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Quantum information processing with geometric features of quantum states may provide promising noise-
resilient schemes for quantum metrology. In this work, we theoretically explore phase-space geometric Sagnac
interferometers with trapped atomic clocks for rotation sensing, which could be intrinsically robust to certain
decoherence noises and reach high precision. With the wave guide provided by sweeping ring traps, we give
criteria under which the well-known Sagnac phase is a pure or unconventional geometric phase with respect to the
phase space. Furthermore, corresponding schemes for geometric Sagnac interferometers with designed sweeping
angular velocity and interrogation time are presented, and the experimental feasibility is also discussed. Such
geometric Sagnac interferometers are capable of saturating the ultimate precision limit given by the quantum
Cramér-Rao bound.
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I. INTRODUCTION

Coherent manipulation of atomic clock states can be used
to sense rotation of a reference frame [1]. By enclosing a
finite area with the two distinct internal states in real space, a
Sagnac phase gate is constructed, which encodes the rotation
frequency into the qubit phase as a matter-wave Sagnac phase.
With quantum resources like coherence and entanglement,
such quantum Sagnac interferometers are expected to achieve
higher precision and sensitivity [1]. However, open system
effects, e.g., decoherence caused by inevitable noises, may
reduce the fidelity of the Sagnac phase gate and therefore the
expected sensing precision cannot be reached. On the other
hand, geometric quantum gates have been studied theoret-
ically [2–11] and demonstrated in experiments [12–18] for
quantum computation. Compared to the dynamic phase, the
geometric phase only depends on global geometric features
(e.g., area, volume, genus, etc.) of the state manipulation
in the phase space. Consequently, it is intrinsically immune
to local noise perturbations which preserve these geometric
features [19], and provides a promising paradigm to construct
various high-fidelity quantum phase gates. Therefore, it would
be motivating to attempt to harness such geometric properties
for high-precision quantum sensing.

Stevenson et al. proposed a pioneering scheme for quan-
tum rotation sensing with trap-guided atomic clock states
in Ref. [20], and similar schemes were later considered in
Ref. [21] with Fisher information analyses and in Ref. [22]
with spin-orbital coupling. However, the nature of the Sagnac
phase φS , i.e., whether the phase shift is dynamic, geometric,
or both, has not been clarified. And also, the fidelity and
robustness of such Sagnac phase encoding protocols under
decoherence were not investigated either.
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In this paper, we explore phase-space geometric quantum
rotation sensing with trapped atomic clocks, which could be
potentially noise resilient and achieve high sensitivity. With
the waveguide provided by sweeping ring traps as in Ref. [20],
we first present the exact relation between the interferometer
phase and the well-known Sagnac phase, which could be sig-
nificant in experiments, in particular for nonadiabatic interro-
gation cases. Then we provide criteria under which the Sagnac
phase is a pure or unconventional geometric phase [11] with
respect to the phase space. Corresponding schemes for such
geometric Sagnac interferometers with designed sweeping
angular velocity and interrogation time are presented. The
pure geometric scheme would be easier to be realized in ex-
periments in completely adiabatic guiding procedures, while
for nonadiabatic and intermediate regimes, the unconventional
geometric counterparts could be more accessible. Our results
should be instrumental in experimentally implementing noise-
resilient geometric quantum rotation sensing with trapped
atomic clocks.

This paper is organized as follows. In Sec. II we briefly
review the basic interferometric scheme proposed in Ref. [20]
and then establish the relationship between the interferometer
phase and the well-known Sagnac phase. In Sec. III, we
investigate the geometric and dynamic components of the
Sagnac phase in the phase space and give criteria for pure
and unconventional geometric Sagnac phases, followed by
proposing corresponding noise-resilient geometric Sagnac in-
terferometer schemes. The experimental feasibilities are also
analyzed. In Sec. IV, the precision limit and sensitivity given
by the quantum Cramér-Rao bound are discussed. Finally, we
conclude our work in Sec. V.

II. MODEL AND INTERFEROMETER PHASE

Within the basic scheme in Ref. [20], the interferometer
protocol consists of two Ramsey π/2 pulses and two identical
harmonic traps which countertransport the clock states |↑〉
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FIG. 1. Schematic protocol of Sagnac interferometer with trapped atomic clock states for rotation sensing [20]. The protocol consists of
initialization, sensing and readout, where Y (±π/2) denotes the π/2 pulses and the clock states are |0〉s = |↑〉 and |1〉s = |↓〉, respectively, and
|G〉h is the ground state of atoms in the harmonic trap, with the subscript h (s) denoting the harmonic oscillator (spin) subspace. In the sensing
period, the atoms in two traps are coherently split at t = 0 and are countertransported along a circular path of radius r with respective angular
velocity � ± ωP (t ) in the inertial frame K, and are recombined (RC) at time T . By properly designing the ωP (t ) profile and the interrogation
time T , a Sagnac phase gate US (φS ) can be obtained, where φS = 2πmr2�/h̄ is the Sagnac phase. The rotation frequency � can be read out
from the population information after applying another π/2 pulse in the readout stage.

and |↓〉 along circular paths of radius r in the xy plane, with
respective sweeping angular velocity ±ωP (t )z [ωP (t ) � 0] in
the rotating frame R. And R rotates in an angular velocity
� = �z with respect to an inertial frame K. See Fig. 1 for
a schematic illustration. The interrogation time T , when the
two components are recombined for readout, is given by∫ T

0 ωP (t )dt = π . The unitary time-evolution operators U↑(T )
and U↓(T ) for the two respective paths form a Sagnac phase-
encoding gate US (φS ) at t = T , which imprints the Sagnac
phase into the qubit phase. Formally, the interferometer pro-
tocol can be written as [23]

V (T ) = Y

(
π

2

)
U (T )Y

(
−π

2

)
, (1)

where Y (φ) = exp(−iφσy/2) with σy being the Pauli matrix,

and U (T ) = T exp[−i
∫ T

0 H (t )dt/h̄] with T being the time-
ordering operator and H (t ) = H0(t )�0 + H1(t )�1 being the
Hamiltonian, where we have used the notation |0〉s(|1〉s) =
|↑〉(|↓〉) and �0(�1) = |0〉ss〈0|(|1〉ss〈1|), with the subscript s
denoting the (pseudo)spin subspace. It can be shown directly
that (see Appendix A)

U (T ) = U0(T )�0 + U1(T )�1, (2)

where Uη(T ) = T exp[−i
∫ T

0 Hη(t )dt/h̄] for η = 0, 1 and
Hη(t ) is the time-dependent single-component Hamiltonian.

For the sensing period in the interferometer scheme shown
in Fig. 1, if the degrees of freedom in the axial and radial
directions for atoms in the harmonic trap are tightly con-
fined, then the time evolution can be described by the one-
dimensional model in Ref. [20], where the Hamiltonian for
the |η〉s state atoms in the stationary reference frame relative
to the transporting harmonic trap is given by

Hη(t ) = h̄ω0
(
a†a + 1

2

) + iλη(t )(a − a†), (3)

where ω0 is the trap frequency and a(a†) is the annihilation
(creation) operator for the trap mode. The second term
in Eq. (3) represents the drive acting on the harmonic
oscillator induced by the rotation of the frame, where

λη(t ) =
√

mh̄ω0
2 r[� + (1 − 2η)ωP (t )], with m being the par-

ticle mass and � the rotation frequency to be measured.
ωP (t ) � 0 for t ∈ [0, T ] is the experimentally designed
sweeping angular velocity whose temporal profile determines
the interferometer phase and the signal contrast, which will
be shown below. The sweeping angular velocity ωP (t ) can
be further extended to a function WP (t ) defined on the
whole real-time axis t ∈ [−∞,+∞], with WP (t ) = ωP (t )
for t ∈ [0, T ] and WP (t ) = 0 for the other, and the frequency
spectrum of WP (t ) can be obtained from its Fourier transform

W̃P (ω) = 1√
2π

∫ +∞

−∞
WP (t )exp(−iωt )dt. (4)

The Hamiltonian in Eq. (3) describes a driven harmonic
oscillator and the corresponding time-evolution operator at
time t is given by (see Appendix A for detailed derivations)

Uη(t ) = D[αη(t )]e−iω0a
†at ei[φη (t )−ω0t/2], (5)

where D(α) = exp(αa† − α∗a) is the displacement operator
for the harmonic oscillator, with

αη(t ) = − 1

h̄

∫ t

0
λη(τ )exp[iω0(τ − t )]dτ,

(6)

φη(t ) = 1

h̄2

∫ t

0

∫ τ1

0
λη(τ1)λη(τ2) sin[ω0(τ1 − τ2)]dτ2 dτ1.

If the initial states for both |0〉s and |1〉s components in the
harmonic trap are in the ground state (vacuum) |G〉h which
is defined by a|G〉h = 0, where the subscript h denotes the
harmonic trap subspace, then the state at time t is given by

|ψη(t )〉h = Uη(t )|G〉h = |αη(t )〉hexp{i[φη(t ) − ω0t/2]},
(7)

where |αη(t )〉h is the coherent state which is the eigenstate of
a with eigenvalue αη(t ). See the sensing period in Fig. 1.

For the initial state ρ(0) = |G〉hh〈G| ⊗ |1〉ss〈1| of the inter-
ferometer, the readout state reads ρ(T ) = V (T )ρ(0)V †(T ).
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The reduced density matrix for the spin subspace is given
by ρs(T ) = Trh ρ(T ), with Tr being the trace operation, and
reads

ρs(T ) = 1
2 [I2 − Re(C1,0)σz − Im(C1,0)σy], (8)

where I2 is the two-dimensional identity matrix, Cj,k =
h〈αj (T )|αk (T )〉hexp{−i[φj (T ) − φk (T )]} with j, k ∈ {0, 1}
and Re(Im) denotes the real (imaginary) part. σz = |0〉〈0| −
|1〉〈1| and σy = i(|1〉〈0| − |0〉〈1|) are the Pauli operators.
Therefore, the measurement signal, e.g., the population dif-
ference, is given by

s〈σz〉s = −|C1,0|cos(φI ), (9)

where the modulus |C1,0| = exp(−|�α|2/2) gives the signal
contrast, with �α = α0(T ) − α1(T ) ∝ W̃∗

P (ω0), and φI =
arg(C1,0) is the interferometer phase, with arg denoting the
argument. From straightforward calculation one obtains the
interferometer phase φI , which is given by (see Appendix B)

φI = φS

{
1 −

√
2

π
Re[W̃P (ω0)]

}
, (10)

where φS = 2πmr2�/h̄ is the well-known Sagnac phase and
it can be further shown that 0 � φI � 2φS . In contrast to
Ref. [20], the phase of the interferometer in Eq. (9) is indeed
dependent on the Fourier components of W̃P (ω) at the trap
frequency ω0 and therefore depends on the temporal profile of
ωP (t ). This result is experimentally relevant because the form
of the ωP (t ) profile will affect the interference fringes. Now
we arrive at the condition

Re[W̃P (ω0)] = 0, (11)

under which φI = φS , i.e., the interferometer phase is exactly
the Sagnac phase.

It should be noted that Eq. (11) could be satisfied when the
guiding procedure is performed in an adiabatic fashion, i.e.,
T � 2π/ω0. For example, for a constant ωP (t ) = π/T , we
have Re[W̃P (ω)] = √

π/2sin(ωT )/(ωT ). Consequently, the
amplitude of the frequency distribution decreases with ω in
power law, and for large ω0 located far away from the typical
spectrum width of the order 1/T , the contribution from the
real part in Eq. (10) approaches 0. On the other hand, for
nonadiabatic guiding procedures with T ∼ ω−1

0 (if possible
in future experiments), the sweeping angular velocity and the
interrogation time should be properly designed such that ω0

lies in the node of the frequency spectrum.

III. PHASE-SPACE GEOMETRIC SAGNAC
INTERFEROMETERS

Up to now we have obtained the relationship between the
interferometer phase and the Sagnac phase, but the dynamic
and geometric origins of the phase in the phase space have
not been investigated yet. Next we analyze different com-
ponents in the Sagnac phase φS and explore unconventional
geometric [11,14] Sagnac interferometers, which could be
potentially resilient to noises and are promising for reaching
high-precision quantum rotation sensing.

The quantum geometric phase is the phase change as-
sociated with holonomic transformation in quantum state

space [18,24–26], which was studied by Berry [27] for adi-
abatic cyclic motion and by Aharonov and Anandan [26] for
any cyclic evolution. Here for the spin state |η〉s (η = 0, 1), the
total phase change for quantum evolution in each harmonic
trap can be divided into dynamic and geometric components,
which are given by [11,19]

γ d
η (T ) = −

∫ T

0
〈ψη(t )|Hη(t )|ψη(t )〉dt, (12)

and

γ g
η (T ) = i

2

∫
�η

(α∗
ηdαη − αηdα∗

η ) − arg[〈αη(T )|G〉], (13)

respectively. Note that here in Eqs. (12) and (13) and here-
after we will drop the subspace subscript h for conve-
nience. From Eq. (13), one sees that the geometric phase
consists of two parts, where the first is −2 times the
area [28] subtended by the path �η = {αη(t )|t ∈ [0, T ]} of
motion in the phase space and the second is the argu-
ment of the overlap between the initial and final coher-
ent states. Define �γ d(g) = γ

d(g)
0 (T ) − γ

d(g)
1 (T ) as the dy-

namic (geometric) phase difference of the interferometer,
which satisfies φI = �γ d + �γ g + arg[〈α1(T )|α0(T )〉]. The
third component in φI is given by arg[〈α1(T )|α0(T )〉] =
|α0(T )α∗

1 (T )|sin{arg[α0(T )] − arg[α1(T )]}, which only de-
pends on the respective final positions of the |0〉 and |1〉 state
atoms in the trap when they are recombined, and also has a
clear geometric meaning. Therefore, it can be absorbed into
the geometric phase difference. Consequently, the total phase
difference of the Sagnac interferometer in Eq. (10) can be
decomposed into

φI = �γ d + �γ̃ g, (14)

where �γ̃ g = γ
g
0 (T ) − γ

g
1 (T ) + arg[〈α1(T )|α0(T )〉] is the

purely geometric contribution related to the area and angle
differences in the phase spaces, respectively.

Next, with a theorem, we show that by properly designing
the interrogation time T and the temporal profile of the
sweeping angular velocity ωP (t ), the Sagnac phase can be
made a pure or unconventional geometric phase, where by
the latter we mean that the geometric Sagnac phase also
involves a dynamic component [11]. We give criteria for the
phase-space geometric Sagnac phase, followed by proposed
experimentally accessible schemes for geometric Sagnac in-
terferometers.

Theorem. For certain proper interrogation time T and
temporal profiles of ωP (t ) � 0 with t ∈ [0, T ] which satisfy
φI = φS , there exist nonzero κ ∈ R such that

�γ d = (κ − 1)�γ̃ g, (15)

where for κ = 1, the Sagnac phase φS is purely geometric, and
for κ �= 1, φS is an unconventional geometric phase [29].

Proof and examples. With the frequency spectrum
W̃P (ω) and straightforward calculations we obtain (see Ap-
pendix C for detailed calculations)

�γ̃ g =
√

2

π
φSξ (ω0, T ), �γ d = φI − �γ̃ g, (16)

where φI is given by Eq. (10) and ξ (ω0, T ) =
ω0∂ωRe[W̃P (ω)]ω=ω0

− ω0T Im[W̃P (ω0)].
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Under the conditions φI = φS and maximization of

the contrast, which indicate W̃P (ω0) = 0, κ in Eq. (15) can
be expressed as

κ =
√

π/2/ξ0(ω0, T ), (17)

with ξ0(ω0, T ) = ω0∂ωRe[W̃P (ω)]ω=ω0
. Therefore, for prop-

erly designed ωP (t ) and T , if there exists nonzero ξ0(ω0, T ),
then this theorem holds automatically. The unconventional
geometric class with ξ0(ω0, T ) �= √

π/2 should be more
generic. Below we give two examples of this class with si-
nusoidal and cosinusoidal temporal profiles for ωP (t ), which
could be schemes for the unconventional geometric Sagnac
interferometer. A pure geometric scheme with a flat ωP (t )
profile will also be presented in the following.

(i) Unconventional geometric Sagnac phase. First we
present a designed sinusoidal angular velocity ωP (t ) =
π2|sin(2πt/T )|/(2T ) for t ∈ [0, T ] with T = 2π/ω0, which
sets φI = φS and maximizes the contrast at the same time,
i.e., W̃P (ω0) = 0 for this situation. This sinusoidal profile
results in a nontrivial solution for κ in Eq. (15), κ = 8/π2,
and the Sagnac phase φS = 8�γ̃ g/π2 (see Appendix D for
detailed calculations) is an unconventional geometric phase,
by which we mean that the geometric φS also involves a
dynamic component [11].

Second, we find that the cosinusoidal angular velocity
profile (sinusoidal angular profile) used in Ref. [21] in order to
calculate the Fisher information may also provide a nontrivial
scheme for the unconventional geometric Sagnac interfer-
ometer, where ωP (t ) = (π/T )[1 − cos(2πt/T )]. By choos-
ing the interrogation time to be T = 2Mπ/ω0, where M =
2, 3, 4, . . . , we have W̃P (ω0) = 0, and the corresponding κ

is given by κ = 1 − M2. Therefore, the Sagnac phase φS =
(1 − M2)�γ̃ g (see Appendix D) is also an unconventional
geometric phase. It is worth noting that the former sinusoidal
profile case can only be performed in a nonadiabatic guiding
procedure due to T ∼ ω−1

0 , while the latter cosinusoidal case
is applicable to both adiabatic and nonadiabatic scenarios,
which depend on the value of M taken in T ∼ Mω−1

0 .
(ii) Pure geometric Sagnac phase. A constant angular

velocity ωP (t ) = π/T for t ∈ [0, T ] with T = 2Kπ/ω0 gives
W̃P (ω0) = 0, where K = 1, 2, 3, . . . , and therefore φI =
φS and the contrast is maximized simultaneously. The solution
for κ in Eq. (15) is κ ≡ 1 (see Appendix D). Furthermore,
in this example γ d

η (T ) = −Kπ for both branches with η = 0
and 1, which comes from the zero-energy contribution. So the
Sagnac phase in this case is purely geometric.

The physical pictures for the above schemes are as follows:
When the two branches are recombined at t = T , the atoms
in each trap accomplish integer numbers of cyclic evolutions
and return to the initial vacuum state, during which the Sagnac
phase is given by the area difference subtended by the two tra-
jectories in the phase spaces. Figures 2(a)–2(c) plot the uncon-
ventional geometric Sagnac phase with the sinusoidal ωP (t )
profile and Figs. 2(d)–2(f) show the pure geometric counter-
part with the flat ωP (t ) profile. In Figs. 2(b) and 2(e), to satisfy
φI = φS and to maximize the contrast at the same time, the
trap frequency ω0 is given by the positive simultaneous zeros
of real (Re) and imaginary (Im) parts of W̃P (ω), which is
ω0T = 2(2L + 1)π for Fig. 2(b) with L = 0, 1, 2, . . . , and

(a) (b) (c)

(d) (e) (f)

FIG. 2. Unconventional [(a)–(c)] and pure [(d)–(f)] geometric
Sagnac interferometers with atomic clock states, where (a) and
(d), (b) and (e), (c) and (f) share the same horizontal axis labels,
respectively. (a) is the sinusoidal ωP (t ) profile [in units of π 2/(2T )]
in the example (i) and (d) is the flat ωP (t ) profile (in units of π/T )
in the example (ii). (b) and (e) are Fourier transform W̃P (ω) of (a)
and (d), respectively, where Re (Im) denotes the real (imaginary)
part. The horizontal frequency axes in both (b) and (e) are in units
of 2π/T . (c) and (f) are the phase space paths for the atoms in the
two respective traps during the interrogation, where �η = {αη(t )|t ∈
[0, T ]} is the path of |η〉s state atoms in the α plane with η = 0
and 1, respectively. (c) is plotted with the sinusoidal ωP (t ) profile
in (a), and (f) is with the flat profile in (d). For both (c) and (f),
we take ω0 = h̄ = m = r = 1, � = 0.1ω0 and T = 2π/ω0, and the
dashed blue line denotes −�1 = {−α1(t )|t ∈ [0, T ]} which encloses
the same area as �1. The area of the unfilled region inside �0 is
proportional to φS/2 in (c) with κ = 8/π 2, while it is identical with
φS/2 in (f).

ω0T = 2Kπ for Fig. 2(e) with K being a positive integer (see
Appendix D). Shown in Figs. 2(c) and 2(f) are the phase-space
paths �η for |η〉s state atoms during the interrogation, with
η = 0 and 1, respectively. Figure 2(c) is plotted with the
sinusoidal ωP (t ) profile and L = 0, and Fig. 2(f) is with the
flat profile and K = 1. Note that in Fig. 2(b), only the L = 0
case can give a nontrivial solution for κ in Eq. (15). The
dashed blue line denotes −�1 = {−α1(t )|t ∈ [0, T ]} which
encloses the same area as �1. Therefore, the area of the
unfilled region inside �0, which is equal to �γ̃ g/2, is identical
with φS/(2κ ) with κ = 8/π2 in Fig. 2(c) while it equals φS/2
in Fig. 2(f), which are signatures of unconventional and pure
geometric Sagnac phases, respectively.

So we have provided criteria for geometric Sagnac inter-
ferometers in the phase space and proposed corresponding
schemes for geometric quantum rotation sensing with trap-
guided atomic clocks. It should be noted that in the completely
adiabatic regime with T � ω−1

0 , the unconventional geo-
metric phase component given by the cosinusoidal ωP (t ) in
example (i) is �γ̃ g ∝ κ−1 ≈ 0, and φS becomes nearly com-
pletely dynamic. In this regime, the pure geometric scheme
with flat ωP (t ) ∝ T −1 in example (ii) is more accessible in
experiments due to the fact that κ ≡ 1 for this scheme. In
nonadiabatic and intermediate regimes, the unconventional
geometric schemes in example (i) could be more accessible
due to continuous ωP (t ) with ωP (0) = ωP (T ) = 0.
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IV. PRECISION AND SENSITIVITY

Now we discuss the precision and sensitivity of the above
schemes. The sensitivity of the Sagnac interferometer is lim-
ited by the uncertainty of the unbiased estimated value of �,
which is given by δ� = δP (φI )/|∂�P (φI )|, where P (φI ) =
s〈σz〉s is the signal given in Eq. (9). Straightforward calculation
leads to

1

(δ�)2
=

(
∂φI

∂�

)2
sin2φI

|C1,0|−2 − 1 + sin2φI

� F , (18)

where we have |C1,0| � 1 and F is the quantum Fisher
information (QFI) which determines the ultimate precision
limit for quantum sensing via the quantum Cramér-Rao bound
(QCRB) [30,31]. For the interferometer protocol V (T ) and
the initial state ρ(0) in this paper, if the interrogation time
is integer times the trap period, i.e., T = 2Kπ/ω0 with
K = 1, 2, 3, . . . , then the QFI in Eq. (18) is given by
F = (∂�φI )2 [32]. Therefore, the conditions for attaining the
equality in Eq. (18) and saturating the QCRB are |C1,0| = 1 [or
W̃P (ω0) = 0] and ω0T = 2Kπ . So all the schemes proposed
in examples (i) and (ii) with P (φI ) measurements satisfy these
conditions and thus saturate the QCRB.

V. CONCLUSION

In summary, we have proposed schemes for phase-space
geometric Sagnac interferometers with trap-guided atomic
clocks, which could be potentially noise resilient and promis-
ing for high-sensitivity rotation sensors. The pure geomet-
ric scheme is applicable to adiabatic guiding procedures
while the unconventional geometric schemes could be more
accessible in nonadiabatic situations. In addition, the estab-
lished relationship between the interferometer phase and the

Sagnac phase may provide a theoretical basis of evaluating the
scale factor for the Sagnac interferometer, which is crucial for
the accuracy of atomic sensors.

It is also worth noting that in realistic experiments, the
initial states in both harmonic traps are usually identical mixed
thermal states as discussed in Ref. [20], and if the manipula-
tion of atoms in the phase space during the interrogation is a
cyclic evolution of the mixed state with respect to the center
of the probability distribution, then the finite temperature does
not affect both the contrast and the geometric Sagnac phase,
where the latter is proportional to the area difference of the
two enclosed trajectories in the phase space. This result shows
that the proposed geometric rotation sensing schemes are not
restricted to zero temperature and the initial single-particle
ground state in the harmonic trap. Our work could stimulate
further interest and studies on phase-space geometric quantum
sensing with guided matter waves.
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APPENDIX A: DERIVATION OF THE TIME-EVOLUTION
OPERATOR Uη(t ) IN EQ. (5)

Here we give the detailed derivations of the total time-
evolution operator U (t ) and the single-component time-
evolution operator Uη(t ) in Eq. (5). With the properties of
projection operators �i�j = δij�i for i, j ∈ {0, 1}, one can
obtain

U (T ) = T exp

[
−i

∫ T

0
H (t )dt/h̄

]

= Ih ⊗ Is + (−i/h̄)
∫ T

0
H (t )dt +

∞∑
k=2

(−i/h̄)k

k!

∫ T

0
dt0

∫ t0

0
dt1 · · ·

∫ tk−2

0
dtk−1H (t0)H (t1) · · · H (tk−1)

= Ih ⊗ Is +
{
T exp

[
−i

∫ T

0
H0(t )dt/h̄

]
− Ih

}
�0 +

{
T exp

[
−i

∫ T

0
H1(t )dt/h̄

]
− Ih

}
�1

= U0(T )�0 + U1(T )�1, (A1)

where I is the identity operator and Uη(T ) = T exp[−i
∫ T

0 Hη(t )dt/h̄] for η ∈ {0, 1}, with Hη(t ) being the time-dependent
single-component Hamiltonian for the harmonic oscillator mode, and we have used the relation �0 + �1 = Is.

The Hamiltonian in Eq. (3) describes a forced harmonic oscillator and the corresponding time-evolution operator at time t

can be written as

Uη(t ) = U(0)(t )Uη(t ), (A2)

where U(0)(t ) = exp[−iω0(a†a + 1
2 )t] and Uη(t ) satisfies

ih̄
∂

∂t
Uη(t ) = iλη(t )[ã(t ) − ã†(t )]Uη(t ), (A3)

where ã(t ) = a exp (−iω0t ). Equation (A3) can be solved from the Magnus expansion [33] and is given by

Uη(t ) = D[βη(t )]exp[iφη(t )], (A4)
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where βη(t ) = − ∫ t

0 λη(τ )exp(iω0τ )dτ/h̄,

φη(t ) =
∫ t

0

∫ τ1

0
λη(τ1)λη(τ2) sin[ω0(τ1 − τ2)]dτ2 dτ1/h̄

2, (A5)

and D(β ) = exp(βa† − β∗a) is the displacement operator for the oscillator. Therefore, the time-evolution operator in Eq. (A2)
reads

Uη(t ) = U(0)(t )D[βη(t )]U †
(0)(t )exp(−iω0a

†at )exp{i[φη(t ) − ω0t/2]}
= D[αη(t )]exp(−iω0a

†at )exp{i[φη(t ) − ω0t/2]}, (A6)

which is Eq. (5) in the main text, with

αη(t ) = βη(t )exp(−iω0t ) = −
∫ t

0
λη(τ )exp[iω0(τ − t )]dτ/h̄. (A7)

APPENDIX B: DERIVATION OF THE INTERFEROMETER PHASE φI IN EQ. (10)

In this Appendix we present detailed calculations of the interferometer phase φI in Eq. (10), which establishes a relationship
between φI and the well-known Sagnac phase. The C1,0 in the spin density matrix ρs(T ) is given by

C1,0 = h〈α1(T )|α0(T )〉hexp{−i[φ1(T ) − φ0(T )]} = exp(−|�α|2/2)exp{i[φ0(T ) − φ1(T ) + Im(α∗
1 (T )α0(T ))]},

(B1)

where �α = α0(T ) − α1(T ) = −2r
√

πmω0/h̄W̃∗
P (ω0)exp(−iω0T ) ∝ W̃∗

P (ω0). In general, for an arbitrary time-dependent
function ωP (t ) which satisfies

∫ T

0 ωP (τ )dτ = π , the explicit expression for φη(T ) from Eq. (A5) is difficult to obtain. Whereas,
in terms of W̃P (ω0), the phase difference and the imaginary part in Eq. (B1) have explicit forms, which are given by

φ0(T ) − φ1(T ) =
∫ T

0

∫ τ1

0
[λ0(τ1)λ0(τ2) − λ1(τ1)λ1(τ2)] sin[ω0(τ1 − τ2)] dτ2 dτ1/h̄

2

= (mω0�r2/h̄)
∫ T

0

∫ τ1

0
[ωP (τ1) + ωP (τ2)] sin[ω0(τ1 − τ2)] dτ2 dτ1

= (m�r2/h̄)

[
2π − (1 + cosω0T )

∫ T

0
ωP (τ ) cos ω0τdτ − sin ω0T

∫ T

0
ωP (τ ) sin ω0τ dτ

]
= φS

{
1 − 1√

2π
Re[(1 + eiω0T )W̃P (ω0)]

}
, (B2)

and

Im[α∗
1 (T )α0(T )] =

∫ T

0

∫ T

0
λ0(τ1)λ1(τ2) sin[ω0(τ1 − τ2)] dτ2 dτ1/h̄

2

= [mω0�r2/(2h̄)]
∫ T

0

∫ T

0
[ωP (τ1) − ωP (τ2)] sin[ω0(τ1 − τ2)] dτ2 dτ1

= −(m�r2/h̄)

[
(1 − cosω0T )

∫ T

0
ωP (τ ) cos ω0τ dτ − sin ω0T

∫ T

0
ωP (τ ) sin ω0τ dτ

]
= φS√

2π
Re[(eiω0T − 1)W̃P (ω0)], (B3)

respectively, where φS = 2mπr2�/h̄ is the Sagnac phase and we have used the relation∫ T

0

∫ τ1

0
ωP (τ2) sin[ω0(τ1 − τ2)] dτ2 dτ1 =

∫ T

0

∫ T

τ2

ωP (τ2) sin[ω0(τ1 − τ2)]dτ1dτ2 =
∫ T

0

∫ T

τ1

ωP (τ1) sin[ω0(τ2 − τ1)]dτ2dτ1.

(B4)

Finally, the population difference, s〈σz〉s, is given by

s〈σz〉s = Trs[ρs(T )σz] = −|C1,0|cos(φI ), (B5)
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where the modulus |C1,0| = exp(−|�α|2/2) gives the signal contrast, and the interferometer phase is given by Eq. (B1) and reads

φI = arg(C1,0) = φ0(T ) − φ1(T ) + Im[α∗
1 (T )α0(T )] = φS

{
1 −

√
2

π
Re[W̃P (ω0)]

}
. (B6)

With the properties ωP (t ) � 0 for t ∈ [0, T ], | cos ω0t | � 1, and
∫ T

0 ωP (t )dt = π , one can obtain |Re[W̃P (ω0)]| � √
π/2.

Therefore, we have 0 � φI � 2φS .

APPENDIX C: GEOMETRIC AND DYNAMIC DECOMPOSITION OF THE INTERFEROMETER PHASE

Here we provide detailed calculations of the geometric and dynamic phase-difference components in φI , which is Eq. (16).
The dynamic and geometric phases γ d

η (T ) and γ
g
η (T ) in each trap are given by

γ d
η (T ) = −

∫ T

0
〈ψη(t )|Hη(t )|ψη(t )〉dt = −

∫ T

0

[
ω0

(
|αη(t )|2 + 1

2

)
− 2λη(t )

h̄
Imαη(t )

]
dt

= 2φη(T ) − ω0

∫ T

0
|αη(t )|2dt − 1

2
ω0T , (C1)

and

γ g
η (T ) = i

2

∫
�η

α∗
ηdαη − αηdα∗

η − arg[〈αη(T )|G〉] = −
∫ T

0
Im[α∗

η (t )∂tαη(t )]dt = −φη(T ) + ω0

∫ T

0
|αη(t )|2dt, (C2)

respectively, where φη(T ) is given by Eq. (A5) and satisfies φη(T ) − ω0T/2 = γ d
η (T ) + γ

g
η (T ), and arg[〈αη(T )|G〉] = 0.

In general, the calculations of explicit expressions for dynamic and geometric phases in each trap are difficult for an arbitrary
λη(t ). Whereas, the dynamic and geometric phase differences �γ d and �γ̃ g in Eq. (14) can be expressed in terms of W̃P (ω)
and its derivative at the trap frequency ω0, which will be shown below.

With ω0
∫ T

0 |αη(t )|2dt = (ω0/h̄
2)

∫ T

0 dt
∫ t

0 dτ1
∫ t

0 dτ2λη(τ1)λη(τ2) cos ω0(τ1 − τ2), and by defining
∫ T

0 �|α(t )|2dt =∫ T

0 [|α0(t )|2 − |α1(t )|2]dt , one can easily obtain

ω0

∫ T

0
�|α(t )|2dt = (ω0/h̄

2)
∫ T

0
dt

∫ t

0
dτ1

∫ t

0
dτ2[λ0(τ1)λ0(τ2) − λ1(τ1)λ1(τ2)] cos ω0(τ1 − τ2)

= (
mω2

0�r2/h̄
) ∫ T

0
dt

∫ t

0
dτ1

∫ t

0
dτ2[ωP (τ1) + ωP (τ2)] cos ω0(τ1 − τ2)

= φS

{
1 −

√
2

π
Re[eiω0T W̃P (ω0)] −

√
2

π
ω0T Im[W̃P (ω0)] − ω0

π

∫ T

0
τωP (τ ) sin ω0τdτ

}

= φS

{
1 −

√
2

π
Re[eiω0T W̃P (ω0)] −

√
2

π
ω0T Im[W̃P (ω0)] +

√
2

π
ω0∂ωRe[W̃P (ω)]ω=ω0

}
, (C3)

where we have used the same integration method as in Eq. (B4) to obtain the third equation and we also have used the relation
∂ωRe[W̃P (ω)]ω=ω0

= − ∫ T

0 τωP (τ ) sin ω0τdτ/
√

2π . Together with Eqs. (B2), (B3), (C1), and (C2), we obtain

�γ̃ g =
√

2

π
φSω0{∂ωRe[W̃P (ω)]ω=ω0 − T Im[W̃P (ω0)]}, (C4)

and

�γ d = φS

{
1 −

√
2

π
Re

[
W̃P (ω0)

]} − �γ̃ g. (C5)

APPENDIX D: PHASE-SPACE GEOMETRIC SAGNAC PHASE—EXAMPLES

Here we present several examples for the geometric Sagnac phases with designed ωP (t ) and the interrogation time T , with
corresponding Fourier transform analyses.

Example (i). Unconventional geometric Sagnac phase. (1) A sinusoidal angular velocity ωP (t ) = π2|sin(2πt/T )|/(2T ) with
t ∈ [0, T ] gives the Fourier transform

Re[W̃P (ω)] =
√

π/2 cos2
(

ωT
4

)
cos

(
ωT
2

)
1 − (

ωT
2π

)2 , Im[W̃P (ω)] = −√
2π cos3

(
ωT
4

)
sin

(
ωT
4

)
1 − (

ωT
2π

)2 . (D1)
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So the condition φI = φS requires that ω0T = (2L + 1)π or 2(2L + 1)π with L = 0, 1, 2, . . . , and W̃∗
P (ω0) = 0 requires that

ω0T = 2(2L + 1)π (L = 0, 1, 2, . . . .). The intersection is ω0T = 2(2L + 1)π (L = 0, 1, 2, . . . .). Further calculations show
that only the L = 0 case with T = 2π/ω0 can give a solution of κ in Eq. (15), which is κ = 8/π2. Therefore, the Sagnac
phase φS = 8�γ̃ g/π2 is an unconventional geometric phase, by which we mean that the geometric φS also involves a dynamic
component [11]. For the other cases with L �= 0, ∂ωRe[W̃P (ω)]ω=ω0

≡ 0, and φS is completely dynamic.
(2) A cosinusoidal angular velocity [21] ωP (t ) = (π/T )[1 − cos(2πt/T )] gives the Fourier transform

Re[W̃P (ω)] =
√

π/2 sin(ωT )

ωT
[
1 − (

ωT
2π

)2] , Im[W̃P (ω)] =
√

π/2[cos(ωT ) − 1]

ωT
[
1 − (

ωT
2π

)2] . (D2)

So the condition W̃∗
P (ω0) = 0 requires that ω0T = 2Mπ (M = 2, 3, 4, . . . .), and the corresponding κ is given by κ = 1 − M2.

Therefore, the Sagnac phase φS = (1 − M2)�γ̃ g is also an unconventional geometric phase.
Example (ii): Pure geometric Sagnac phase with a flat temporal profile for ωP (t ). A constant angular velocity ωP (t ) = π/T

with t ∈ [0, T ] gives the Fourier transform

Re[W̃P (ω)] =
√

π

2

sin ωT

ωT
, Im[W̃P (ω)] =

√
π

2

cos ωT − 1

ωT
. (D3)

Therefore, φI = φS requires that ω0T = Kπ and the maximization of contrast, i.e., W̃∗
P (ω0) = 0, requires that ω0T = 2Kπ ,

with K being a positive integer. If the interrogation time is selected to be T = 2Kπ/ω0 (K = 1, 2, 3 . . . .), then both of the
requirements are met. For this case, the solution for κ in Eq. (15) is κ = 1. Furthermore, in this example γ d

η (T ) = −Kπ for both
branches with η = 0 and 1, which comes from the zero-energy contribution. So the Sagnac phase in this case only has a purely
geometric component.
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