe−iφ] = bnα

n. (7)

To proceed, we write Z as a path integral over a Hubbard-
Stratonovich (HS) field σ (see e.g., Refs. [35,36]), Z =∫
Dσ det2M[σ, z] where we focus on unpolarized systems,

thus the power of 2. The matrix M[σ, z] encodes the dynamics
and parameters of the system of interest; in particular, the
z dependence appears as M[σ, z] = 1 + zU [σ ], where U [σ ]
contains the kinetic energy and interaction information (see
Ref. [35] for details on the specific forms of M[σ, z] and
U [σ ]). Setting z → αe−iφ and differentiating both sides with
respect to α yields

bn = 1

nαn−1

1

Q1

∫ 2π

0

dφ

2π
eiφn〈tr[2M−1∂M/∂α]〉φ,α, (8)

where P [σ, z] ≡ det2M[σ, z]/Z[z] and we have used angle
brackets as a shorthand notation for the expectation value with
P [σ, αeiφ] as a weight. In practice, we use a discrete Fourier
transform such that

∂bn(α)

∂α
= 1

Q1

1

Nk

Nk−1∑
k=0

eiφkn〈tr[2M−1∂M/∂α]〉φk,α, (9)

where φk = 2πk/Nk, k = 0, . . . , Nk − 1, and Nk is the num-
ber of discretization points. This is the fundamental equation
of the proposed approach. Calculating the expectation values
inside the sum in Eq. (9) for Nk values of φk and carrying
out the Fourier sum for different values of n, one obtains the
desired bn. As long as Nk is large enough, the same stochastic
calculation of said expectation values over Nk points is used
for obtaining bn for all the desired values of n up to statistical
effects. In such a calculation, the results for bn must be
independent of α such that that variable can be used as a
measure of the reliability of the method. In practice we plot

bn = 1

nαn−1

∂bn(α)

∂α
, (10)

as a function of α and fit a constant. The αn dependence of
the nth order term is the main limiting factor in extracting
high-order virial coefficients. To overcome that limitation, it is
desirable to make α as large as possible but less than unity to
remain in the virial region. Thus, deviations in Eq. (10) from
constant behavior as α is decreased are indicative of uncer-
tainties due to statistical noise or insufficient Fourier points.
On the other hand, nonconstant behavior as α is increased
indicates the appearance of roots of Z in the complex-z plane,
which yield branch-cut singularities in ln Z and point to the
radius of convergence of the VE (see below).

Evaluating the expectation values in Eq. (9) involves cal-
culations that suffer from a phase problem as P [σ, αe−iφ]
will generally be a complex weight. To address that issue,
we turn to complex stochastic quantization via the complex
Langevin (CL) method, which has recently been applied
to the characterization of other aspects of nonrelativistic
fermions [21,37–39]. We employ the CL method in the same
way described in Ref. [21] (where it was applied to address
repulsive interactions), setting the fugacity to z → αe−iφk .
The quantity in the expectation value appearing in Eq. (9),
namely, tr[M−1∂M/∂α], corresponds to the density of the
system. Thus, the proposed approach effectively consists in
the Fourier projection of the virial coefficients from the
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density equation of state, which is reminiscent of other ap-
proaches, such as those of Refs. [15,16,18,34].

Our second method calculates the interaction effects on bn

using their definition in terms of path integrals, derived ana-
lytically from the path-integral form of Z . In that formalism,
the change in bn due to interactions is

�b2 = �Q1,1

Q1
, �b3 = 2 �Q2,1

Q1
− Q1�b2,

�b4 = 2 �Q3,1 + �Q2,2

Q1
− Q2

1

2
�b2 − Q1

2
(�b2

2 + 2 �b3),

where Qm,n is the partition function for m particles of one
species and n of the other and �Qm,0 = 0 because we only
have contact interactions. The VE of the fermion determinant
yields

Q1,1 =
∫

Dσ tr2U [σ ],

2Q2,1 =
∫

Dσ tr3U [σ ]

(
1 − tr U 2[σ ]

tr2U [σ ]

)
,

2Q3,1 = 1

3

∫
Dσ tr4U [σ ]

(
1 − 3 tr U 2[σ ]

tr2U [σ ]
+ 2 tr U 3[σ ]

tr3 U [σ ]

)
,

Q2,2 = 1

4

∫
Dσ tr4U [σ ]

(
1 − tr U 2[σ ]

tr2U [σ ]

)2

, (11)

and so on at higher orders. Inserting these expressions in
Eq. (11) (and their noninteracting versions) yields stochastic
formulas for �bn. To evaluate those, we use the usual two-
species action S[σ, z] = −2 ln det M[σ, z] to sample σ and
extrapolate the results to the z = 0 limit. This method is
similar in spirit to that of Ref. [11] but employs a field integral
representation instead of an integral over particle paths.

B. Semiclassical lattice approximation

Using the formulas of Eq. (11), it is possible to implement
what we call the semiclassical lattice approximation in which
we neglect the commutator of the kinetic-energy matrix T

and the potential-energy matrix V at leading order. Thus, the
matrix U [σ ] becomes simply U [σ ] = e−βT V[σ ], where V[σ ]
encodes the specific form of the HS transformation. Such
an approximation amounts to a coarse discretization of the
imaginary-time direction, which nevertheless becomes exact
in two different limits: V → 0 and T → 0. In between those
limits, higher orders in the SCLA can be reached by using
finer temporal meshes; we leave calculations beyond LO to
future work. At LO, the path integrals can be carried out
analytically,

�b3 = −21−d/2�b2, (12)

�b4 = 2(3−d/2 + 2−d−1)�b2

+ 21−d/2(2−d−1 − 1)(�b2)2, (13)

where we present our results in terms of �b2 because we will
use the exact �b2 as a renormalization condition.
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FIG. 1. Virial coefficients bn for n = 1–6 for the 1D Fermi gas
as a function of the dimensionless coupling λ as obtained with our
projection method. Crosses on the y axis denote the noninteracting
values of bn = (−1)n+1n−3/2. The leading order of the semiclassical
lattice approximation (LO-SCLA) is shown with a dashed-dotted line
for �b3 and with a dashed line for �b4. Green and blue diamonds
show the results obtained with our second stochastic method for
comparison.

III. RESULTS

A. Virial coefficients in 1D

To analyze the 1D case, our calculations used a lattice
of spatial size Nx = 30 and temporal size Nτ = 120–200.
We otherwise used the same lattice parameters as those of
Ref. [21]. The number of Fourier points was set to Nk = 30
for the main results with explorations covering Nk = 20–100
showing no significant variation. By definition, b1 = 1 and,
for the 1D contact interaction studied here (see Ref. [32]),

b
(1D)
2 = − 1√

2
+ eλ2/4

2
√

2
[1 + erf (λ/2)], (14)

where erf is the error function and λ is the dimensionless cou-
pling. The noninteracting limit is b

(1D)
2 → − 1

2
√

2
. We will use

the analytic form of Eq. (14) as a renormalization condition,
i.e., to define the coupling λ from our lattice determination of
b2. As a consequence, our plots of b2 below will be exact by
definition. Our first result appears in Fig. 1 where we map
out the λ dependence of the first six bn’s. The smoothness
of the results gives confidence that the method works as
expected. Perhaps the most prominent feature in Fig. 1 is the
monotonicity of the stochastic data for each bn: Besides the
constant b1 = 1, the even n coefficients increase as a function
of λ, whereas the odd ones decrease. More specifically, toward
the repulsive side (λ < 0), the bn’s grow in magnitude and
maintain their signs: The even ones which start out negative
at λ = 0, become more negative, and the odd ones which
start out positive grow as well. Toward the attractive side,
the monotonic behavior implies that in a wide region 0 <

λ < 1 many of the coefficients cross the bn = 0 line, which
suggests the VE may be useful up to z 
 0.5 (see, however,
our results below for the radius of convergence). Beyond
that point, the coefficients grow in magnitude and eventually
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FIG. 2. Estimate of the radius of convergence α0 of the virial
expansion as a function of the coupling λ. The inset: bn for n =
1, 3, 5 for λ = −1. Constant behavior as a function of α is expected
when the coefficient of the nth power of z is extracted successfully.
Deviation from such a constant as α is increased shows the appear-
ance of roots of Z on the complex-z plane, which yields the estimate
α0 for the radius of convergence shown in the main plot.

change sign relative to their noninteracting values. Using the
second stochastic method (applied below in 2D), we checked
the above results of Fig. 1 for b2 and b3.

B. Radius of convergence via the projection method

In the inset of Fig. 2 we show bn as a function of α. As
anticipated, for each virial order n there is a region around α =
0 for which bn does not vary, which allows us to extract the
value of bn itself. Beyond a λ-dependent value of α, however,
the calculation runs into the roots of Z on the complex plane
and the constant behavior is lost. We stress that this is not
due to systematic or statistical effects but rather a feature
of the calculation that represents the radius of convergence
α0 of the virial expansion. The main plot of Fig. 2 shows
our results for α0 as a function of λ, obtained by locating
the point where the constant behavior as a function of α is
lost. Our results are consistent with the expected value of
α0 = 1 for the noninteracting case, which is easily derived
by noting that the noninteracting partition function has a
root at z = −1. The dashed line in the main plot of Fig. 2
shows a fit α0(λ) = 1/(1 + C|λ|), where C 
 3.05(5) on the
repulsive side (λ < 0) and C 
 4.15(5) on the attractive side
(λ > 0). Although the fit is merely descriptive, it does point to
a nontrivial feature, namely, the nonanalyticity of α0 around
the maximum at λ = 0: The data appear to display a cusp.

C. Virial coefficients in 2D

Besides the 1D case above, we applied the second method
to the 2D analog, which was studied up to second order
in the VE in Refs. [33,34,40] and up to third order in
Refs. [9,10]. The Hamiltonian is essentially identical to that
of Eq. (6), generalized to 2D. In that case, the coupling g

becomes simply a bare parameter, and the physical coupling
is given by λ2 = √

βεB , where εB is the binding energy of the
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Δb3 Ref. [10]

FIG. 3. Interaction change in the virial coefficients �bn for n =
2–4 for the 2D Fermi gas as a function of the dimensionless coupling
λ2. The solid red line connects the data for �b2, the green line shows
�b3, and the blue line shows �b4. The LO-SCLA is shown with
a dashed-dotted line for �b3 and with a dashed line for �b4. The
solid black line shows the result for �b3 of Ref. [10]. Note that
the data for �b2 reproduce the exact result of Eq. (15) by virtue of
the renormalization condition (see the text).

two-body system. The second-order virial coefficient in 2D is
known [33,34,41] and given by

b
(2D)
2 = −1

4
+ eλ2

2 −
∫ ∞

0

dy

y

2e−λ2
2y

2

π2 + 4 ln2 y
. (15)

The noninteracting limit yields b
(2D)
2 → − 1

4 . As in our 1D
calculations, we used Eq. (15) to define λ2 by calculating b2

on the lattice. In Fig. 3 we show our results for b2, b3, and b4.
By definition, b2 is reproduced exactly, and the output of the
calculation is b3 and b4.

D. Semiclassical lattice approximation

The predictions of the LO-SCLA are compared with
those of our stochastic methods in Figs. 1 and 3. The
LO-SCLA predicts in 1D: �b3 = −√

2�b2 and �b4 =
(4

√
3 + 3)/6 �b2 − 3

√
2/4(�b2)2 and in 2D: �b3 = −�b2

and �b4 = 11/12 �b2 − 7/8 (�b2)2. As is clear in Figs. 1
and 3, there are differences between those predictions and the
stochastic results. However, it is remarkable that at LO the
SCLA predicts not only the correct sign of �b3, but also a
deviation smaller than 10% in 1D and close to 20% in 2D, at
least, for the regime of couplings that is studied here. Such
results encourage higher-order studies of the SCLA, which
will be carried out elsewhere.

A few comments are in order regarding the observed
behavior of the bn’s, some of which can be understood ana-
lytically. For instance, b2 is dominated at strong coupling by
an anti-Gaussian term [see Eqs. (14) and (15)]. That term is
due to the appearance of a bound state, which happens in 1D
and 2D as soon as the attractive coupling is turned on. Thus,
b2 diverges very strongly as the coupling is increased on the
attractive side. As for b3, within the LO-SCLA, it will inherit
the behavior of b2, which is supported by our data.
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As far as b4, the LO-SCLA involves a �b2 term with
a positive coefficient and a (�b2)2 term with a negative
coefficient; that is the reason for the nonmonotonic behavior:
The (�b2)2 term eventually takes over. The origin of these
linear and quadratic terms is similar to those in perturbation
theory: The linear term comes from a single diagram, whereas
the quadratic term comes from two diagrams, one with an
odd and one with an even number of fermion loops such
that their prefactors have different signs (and the negative one
dominates).

Although we focus here on 1D and 2D, it is also in-
teresting to test the predictions of the LO-SCLA for the
3D Fermi gas at unitarity. There, known results (see, e.g.,
Refs. [14–18]) give �b2 = 1/

√
2 and �b3 = −0.355 05 · · ·

such that �b3/�b2 
 −0.50 · · · , whereas the LO-SCLA
yields �b3/�b2 = −1/

√
2 
 −0.707, thus matching the sign

of �b3 but overshooting its magnitude by about 40%. Sim-
ilarly, the most accurate result at unitarity [11] is b4 =
0.078(18), which yields �b4 = 0.109(18), whereas the LO-
SCLA yields �b4 = 0.029 · · · , which matches the sign of
the expected result but undershoots its magnitude by roughly
a factor of 3. Nevertheless, these results are encouraging
when considering that they come from a mere leading-order
approximation.

IV. SUMMARY AND CONCLUSIONS

We have calculated the first few virial coefficients bn of
two systems: fermions in 1D and 2D both with a contact
interaction. In 1D, we evaluated the first six bn’s as a function
of the coupling strength λ in both attractive and repulsive
regimes. In the 2D case, we calculated �b3 and �b4 for
attractive interactions. To carry out our calculations, we im-
plemented two different stochastic lattice methods. The first
method relied on projecting the bn’s out of the path-integral
form of the density equation of state. The second approach
used a path-integral representation of the virial coefficients as
derived from the path-integral form of Z . The latter method
enables calculations in a way that requires neither matrix
inversion nor determinants but which is sensitive to statistical
noise as n is increased due to the various volume-scaling
cancellations required to resolve each bn from the canonical
partition functions. However, that noise can, at least, partially
be addressed by obtaining more samples, a task that can
be carried out in a perfectly scalable fashion. The stochas-
tic approaches proposed here are not as precise as exact
diagonalization but provide a systematic way to high-order
coefficients without solving the n-body problem. Finally, we
used a semiclassical approximation which at leading order
compares remarkably well with our stochastic results for the
coupling strengths studied.
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APPENDIX A: SEMICLASSICAL APPROXIMATION

From the equations in main text it is easy to see that

�b2 = �Q1,1

Q1
= 1

Q1

∫
Dσ (tr2U [σ ] − tr2U0), (A1)

where U0 = e−βT is the noninteracting transfer matrix (T
being the kinetic-energy matrix) and U [σ ] = e−βT V[σ ] (V
being the chosen HS representation of the interaction). Car-
rying out the path integrals, it is straightforward to find

�b2 = (eβg − 1)
V

Q1

(
tr U0

V

)2

, (A2)

where Q1/V → 2/λd
T in the continuum limit in d spatial

dimensions and all lengths are in units of the lattice spacing
� = 1. Moreover, tr U0 = Q1/2 such that, in the continuum
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FIG. 4. Top: Illustration of the size of the finite-Nx effects on
b3 and b4 in 1D at λ = 1. The error bars show statistical effects.
Bottom: Illustration of the size of the finite-τ effects on �b3 in 2D for
varying λ.
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limit,

�b2 = 1

λd
T

eβg − 1

2
. (A3)

The calculation of �b3 is only slightly more tedious and
yields

�b3 = 2 �Q2,1

Q1
− Q1�b2 = − 1

λd
T

eβg − 1

2d/2
. (A4)

We thus obtain the result advertised in the main text, namely,

�b3 = −21−d/2�b2. (A5)

The calculation of �b4 follows the same steps but yields a
contribution that is quadratic in �b2:

�b4 = 2(3−d/2 + 2−d−1)�b2 (A6)

+21−d/2(2−d−1 − 1)(�b2)2. (A7)

APPENDIX B: SYSTEMATIC EFFECTS

Because we chose a lattice regularization to carry out our
calculations, there are a few systematic effects that need to
be taken into account. First of all, we have put the system on

a lattice and must describe how to take the continuum limit.
That amounts to enlarging the window � � λT � L, where
� = 1, L = Nx�, and λT = √

2πβ is the thermal wavelength.
Our main results correspond to Nx = 30 and λT 
 7 such

that the above window is well satisfied. As an illustration of
the size of the finite-Nx effects, we show results for varying
Nx in Fig. 4 (top). The variation is appreciable but small on
the scale of the corresponding plot in the main text.

The second systematic effect to account for is the number
of Fourier points Nk used for the projection. Relying on
Nyquist’s theorem, taking Nk at least twice as large as the
highest desired virial coefficient nmax should be sufficient.
However, that lower bound turns out to be much too opti-
mistic in practice. As a conservative choice, we set Nk =
30 and find that it enables projections up to n = 6 with
up to two decimal places. Note that the computation time
scales linearly with Nk and is perfectly parallelizable in that
variable.

The third systematic effect is the dependence on the tempo-
ral lattice spacing τ . We have tested τ = 0.05, 0.25, and 0.5 as
shown in Fig. 4 (bottom). Remarkably, the variation is small
on the scale of the plot in the main figure (somewhat zoomed
in here).
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