
PHYSICAL REVIEW A 98, 053611 (2018)

Crystalline splitting of d orbitals in two-dimensional regular optical lattices
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In solids, crystal field splitting refers to the lifting of atomic orbital degeneracy by the surrounding ions
through the static electric field. Similarly, we show that the degenerated d orbitals, which were derived in the
harmonic oscillator approximation, are split into a low-lying dx2+y2 singlet and a dx2−y2/xy doublet by the high-
order Taylor polynomials of triangular optical potential. The low-energy effective theory of the orbital Mott
insulator at 2/3 filling is generically described by the Heisenberg-compass model, where the antiferro-orbital
exchange interactions of compass type depend on the bond orientation and are geometrically frustrated in the
triangular lattice. While, for the square optical lattice, the degenerated d orbitals are split into a different multiplet
structure, i.e., a low-lying dx2±y2 doublet and a dxy singlet, which has its physical origin in the C4v point group
symmetry of square optical potential. Our results build a bridge between ultracold atom systems and solid-state
systems for the investigation of d-orbital physics.
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I. INTRODUCTION

In transition metal oxides, the degenerated d orbitals are
split into a set of orbital multiplets, typically a t2g triplet and
a eg doublet for the cubic perovskite structure, by the sur-
rounding oxygen anions through the crystalline electric field,
accompanied by the breaking of the full spherical symmetry of
a free atom [1,2]. Hence, the key feature of d orbitals in solids
is that both the orbital degeneracy and orientational anisotropy
are governed by the finite point group symmetry of solids. The
crystal structure is reflected in the orbital multiplets and is
the origin of various interesting phenomena, covering metal-
insulator transitions [3], superconductivity [4–8], and colossal
magnetoresistance [9–11].

More recently, the forefront of experimental research has
focused on the Kitaev material α-RuCl3, in which the rela-
tivistic pseudospin-1/2 states arise from the delicate balance
of the crystalline electric field, spin-orbit coupling, and strong
correlation [12,13]. This material exhibits strongly anisotropic
pseudospin exchange interactions originated from the bond-
directional nature of d orbitals via spin-orbital entanglement,
and shows the increasing experimental evidence in supporting
the celebrated Kitaev spin-liquid physics [14–18].

Ultracold atom gases offer highly controllable platforms
for the quantum simulations of artificial solids in optical
lattices, which have served successfully as a complementary
setup to solid-state systems during the past decade [19].
As a paradigmatic example, the p-orbital physics in opti-
cal lattices attracts intensive research interest for the orbital
degree of freedom [20–22]. Interesting many-body phenom-
ena were predicted including unconventional Bose-Einstein
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condensation [23–25], supersolid phase [26], stripe order-
ing [27], Wigner crystallization [28], and orbital ordering
in Mott insulators [29–31]. Importantly, the chiral px ± ipy

superfluidity has been successfully observed in recent ex-
periments [32–34]. However, the p orbitals are essentially
different from the d orbitals for both orbital degeneracy and
orientational anisotropy.

Particularly exciting is the recent experimental advance
in the observation of d orbitals in optical lattices [35–38],
which makes an important step toward genuinely emulating
d-orbital physics of solid-state systems. Here we report that
the degeneracy of d orbitals, which was predicted in the
harmonic oscillator (HO) approximation, is partly removed
by the high-order Taylor polynomials (HOTPs) of optical
potential in both triangular and square optical lattices. In the
triangular lattice, the orbital Mott insulator is further studied
based on the remaining degeneracy between dx2−y2 and dxy

orbitals. The corresponding orbital exchange Hamiltonian
is generically described by the Heisenberg-compass model,
where the anisotropic compass interactions have roots in the
orbital orientational anisotropy and are geometrically frus-
trated. For the square lattice, in particular, we have derived a
selection rule on the orbital angular momentum and show that
the geometry of a square optical lattice plays a crucial role in
determining the orbital multiplets.

II. TRIANGULAR OPTICAL LATTICE

The triangular optical potential has been theoretically pro-
posed [39,40] and experimentally realized [41–43] using three
linearly polarized laser beams. It is mathematically described
by V�(r ) ≡ −V

∑3
i=1 cos (bi · r ), where the reciprocal lattice

vectors b1 = 2π
a

(x̂ + 1√
3
ŷ), b2 = 2π

a
(−x̂ + 1√

3
ŷ), and b3 =
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FIG. 1. (a) Grey map of the triangular optical potential V�(r ).
{e1, e2, e3} are the bond vectors of triangular lattice. (b) Structure
of partially lifted degeneracy of d-orbital multiplets in the triangular
optical lattice.

− 4π√
3a

ŷ with a the lattice spacing. Figure 1(a) plots the
periodic landscape of optical potential V�(r ), the spatial
modulation of which realizes the triangular lattice. Since the
lattice is invariant under primitive translations of bond vectors
{e1, e2, e3}, we will focus on the lattice site at the origin
of coordinates to simplify the discussion. Switching to polar
coordinates (r, θ ), the optical potential can be expressed in
terms of Bessel functions of the first kind via the Jacobi-Anger
expansion,

V�(r ) =
+∞∑

�=−∞
V �

�(r ) exp[6i�θ ], V �
�(r ) ≡ −3V J6�

4r̄√
3
,

(1)

with the dimensionless radial distance r̄ ≡ πr/a. A Taylor
series expansion of the isotropic component V �=0

� = −3V +
4V r̄2 + O(r̄4) in Eq. (1) yields a two-dimensional (2D) har-
monic trapping of frequency ω =

√
8π2V/Ma2 (M is the

mass of trapped atoms). In the deep lattice limit, the Wannier
functions in the optical potential V�(r ) are well approximated
by the corresponding eigenfunctions of HO [24,25].

Due to the isotropic nature of the 2D HO, the eigenfunc-
tions have simultaneous eigenstates with the z-axis angular
momentum operator Lz = −ih̄∂θ and thus can be written in
the axial states

�[n,m](r ) ≡ R[n,m](r ) exp [imθ ],

with n and m labeling the quanta of the 2D HO and z-axis
angular momentum, respectively (see Appendix A for details).
The explicit forms of eigenfunctions �[n,m](r ) for n = 2,
which we will refer to as d orbitals hereafter, are listed in
Table I.

TABLE I. d-orbital wave functions �[n=2,m](r ) of the 2D
isotropic harmonic oscillator of frequency ω with β ≡ √

Mω/h̄.

n m �[n,m](r ) ≡ R[n,m](r ) exp [imθ ]

+2 �[2,+2](r ) = β3√
2π

r2 exp
[ − β2r2

2

]
exp [+2iθ]

2 0 �[2,0](r ) = β√
π

[
(βr )2 − 1

]
exp

[ − β2r2

2

]
−2 �[2,−2](r ) = β3√

2π
r2 exp

[ − β2r2

2

]
exp [−2iθ]

Next, we will show that the high-order polynomials in
the Taylor series expansion of isotropic potential V �=0

� (r )
will further lift the degeneracy of the d-orbital complex. To
proceed, we expand field operators in the d-orbital Wannier
basis and obtain the second quantization form of HOTPs in
V�(r ) in Eq. (1)

H� =
∑
m1m2

+∞∑
�=−∞

〈�[2,m1]|��|�[2,m2]〉�̂†
[2,m1]�̂[2,m2], (2)

where the HOTPs ��(r ) ≡ V �
�(r ) exp[6i�θ ] + (3V −

4V r̄2)δ�,0 and �̂
†
[2,m] (�̂[2,m]) creates (annihilates) an atom in

the state �[n=2,m]. It is easy to verify that the matrix elements
of anisotropic potential �� �=0

m1m2 ≡ 〈�[2,m1]|��|�[2,m2]〉 have no
contributions because of the vanishing integrals of azimuthal
parts over polar angle θ . While, for the isotropic case � = 0,
the matrix ��=0

m1m2
has nonvanishing diagonal elements

{��=0
±2,±2,��=0

0,0

} = −ER

12

∞∑
l=0

(
−1

3

√
ER

2V

)l
1

(l + 2)!

× {l2 + 7l + 12, 2l2 + 10l + 14},
with the recoil energy ER ≡ 4h̄2π2/Ma2. The axial states
�[n=2,m=±2] have the identical correction on their energy
levels by the HOTPs ��=0(r ). The reason can be traced
back to the fact that their eigenfunctions share the same
radial function, as listed in Table I. A unitary transfor-
mation �[n=2,m=±2] ≡ (dx2−y2 ± idxy )/

√
2 and �[n=2,m=0] ≡

dx2+y2 [44], followed by an irrelevant energy shift of ��=0
0,0 ,

cast H� in Eq. (2) into a concrete form

H� = �(d†
x2−y2dx2−y2 + d†

xydxy ), (3)

with � ≡ ��=0
±2,±2 − ��=0

0,0 = ER
12 exp [− 1

3

√
ER
V

] describing the
energy splitting between dx2−y2/xy and dx2−y2 orbitals. In the
deep lattice limit, V 	 ER, the energy splitting � saturates
at ER/12, and the d-orbital complex is well separated from
the s and px,y orbitals in energy, primarily by the HO fre-
quency h̄ω = √

2V ER, indicating the validity of first-order
perturbation treatment above. As is summarized in Fig. 1(b),
the d-orbital complex splits into a low-lying dx2+y2 singlet
and a dx2−y2/xy doublet, which is analogous to the crystalline
electric field splitting in solid-state physics [45]. When a
d-orbital ion is embedded in a solid, the full fivefold degen-
eracy of hydrogen-like d orbitals, which is protected by the
spherical symmetry of a free atom, is lifted by the charged
neighboring ions through the crystal field potential. While the
splitting of a d-orbital complex in the triangular optical lattice
is rooted in the different radial functions between dx2−y2/xy

and dx2−y2 orbitals through the isotropic high-order optical
potential ��=0(r ). We will show that the anisotropic optical
potential can also contribute to the degeneracy lifting in a
different manner, see discussions on the square optical lattice
later.

It is then interesting to explore the interplay between the
geometrical frustration of a triangular lattice and the quantum
fluctuation, which is enhanced by the remaining degeneracy
of dx2−y2 and dxy orbitals. The pioneering works have stud-
ied px,y-orbital Mott insulators with spinless fermions and
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found various exotic orbital orderings in the classical ground
states [29,30]. To this end, it is necessary to carry out a
strong coupling study of the correlated d-orbital systems. Let
us start with the case that spinless fermions interact with
each other through a general central potential Û (r ). The
interacting Hamiltonian is constructed in terms of the Haldane
pseudopotentials

HI =
∑
m

∑
i<j

vmPm(ij ),

where Pm(ij ) is the projection operator which selects out
states in which particles i and j have relative angular mo-
mentum m [46]. According to the Fermi (Bose) statistics, the
many-particle state of fermions (bosons) should be antisym-
metric (symmetric) upon interchanging two particles, which
requires that m is odd (even). Thus, the pseudopotential set
{vm} with odd m provides a complete and unique description
of interaction Û (r ) for spinless fermions. For a short-range
interaction Û (r ), the leading interaction between d orbitals is
described by

HI = U [(n̂x2−y2 + n̂xy )n̂x2+y2 + 2n̂x2−y2 n̂xy], (4)

where U ≡ 3v/16π and the Haldane pseudopotentials v±1 ≡
v are the short-range components of Û (r ) in active channels
m = ±1 (see Appendix B for details). The interactions be-
tween the d orbitals and the low-lying s and px,y orbitals
cannot lift the remaining degeneracy of d orbitals in Eq. (3),
which is protected by the continuous rotation symmetry. The
well-separated s and px,y orbitals are reminiscent of the
closed shells in solid-state systems and remain inactive at low
energy scales. Interestingly, the d orbitals can be prepared by
the direct transfer between even-parity orbitals s → d with
the fidelities as high as 97–99% in recent experiments [37,38].
Therefore, in the following, we shall only consider the inter-
action between d orbitals. For the case that the d orbitals are
partially occupied by n spinless fermions, we will refer to it
as a dn configuration. Including the crystalline splitting H�
in Eq. (3) and the on-site interaction HI in Eq. (4), the ground
state of the d2 configuration is an orbital doublet with one
fermion occupying the low-lying dx2+y2 orbital and the other
one occupying either the dx2−y2 or dxy orbital, and simply
inherits the partially degeneracy of the d-orbital complex.

It is convenient for later discussions to
define the pseudospin operators {τ+, τ−} ≡
{d†

x2−y2dxyn̂x2+y2 , d
†
xydx2−y2 n̂x2+y2}, which flip the states

of orbital doublet. The z component of the pseudospin τ

vector follows through the spin-1/2 angular momentum
algebra τ z = [τ+, τ−]. In the strongly correlated regime,
orbital fluctuation is the remaining low-energy degree
of freedom. Therefore, the effective model is captured
by the orbital superexchange interactions between sites
i and j , which arise from the virtual charge excitations
(d2)i (d2)j � (d3)i (d1)j through the hopping process
tμνd

†
iμdjν (μ, ν = x2 − y2, xy, x2 + y2). Employing

the second-order perturbation theory in Ref. [47], we
derive the effective Hamiltonian in Appendix C. It is
generically described by the Heisenberg-compass model
H eff

� = HH + H 120◦
� , where the isotropic Heisenberg term

HH = JH
∑

iηγ τ i · τ i+ηeγ
and the anisotropic compass

term [48,49]

H 120◦
� = JC

∑
iγ η

τ
γ

i τ
γ

i+ηeγ
(5)

with

τ γ = τ z cos[4θγ ] + τ x sin[4θγ ],

eγ = x̂ cos θγ + ŷ sin θγ ,

{θ1, θ2, θ3} =
{

0,
2π

3
,

4π

3

}
, η = ±1.

The superexchange couplings are given by

{JH, JC} = {tπ tσ /U, (tσ − tπ )2/2U}
with tπ (tσ ) denoting the intraorbital π (σ )-bonding state of the
dxy (dx2−y2 ) orbital.

It is worth noting that the π -bonding axis lies in the
nodal plane of the dxy orbital. As a result, the π bonding
is typically much weaker than the σ bonding, and the cor-
responding antiferro-orbital compass interaction dominates
over the ferro-orbital Heisenberg interaction (JH < 0 is due
to the opposite sign of tπ and tσ ). This is reminiscent of
the Heisenberg-Kitaev model in the afore-mentioned Kitaev
material α-RuCl3 with the dominant Kitaev coupling [12,13].
Solving the quantum Heisenberg-compass model remains a
challenging problem. Nevertheless, it is instructive to first
determine the ground state of the dominant part, i.e., the
quantum compass model [49], for understanding the phase
diagram of the quantum Heisenberg-compass model. The
particularity of the quantum compass model H 120◦

� in Eq. (5)
is that along the bond vector ±eγ (γ = 1, 2, 3) the exchange
interaction involves the pseudospin τ γ of two sites connected
by the bond, and the pseudospin components τ 1,2,3 intersect
in the zx plane at an effective angle of 120◦. The quantum
120◦ model is first introduced as an effective model for
perovskite eg orbital systems [50], which is closely related
to the well-known quantum compass model [51]. Apparently,
it is impossible to minimize the antiferro-orbital interactions
for all three bonds on an elementary triangle simultaneously
due to the geometrical frustration. In this case, exotic quantum
states are usually promoted by the geometrical frustration via
spontaneous symmetry breaking.

To capture the quantum fluctuations, we resort to Lanczos
exact diagonalization on finite-size clusters. As illustrated in
Figs. 2(a) and 2(b), we first employ the clusters with 60◦
equilateral parallelograms to avoid the cluster shape depen-
dence of the results [52]. The corresponding energy spectra
are carefully analyzed by extracting the momentum of each
eigenstate. One key signature in the spectrum of a 12-site
cluster is that several low-lying states are well separated from
the excited states by a clear gap. The energies of these low-
lying states are much lower than the ground-state energy of the
21-site cluster. It is well accepted that the quantum counterpart
of the classical ground state is a coherent superposition of low-
lying eigenstates, which are dubbed as quasidegenerate joint
states (QDJSs) [53,54]. As shown in Fig. 2(c), further studies
on the 16-site cluster confirm that the energy spread of QDJSs
decreases upon increasing the size of the cluster. Importantly,
the QDJSs involve three degenerate states at the M points of
the hexagonal Brillouin zone, which provides strong evidence
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FIG. 2. Low-energy spectra (bottom panel) of quantum 120◦

compass model on the finite-size clusters of (a) 12 sites, (b) 21 sites,
and (c) 16 sites with exchange couplings (JC, JH) = (1, 0). The x

axis labels the momenta of many-particle states, which are marked
in the hexagonal Brillouin zone (middle panel). The corresponding
samples of finite-size clusters with periodic boundary conditions
(black dashed lines) are shown in the top panel.

that the macroscopic symmetry-breaking state is of columnar
type.

Interestingly, the energies of QDJSs are close to the energy
of the classical columnar state, −0.25JC per bond. This clas-
sical state is also proposed as the ground state of px,y-orbital
Mott insulators in Ref. [30]. While, in the Heisenberg limit
(JH < 0, JC = 0), the ferro-orbital exchange favors parallel
alignments of nearest neighbor orbitals along bonds and is
thus free of geometrical frustration. The transition between
classical columnar phase and ferro-orbital phase occurs at
the critical value JC = −8JH/3, above which the classical
columnar state is stabilized. As shown in Fig. 2, the columnar
phase is associated with the QDJSs at the � and M points
of the hexagonal Brillouin zone. The interference between
QDJSs at the � and M points breaks both the translation sym-
metry of the triangular lattice and the point group symmetry
from C6 down to C2 symmetry, which can be distinguished
from the ferro-orbital phase. Experimentally, the symmetry
breaking can in principle be detected by the time-of-flight
interference [55]. It is also noteworthy that the breaking
of translation symmetry leads to the enlarged unit cell in
the columnar phase. In the time-of-flight noise correlation
spectra, the momentum resolved interference spots will be
observed at the corresponding reciprocal lattice points in the
columnar phase, from which the broken symmetries can be
easily identified.

III. SQUARE OPTICAL LATTICE

Next, we turn to the square optical potential V�(r ) =
−V [cos (b1 · r ) + cos (b2 · r )] with the reciprocal lattice vec-
tors b1 = 2π

a
x̂ and b2 = 2π

a
ŷ. The Jacobi-Anger expansion of

the square optical potential leads to

V�(r ) =
+∞∑

�=−∞
V �

�(r ) exp [4i�θ ], V �
�(r ) ≡ −2V J4�

2πr

a
.

(6)

The curvature at the bottom of isotropic component V �=0
� =

−2V + 2V π2r2/a2 + O(r4) in Eq. (6) dictates the HO fre-
quency ω =

√
4V π2/Ma2. The high-order correction on the

d-orbital complex is then described by

H� =
∑
m1m2

+∞∑
�=−∞

〈�[2,m1]|��|�[2,m2]〉�̂†
[2,m1]�̂[2,m2], (7)

where ��(r ) ≡ V �
�(r ) exp [4i�θ ] + (2V − 2V π2r2/a2)δ�,0.

The nonzero diagonal elements in the isotropic channel � = 0
are given by

{
��=0

±2,±2,��=0
0,0

} = − ER

16

∞∑
l=0

(
−1

4

√
ER

V

)l
1

(l + 2)!

×{l2 + 7l + 12, 2l2 + 10l + 14}.
While, for the anisotropic channel � �= 0, the integral over the
polar angle θ yields a selection rule m1 − m2 = 4�, which
has an intuitive meaning from the view of angular momentum
conservation: m1 (m2) is the angular momentum in the final
(initial) state and 4� is supplied by the square optical lattice
because it has a fourfold discrete rotational symmetry. The
nonvanishing terms, satisfying the selection rule, are explicitly
evaluated as

��=1
+2,−2 = ��=−1

−2,+2 = ER

16
exp

[
−1

4

√
ER

V

]
.

The reduction of continuous z-axis rotation symmetry lifts
the degeneracy of time-reversal partners �[n=2,m=±2] and
quenches the orbital momentum. Finally, a little algebra,
together with an overall energy shift of ��=0

0,0 , casts H� in
Eq. (7) into the form

H� = �(d†
xydxy − d

†
x2−y2dx2−y2 − d

†
x2+y2dx2+y2 ),

with � ≡ ER
16 exp [− 1

4

√
ER

V
] describing the energy splitting

between dx2±y2 and dxy orbitals. Figure 3(b) depicts the struc-
ture of d-orbital multiplets in the square optical lattice. From
symmetry aspects, the {dx2+y2 , dx2−y2 , dxy} orbitals belong
to the irreducible representations {A1, B1, B2} of C4v point
group symmetry, respectively [56]. It is noteworthy that the
C4v symmetry is not sufficient to guarantee the degeneracy
of the dx2±y2 doublet, which can be lifted in a checkerboard
optical potential.

In the d1 configuration, the ground state is an orbit dou-
blet with one fermion occupying either the dx2+y2 or dx2−y2

orbital. In the large-U limit, we next briefly discuss the
corresponding low-energy effective model that is constructed
based on the ground-state doublet through the virtual charge
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FIG. 3. (a) Grey map of the square optical potential V�(r ). (b)
Structure of partially lifted degeneracy of d-orbital multiplets in the
square optical lattice.

excitations (d1)i (d
1)j � (d2)i (d0)j . For the case that the

hopping integral tμν is comparable to the crystalline splitting
�, the occupation of the dxy orbital through the crystal-field
excitation cannot be neglected. Therefore, the orbital doublet
is inadequate for constructing the low-energy effective model
for this case. In contrast, the crystal-field excitation in the
d2 configuration is suppressed by the interaction U in the
triangular lattice. While for the case tμν � �, we follow the
procedure described in Appendix C. It is straightforward to
show that the leading-order Hamiltonian takes the form

H eff
� = Jz

∑
〈ij〉

τ z
i τ z

j (8)

with the antiferro-orbital Ising coupling Jz = 2t2
σ /U and

the pseudospin τ z = (d†
x2+y2dx2+y2 − d

†
x2−y2dx2−y2 )/2. The

antiferro-orbital coupling favors Néel ordering in the square
lattice. Due to the extra constraint tσ � �, it may require ex-
tremely low temperatures to experimentally detect the orbital
ordering through the time-of-flight interference.

IV. SUMMARY

In conclusion, we have shown that the degeneracy of d

orbitals is lifted in both triangular and square optical lattices
by a perturbative treatment. In particular, the selection rule
is invoked in determining the symmetry reduction from the
z-axis rotation symmetry of a harmonic oscillator approxima-
tion to the discrete point group symmetry of optical potential.
We emphasize that our theory can be easily generalized to
the superstructured optical lattices, such as a checkerboard
lattice, and is capable of predicting the orbital degeneracy
from symmetry aspects. Therefore our theory has potential
applications in the quantum material design of optical lattices.
Our work shall attract more experimental efforts in engineer-
ing d orbitals, and may open fascinating new ground for the
quantum simulation of strongly correlated d-orbital physics in
optical lattices.
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APPENDIX A: ALGEBRAIC SOLUTIONS OF AN
ISOTROPIC TWO-DIMENSIONAL HARMONIC

OSCILLATOR

We will derive the algebraic solutions of an isotropic
2D harmonic oscillator that is described by the following
Hamiltonian:

HHO = p̂2

2M
+ 1

2
Mω2r2,

where M is the mass of atoms trapped in the quantum well
and ω is the harmonic frequency. The isotropic 2D harmonic
oscillator can split into two 1D uncoupled oscillators in μ =
x, y directions

Hμ = p̂2
μ

2M
+ 1

2
Mω2μ2.

Let us first introduce the lowering and raising operators for
the 1D harmonic oscillators

aμ = 1√
2

(
βμ + i

p̂μ

βh̄

)
,

a†
μ = 1√

2

(
βμ − i

p̂μ

βh̄

)
,

with β ≡
√

Mω
h̄

. In terms of number operators n̂μ = a†
μaμ,

the Hamiltonian of the 2D oscillator can be rewrit-
ten as HHO = h̄ω(n̂x + n̂y + 1). Thus, the eigenfunctions
ψ[nx,ny ](r ) of the 2D oscillator, corresponding to the energy
E = h̄ω(nx + ny + 1), are characterized by 1D harmonic os-
cillator quanta nμ in μ = x, y directions. Since the isotropic
2D harmonic oscillator is invariant under rotation about the z

axis, the Hamiltonian HHO should commute with the operator
L̂z = xp̂y − yp̂x of infinitesimal rotation about the z axis,
i.e., the z-component angular momentum operator. In the
following, we shall seek a basis of eigenfunctions common
to both HHO and L̂z. To take better advantage of the contin-
uous rotation symmetry, we introduce the chiral operators as
follows:

a
†
± = 1√

2
(a†

x ± ia†
y ).

It is easy to verify that the only nonzero commutators be-
tween chiral operators are [a+, a

†
+] = [a−, a

†
−] = 1. The cor-

responding number operators n̂± = a
†
±a± count the number of

right(+) and left(−) circular quanta. With this definition, the
Hamiltonian can be rewritten as HHO = h̄ω(n̂+ + n̂− + 1) ≡
h̄ω(n̂ + 1) with n̂ ≡ n̂+ + n̂− being the total quanta opera-
tor. In addition, the z-component angular momentum oper-
ator can also be rewritten as L̂z = h̄(n̂+ − n̂−) ≡ h̄m̂ with
m̂ ≡ n̂+ − n̂−. Therefore, the eigenfunctions of HHO can be
characterized by either [n+, n−] or [n,m]. The ground state
�[n=n++n−=0,m=n+−n−=0](r ) contains no right (n+ = 0) and
left (n− = 0) circular quanta and is identical to ψ[nx=0,ny=0](r )
up to a phase. The eigenfunctions of excited states can be
evaluated by applying the chiral operators a

†
± to the ground

state

�[n=n++n−,m=n+−n−](r ) = (a†
+)n+ (a†

−)n−
√

n+!n−!
�[0,0](r ).
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TABLE II. Eigenfunctions �[n,m](r ) of the 2D isotropic harmonic oscillator for n = {0, 1, 2}.

n ≡ n+ + n− m ≡ n+ − n− n+ n− �[n,m](r ) ≡ R[n,m](r ) exp [imθ ]

n = 0 m = 0 n+ = 0 n− = 0 �[0,0](r ) = β√
π

exp
[ − β2r2

2

]
n = 1 m = +1 n+ = 1 n− = 0 �[1,+1](r ) = β2√

π
r exp

[ − β2r2

2

]
exp [+iθ ]

m = −1 n+ = 0 n− = 1 �[1,−1](r ) = β2√
π
r exp

[ − β2r2

2

]
exp [−iθ ]

n = 2 m = +2 n+ = 2 n− = 0 �[2,+2](r ) = β3√
2π

r2 exp
[ − β2r2

2

]
exp [+2iθ]

m = 0 n+ = 1 n− = 1 �[2,0](r ) = β√
π

[
(βr )2 − 1

]
exp

[ − β2r2

2

]
m = −2 n+ = 0 n− = 2 �[2,−2](r ) = β3√

2π
r2 exp

[ − β2r2

2

]
exp [−2iθ]

The explicit forms of eigenfunctions �[n,m](r ) for n =
{0, 1, 2} are listed in Table II.

APPENDIX B: HALDANE PSEUDOPOTENTIAL
DESCRIPTIONS OF INTERACTING HAMILTONIAN

The central interaction potential Û (r ) that depends only
on the relative coordinate r between particle pairs can be
described by a set of Haldane pseudopotentials vm [46]. The
potentials vm are obtained from the decomposition of two-
particle states into the states with relative angular momen-
tum m. According to the Fermi (Bose) statistics, the many-
particle state of fermions (bosons) upon interchanging two
particles is antisymmetric (symmetric), which requires that
m is odd (even). For the present case of spinless fermions
with short-range interaction, we restrict the relative motion
of two-particle states in the lowest odd angular momentum
m = ±1, corresponding to the p-wave channel. Specifically,
the two-particle state is factorized into two decoupled wave
functions that describe the center-of-mass [r+ ≡ 1

2 (r1 + r2)]
motion and the relative (r− = r1 − r2) motion

�n=2,m1 (r1)�n=2,m2 (r2)

≈ r− exp

[
−β2

(
r2
+ + r2

−
4

)]{
χ+

m1m2
(r+) exp[iθ−]

+χ−
m1m2

(r+) exp[−iθ−]
}
, (B1)

where χ±
m1m2

(r+) are listed in Table III. In Eq. (B1), we
neglect the high-order terms in r− and keep the linear terms
in the brace, which corresponds to the short-range com-
ponents of the interaction. Such an approximation is valid
when the effective range of interaction is much shorter than
the characteristic length of the 2D harmonic oscillator. It is
straightforward to show that the interacting Hamiltonian takes
the following form:

HI = 1
2Um1m2m3m4d

†
m1

d†
m2

dm3dm4

with the interaction matrix

Um1m2m3m4 ≡
∫

d2r+
1

β4

[
v+1χ

+∗
m2m1

(r+)χ+
m3m4

(r+)

+ v−1χ
−∗
m2m1

(r+)χ−
m3m4

(r+)
]

exp[−2β2r2
+],

(B2)

and the Haldane pseudopotentials v±1 = β4
∫

d2r−r−
exp [−β2 r2

−
4 ]Û (r−)r− exp [−β2 r2

−
4 ] ≡ v. A little algebra on

the integral of Eq. (B2) over the center-of-mass coordinates
r+ and a unitary basis transformation lead to the following
Hamiltonian:

HI = 3v

16π
[(n̂x2−y2 + n̂xy )n̂x2+y2 + 2n̂x2−y2 n̂xy].

TABLE III. Wave functions χ±
m1m2

(r+) describe the center-of-mass motion of two-particle states in Eq. (B1).

χ+
m1m2

(r+)

m2 = −2 m2 = 0 m2 = +2

m1 = −2 0 − β6

2
√

2π
r3
+ exp [−3iθ+] − β6

2π
r3
+ exp [−iθ+]

m1 = 0 β6

2
√

2π
r3
+ exp [−3iθ+] 0 − β4√

2π
r+

(
1
2 β2r2

+ − 1
)

exp[iθ+]

m1 = +2 β6

2π
r3
+ exp [−iθ+] β4√

2π
r+

(
1
2 β2r2

+ − 1
)

exp[iθ+] 0

χ−
m1m2

(r+)

m2 = −2 m2 = 0 m2 = +2

m1 = −2 0 β4√
2π

r+
(

1
2 β2r2

+ − 1
)

exp[−iθ+] β6

2π
r3
+ exp [iθ+]

m1 = 0 − β4√
2π

r+
(

1
2 β2r2

+ − 1
)

exp[−iθ+] 0 β6

2
√

2π
r3
+ exp [3iθ+]

m1 = +2 − β6

2π
r3
+ exp [iθ+] − β6

2
√

2π
r3
+ exp [3iθ+] 0
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TABLE IV. Eigenenergy E�i
n

and eigenstates �i
n of local Hamiltonian H L

� for dn=1,2,3 configurations. |vac〉 is the vacuum state.

d1 configuration d2 configuration d3 configuration

i 1 2 3 1 2 3 1

E�i
n

� 0 � U + � 2U + 2� U + � 4U + 2�∣∣�i
n

〉
d†

xy |vac〉 d
†
x2+y2 |vac〉 d

†
x2−y2 |vac〉 d†

xyd
†
x2+y2 |vac〉 d†

xyd
†
x2−y2 |vac〉 d

†
x2+y2d

†
x2−y2 |vac〉 d†

xyd
†
x2+y2d

†
x2−y2 |vac〉

APPENDIX C: DERIVATION OF ORBITAL
SUPEREXCHANGE HAMILTONIAN H eff

�

To derive the effective low-energy Hamiltonian, we first
diagonalize the local on-site Hamiltonian as follows:

H L
� ≡ H� + HI = �(d†

x2−y2dx2−y2 + d†
xydxy )

+U [(n̂x2−y2 + n̂xy )n̂x2+y2 + 2n̂x2−y2 n̂xy]

=
∑
�n

E�i
n

∣∣�i
n

〉〈
�i

n

∣∣,
where �i

n is the ith eigenstate of the dn configuration with
eigenenergy Ei

�n
. The eigenstates �i

n and eigenenergies E�i
n

for dn=1,2,3 configurations are listed in Table IV. In the large-
U limit, the ground state of the d2 configuration with energy
U + � is an orbital doublet �

1,3
2 with one fermion occupying

dx2+y2 and the other one occupying either dxy or dx2−y2 orbital.
Note that the doublet �

1,3
2 is well separated from the excited

state �2
2 by the energy gap U + �. Therefore, in the large-U

limit, it is reasonable to construct an effective model based
on the doublet �

1,3
2 with the degenerate perturbation the-

ory. For convenience, we introduce the pseudospin operators
{τ+, τ−} ≡ {d†

x2−y2dxyn̂x2+y2 , d
†
xydx2−y2 n̂x2+y2}, which flip the

states of orbital doublet. The z component of pseudospin
τ vector follows through the spin-1/2 angular-momentum
algebra τ z = [τ+, τ−]. Unlike for a spin system, the charge
excitation (d2)i (d

2)j � (d3)i (d
1)j , associated with the hop-

ping process tμνd
†
iμdjν , is directional dependent. It originates

from the fact that the hopping process is anisotropic due to
the spatial orientation of d orbitals. Let us first derive the su-
perexchange interaction along e1 bonds as shown in Fig. 1(a).
Employing the second-order perturbation theory [47], the
matrix form of a superexchange interaction is given by

(J )kl;k′l′ = −
∑
pq

1

E�
p

3
+ E�

q

1
− 2(U + �)

×
〈

�k
2

i-site
�l

2
j -site

∣∣∣∣∣
∑
μν

t∗μνd
†
jνdiμ

∣∣∣∣∣�p

3
i-site

�
q

1
j -site

〉

×
〈

�
p

3
i-site

�
q

1
j -site

∣∣∣∣∣
∑
μ′ν ′

tμ′ν ′d
†
iμ′djν ′

∣∣∣∣∣�k′
2

i-site
�l′

2
j -site

〉

+ i ↔ j .

A lengthy but straightforward algebra on the summation of all
bonds along the e1 vector leads to

H e1
� = JC

∑
i

τ z
i τ z

i±e1
+ JH

∑
i

τ i · τ i±e1 ,

where

JC = (tx2−y2,x2−y2 − txy,xy )2/2U,

JH = txy,xy tx2−y2,x2−y2/U.

The hopping term txy,xy (tx2−y2,x2−y2 ) denotes the intraorbital
hopping integral of the dxy (dx2−y2 ) orbital along the bond
vector e1. Note that the bond vector e1 lies in the nodal plane
of the dxy orbital and thus txy,xy can be labeled by π -bonding
tπ . While the bonding state tx2−y2,x2−y2 is symmetrical with
respect to a π rotation about the bond vector e1 and thus is
labeled by σ -bonding tσ . Having derived the superexchange
model H e1

� along the bond vector e1, the corresponding
superexchange Hamiltonian H

e2,3

� has exactly the same form
with H e1

� if the pseudospin operators τ are defined in the local
coordinate. In the local coordinate, the local x axis is defined
along a e2,3 bond vector. Thus, the connection between the
local and global coordinates (the global x axis along the e1

bond vector) is linked by a rotation of θ = 2π
3 , 4π

3 about the
z axis, corresponding to the e2, e3 bonds, respectively. The
d-orbital wave functions transform under the rotation as

dx2−y2 → cos [2θ ]dx2−y2 − sin [2θ ]dxy,

dxy → sin [2θ ]dx2−y2 + cos [2θ ]dxy,

dx2+y2 → dx2+y2 .

Accordingly, the pseudospin operators τ transform as follows:

τ z → sin [4θ ]τ x + cos [4θ ]τ z,

τ x → cos [4θ ]τ x − sin [4θ ]τ z,

τ y → τ y.

The pseudospin vector τ is rotated by 4θ about its y axis in
the pseudospin space. It is now straightforward to obtain the
Hamiltonian H

e2,3

� by replacing the pseudospin τ in H e1
� .

Finally, the total superexchange Hamiltonian takes the form

H eff
� ≡

3∑
i=1

H ei

� = JC

∑
iγ η

τ
γ

i τ
γ

i+ηeγ
+ JH

∑
iγ η

τ i · τ i+ηeγ

with

τ γ = τ z cos[4θγ ] + τ x sin[4θγ ],

eγ = x̂ cos θγ + ŷ sin θγ ,

{θ1, θ2, θ3} =
{

0,
2π

3
,

4π

3

}
, η = ±1.

Thus, the effective Hamiltonian is described by the
Heisenberg-compass model.
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