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Impurity coupled to a lattice with disorder
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We study the time-dependent occupation of an impurity state hybridized with a continuum of extended or
localized states. Of particular interest is the return probability, which gives the long-time limit of the average
impurity occupation. In the extended case, the return probability is zero unless there are bound states of the
impurity and continuum. We present exact expressions for the return probability of an impurity state coupled to
a lattice, and show that the existence of bound states depends on the dimension of the lattice. In a disordered
lattice with localized eigenstates, the finite extent of the eigenstates results in a nonzero return probability. We
investigate different parameter regimes numerically by exact diagonalization, and show that the return probability
can serve as a measure of the localization length in the regime of weak hybridization and disorder. Possible
experimental realizations with ultracold atoms are discussed.
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I. INTRODUCTION

A discrete level coupled to a continuum of energies is a
well-known problem in quantum optics [1–5]. When the con-
tinuum is unbounded, the occupation of an initially occupied
discrete level decays exponentially as the particle diffuses
into the continuum. The decay law is not always exponen-
tial but depends on the density of states of the continuum.
A particle in a discrete level could therefore be used as a
probe of the continuum it is coupled to. For example, for
a bounded continuum such as the energy band of a lattice,
localized states outside the continuum can appear and lead to
a nonzero occupation of the impurity level at infinite time.
The limit of a zero-width continuum, on the other hand,
corresponds to a two-state system with Rabi oscillations [4].
A system with two localized (bound) states outside a finite
continuum shows similar oscillations at long times, with an
amplitude given by the overlap of the discrete level with the
bound states. The discrete-level occupation and its long-time
limit thus provide insight about the precise nature of the
continuum.

The density of states, and therefore the decay law of a
discrete level or impurity state, is modified in the case of
a spatially disordered potential. A disordered system can
exhibit the phenomenon of Anderson localization [6] charac-
terized by exponentially decaying wave functions [7,8]. The
localization results from interference between time-reversed
scattering paths in a random medium and was first predicted
for electrons in disordered crystals [6]. In three-dimensional
(3D) systems, localization occurs when the disorder potential
exceeds a critical value, whereas in lower dimensions any
nonzero disorder strength localizes the wave functions. In 3D,
extended and localized states can coexist at different energies
separated by so-called mobility edges, where the system’s
behavior changes from metallic to insulating.
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Signs of Anderson localization have been observed in
disordered systems as diverse as doped semiconductors
[9], light in random wave guides [10–18], and acoustic
waves in mesoscopic glasses [19,20]. Experiments with
ultracold atoms have reported Anderson localization in
one-dimensional (1D) random speckle potentials [21,22].
Such potentials have a finite correlation length, which leads
to an effective mobility edge even in 1D. A recent experiment
demonstrated the existence of a single-particle mobility edge
in a 1D potential formed by two incommensurate optical
lattices [23]. The Anderson metal-insulator transition in 3D
has been investigated in speckle potentials [24–26] with
somewhat inconclusive results [27].

Theoretically, disordered systems have been studied
with both analytical and numerical tools [28,29]. In 1D,
analytically solvable models exist, whereas in 2D and 3D,
disordered systems have been treated by scaling theory [30].
For 1D systems, it is known that the localization length is of
the order of the mean-free path [31,32], the average distance
between scattering events. In 2D, scaling theory predicts
localization for any strength of disorder, but the localization
length is an exponential function of the mean-free path and
can be extremely large.

The localization length itself is a difficult quantity to
measure, and localization is usually observed through the con-
ductance of a material, or, in the case of ultracold atoms, the
spatial distribution of the atoms. We focus in the present paper
on using an impurity level to probe such systems. We consider
a local observable, the probability that a particle initially in
the impurity state returns to this state, and we investigate the
relation between this observable and the localization length
in the disordered lattice. We compare the cases of one- and
two-dimensional lattices, for which localization properties are
known to be different. The model studied here could be real-
ized experimentally by coupling an impurity to an effectively
1D system, such as a quantum dot attached to a wire [33,34] or
using ultracold atoms in an optical potential with a local cou-
pling to a different hyperfine state, as will be discussed below.
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FIG. 1. The geometry of the model in the case of a one-
dimensional lattice. An impurity state |d〉 is coupled with amplitude
g at site r = 0.

The plan of the paper is as follows: Sec. II introduces
the model, the relevant quantities to characterize Ander-
son localization, a formal analytical solution for the return
probability, and the numerical methods. Exact results for clean
and strongly disordered systems are presented in Sec. III. In
Sec. IV, we check our numerics for the occupation probability
of the impurity level against analytical expressions in the
case of a nondisordered lattice, and we present numerical
results for a disordered lattice. In Sec. V, we discuss possible
realizations of the model in experiments with ultracold atoms
in optical potentials, and conclude in Sec. VI.

II. MODEL AND METHODS

A. Return probability and parameter regimes

We consider an impurity state coupled to a disordered
lattice. The Hamiltonian describing the system is

H = H0 + Ednd + g(c†dcr=0 + H.c.),

H0 =
∑

k

Eknk +
∑

r

Vrnr . (1)

For convenience, we designate by H0 the Hamiltonian of the
disordered lattice without the impurity. Here, k and r are
indices of momentum and position eigenstates in one, two,
or three dimensions and d denotes the impurity state. The
number operators are defined as n = c†c, where c† (c) is the
creation (annihilation) operator. The discrete wave vectors k
become continuous in the thermodynamic limit. Ek is the
dispersion relation for particles moving on the clean (undis-
ordered) lattice. We use the tight-binding form

Ek = −2J

D∑
i=1

cos(ki ), (2)

where J is the hopping amplitude between nearest-neighbor
sites on a hypercubic lattice and D is the dimensionality. We
set the lattice spacing to one, choose units such that h̄ ≡ 1, and
report energies relative to the half-bandwidth W = 2JD. In
Eq. (1), Vr denotes a random uncorrelated on-site disorder that
is uniformly distributed between −V and +V . The energy at
the impurity site is Ed and the coupling between the impurity
state and the site r = 0 of the lattice is denoted by g. The
geometry of the model is illustrated in Fig. 1.

We introduce the set of single-particle eigenstates |α〉 of H0

with eigenvalues Eα . In a disordered system, the eigenstates
can be exponentially localized as |ψα (r )| ∼ e−|r−rα |/ξ , where
ξ is the localization length. In three dimensions, localization
occurs above a critical value of the disorder strength, whereas
a weakly disordered system is conducting with extended
eigenstates. In one and two dimensions, the eigenstates are

localized for any nonzero disorder strength. However, in 2D
the localization length can be extremely large as it depends
exponentially on the mean-free path � [35],

ξ ∼ � e
π
2 kF�,

where kF is the Fermi wave vector. Localization is strongest
in 1D where the localization length is twice the mean-free
path [36]. As the strength of the disorder potential varies
between the clean limit with V = 0 where all eigenstates are
extended to the limit V � W where all states are strongly
localized, both � ∼ V −2 and ξ decrease from infinity to
lengths comparable with the lattice spacing. The question
we address is whether the impurity state could serve as a
probe of localization, specifically, whether the nonequilibrium
population of the impurity state measures the localization
length in the lattice.

We prepare the system at time t = 0 with one particle
occupying the impurity state |d〉 and no particle in the lattice
and measure the probability of finding the particle in the state
|d〉 as a function of time. The quantity of interest is the return
probability, or survival probability, of the impurity state—the
infinite-time limit of the time-averaged occupation

Qd = lim
T →∞

1

T

∫ T

0
|〈d|e−iH t |d〉|2. (3)

The bar on the right-hand side represents the disorder average,
which is done in the case of a disordered lattice. For V = 0,
the problem reduces to the textbook problem of a discrete
level coupled to a smooth continuum, which was solved early
on at leading order in the coupling and for an unbounded
continuum [1]. The result is an exponential decay of the
discrete-level occupation with a decay rate given by the Fermi
golden rule [1,2,4,5]. In the opposite limit g � W , the prob-
lem approaches a two-level system with Rabi oscillations. The
case of a finite-width continuum, either bounded from below,
above, or both, is more intriguing because a finite occupation
of the discrete level can survive even in the limit t → ∞
[37,38]. This is due to the emergence of impurity-induced
bound states outside the continuum. Two such bound states
lead to Rabi-like oscillations and one single bound state to
a constant occupation at long times. In Sec. II C, we discuss
a formal solution that is exact at all orders in g for V = 0 and a
continuum of finite bandwidth. In particular, we show how the
dimensionality of the lattice is connected with the existence of
either zero, one, or two bound states. In Sec. IV A, we cross-
check this solution numerically in dimensions D = 1, 2, 3 by
means of exact diagonalization and expansion of the evolution
operator on Chebyshev polynomials.

For V > 0, one can distinguish various regimes. In the
clean limit 0 < V 	 W , the physics is similar to that for V =
0 with small perturbative corrections in V/W . One exception
is the weak-coupling region g < V , where the corrections are
large as will be seen in Sec. IV. If V � W , the eigenstates
|α〉 are strongly localized and eventually confined to a single
site. In this limit, the impurity state is effectively coupled to
only one lattice site resulting in Rabi oscillations for any cou-
pling g (Sec. III C). The most interesting regime—regarding
the information that the return probability may hold about
localization—is V � W and g < V , where the localization
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length varies and the coupling g is not strongly perturbing the
lattice.

B. Measures of Anderson localization

There are several ways of measuring whether a system is
localized. We briefly discuss three of them here, namely the
lattice return probability, the inverse participation ratio, and
the transport localization length. The lattice return probability
to a site |r〉 is analogous to the return probability of Eq. (3)
and has a simple expression in terms of the eigenstates |α〉 of
H0 (see Appendix A):

Qr = lim
T →∞

1

T

∫ T

0
|〈r|e−iH0t |r〉|2 =

∑
α

|〈r|α〉|4. (4)

The bar denotes disorder averaging as in Eq. (3). The lattice
return probability reaches the maximum value of one when
the eigenstates are maximally localized, |α〉 = |rα〉, and a
minimum value of 1/N for extended plane-wave states, where
N is the number of lattice sites.

The inverse participation ratio provides a measure of the
localized character of a given state:

IPRα =
∑

r

|〈r|α〉|4. (5)

Like Qr , the inverse participation ratio increases from 1/N

to 1 as the state becomes more and more localized. Without
the disorder average in Eq. (4),

∑
r Qr = ∑

α IPRα , such that
the average values of Qr and IPRα are identical over the
interval [1/N, 1]. A numerical study furthermore showed that
these values have similar distributions [39]. It is convenient to
represent the IPR of a state by an equivalent length defined as
the characteristic length of an exponentially localized wave
function in the continuum with the same IPR value. By
calculating the IPR for a state ψ (r ) ∼ e−r/ξ in dimension D,
we deduce the expression of the equivalent length as

ξ−1
α = 2

[
π

D−1
2 �

(
D + 1

2

)
IPRα

]1/D

, (6)

where � is the Euler gamma function. We consider the
disorder-averaged quantities ξ and ξ−1, which we obtain
numerically as functions of energy by a binning procedure.
The values of ξα and ξ−1

α calculated from IPRα are binned
according to the corresponding eigenenergy Eα and averaged
in each bin, and these values are averaged over the different
disorder realizations.

The transport localization length characterizes the expo-
nential decrease of the ballistic conductance in a disordered
conductor of increasing length. The conductance can be for
instance related to the Green’s function, which gives in 1D
the following expression for the localization length:

1

λ(E)
= − lim

L→∞
1

2L
ln

|G(0, L,E)|2
|G(0, 0, E)|2 . (7)

The quantity G(r, r ′, E) = 〈r|(E + i0 − H0)−1|r ′〉 is the re-
tarded Green’s function for a disordered chain of length
L connected with two ideal leads. The symbol i0 denotes
an infinitesimal imaginary part. In higher dimensions, we
must sum all conduction channels and replace |G(0, L,E)|2
by

∑
r0 rL

|G(r0, rL,E)|2, where r0 and rL represent all

sites in contact with the left and right lead, respectively.
Likewise, the normalization |G(0, 0, E)|2 is replaced by∑

r0 r ′
0
|G(r0, r ′

0, E)|2.
The various measures of localization give qualitatively

consistent although generally different results. The first two
measures are ideal when exact diagonalization is possible
and they converge provided that the linear system size is
larger than ξα for all α. The third one is convenient in 2D
and 3D when ξD

α exceeds system sizes attainable by exact
diagonalization, thanks to efficient algorithms for computing
the Green’s function or the transmission coefficients [40,41].
The convergence of the transport localization length with
system size is slow, though, such that a finite-size scaling
analysis is required in order to extract reliable values in the
thermodynamic limit [42].

C. Formal solution for the return probability

The time evolution entering Eq. (3) admits a closed form
that involves the self-energy of the impurity state |d〉 [3,37].
This can be shown for instance by means of a Laplace trans-
form as done in Appendix B or by using the equation of mo-
tion of the impurity Green’s function as done in Appendix C.
The impurity self-energy accounts for the hybridization of
the level with the lattice. When the impurity is coupled to
a single site r = 0 like in Eq. (1), the self-energy is simply
proportional to the local lattice Green’s function at that site:

�(E) ≡ �1(E) + i�2(E)

= g2G(0, 0, E) = g2
∑

α

|〈0|α〉|2
E − Eα + i0

. (8)

The factor g2 accounts for the particle jumping in
and out of the lattice and the propagator G(0, 0, E) =
〈0|(E + i0 − H0)−1|0〉 represents the excursion of the parti-
cle in the lattice from site 0 and back to site 0. The self-energy
determines the spectral function of the impurity,

A(E) = − 1

π
Im

[
1

E − Ed − �(E) + i0

]
, (9)

which approaches a delta function at energy Ed as the cou-
pling g approaches zero. The time-dependent amplitude on
the impurity is related to these quantities as follows:

〈d|e−iH t |d〉 =
∫ Emax

Emin

dE e−iEtA(E)

+
∑
Eb

e−iEbt

1 − ∂E�1(E)|E=Eb

. (10)

We split the amplitude in two terms in order to emphasize
the role of the impurity-induced bound states outside the
continuum, when they exist. The continuum bounded by Emin

and Emax is defined by the condition �2(E) �= 0: as seen in
Eq. (8), this covers the spectral range of the lattice energies
Eα , which because of disorder extends beyond the bandwidth
of the clean system. Outside the continuum, Eq. (9) shows that
the spectral function becomes A(E) = δ[E − Ed − �1(E)].
Therefore, if bound states exist outside the continuum, they
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FIG. 2. Impurity spectral function for a clean 1D lattice and an
impurity-lattice coupling g = 0.5W . The initial delta function at
the energy Ed of the impurity gets shifted and broadened over the
lattice continuum, which extends from Emin to Emax; this explains
the exponential decay of the impurity-level occupation at short time.
The edges of the continuum at Emin and Emax control the power-law
decay at intermediate time. Bound states of the impurity and lattice
furthermore emerge below and above the continuum, which explains
the saturation of the occupation to a finite value at long time.

are the solutions Eb of

Eb − Ed − �1(Eb ) = 0, �2(Eb ) = 0. (11)

Their contribution to the impurity population is the second
term on the right-hand side of Eq. (10), which, given the above
form of the spectral function, could also be accounted for by
extending the integration limits in the first term to ±∞. The
interest of separating the two terms appears when considering
Eq. (3): the contribution of a smooth continuum vanishes at
long times as a power law controlled by the continuum bound-
aries [43], such that the long-time occupation is set by the
second term in Eq. (10). Note that the stationary Schrödinger
equation for the bound states |ψb〉 gives Eq. (11) as the
eigenvalue equation and |〈d|ψb〉|2 = 1/[1 − ∂E�1(E)|E=Eb

].
Hence the amplitude entering Eq. (10) is equal to the proba-
bility for the particle to be in the bound state at time zero.

For a clean system in the thermodynamic limit, Emin

and Emax coincide with the band edges of the lattice and
A(E) is continuous between these limits. Depending upon
the dimensionality and impurity-lattice coupling, Eq. (11) can
have zero, one, or two solutions with the corresponding wave
functions centered at the impurity site and decaying to zero
away from it, as discussed in Sec. III A. Figure 2 shows the
continuum and the bound states for a clean 1D lattice.

When disorder is present and weak, Emin and Emax move
below and above the lattice band edges by an amount of order
V . If this exceeds the energy of the bound states, the latter
disappear. At the same time, the continuum A(E) becomes
itself discontinuous and gives a finite contribution to the
long-time impurity occupation. As the disorder gets stronger,
localization implies that the impurity is coupled to a finite
number of states in the lattice, even in the thermodynamic
limit: the continuum A(E) transforms into a finite set of delta
peaks and the resulting long-time occupation is periodic.

Finally, for a clean or disordered system of finite size the
spectral function A(E) is discrete and each level contributes

to the impurity occupation a term like the second term of
Eq. (10). The quantity ∂E�1(E) is in principle well defined
because, while �2(E) is made of Dirac delta functions at
the energies Eα , �1(E) is continuous in between consecutive
values of Eα . If not for accidental degeneracies, the discrete
levels of H are different from those of H0 and fall in regions
where ∂E�1(E) exists.

D. Numerical methods

In 1D, we calculate the occupation probability of the
impurity state numerically by exact diagonalization. It allows
us to reach sufficiently large system sizes L compared to the
localization length ξ so that the results do not depend on L. In
2D, we use exact diagonalization where applicable. Since the
size of systems solvable by exact diagonalization is limited,
we use an expansion on Chebyshev polynomials for large
2D lattices and in 3D. The Chebyshev expansion of the time
evolution operator is written as (see Appendix D)

e−iH t ≈ e−ibt

M∑
m=0

(2 − δm0)(−i)mJm(at )Tm(H̃ ), (12)

where Tm(x) = cos(m arccos x) are the Chebyshev polynomi-
als defined for x ∈ [−1, 1] and Jm(x) is the Bessel function.
The argument H̃ is the scaled Hamiltonian H̃ = (H − b)/a,
where b is the middle and 2a the width of the spectrum
of H (or an upper bound on it). The scaled Hamiltonian
is therefore dimensionless and has eigenvalues in the range
[−1, 1]. The expansion (12) is exact for M = ∞ and truncated
to order M for calculations. It is analytic in t and valid up to
a time tM ≈ M/a. The order M is chosen such that the return
probability Qd calculated for T = tM is converged. We also
use the Chebyshev expansion for evaluating the lattice Green’s
function thanks to the expansion (Appendix D),

(E + i0 − H0)−1

≈ 1

a

M∑
m=0

KM
m

i(δm0 − 2)e−im arccos(Ẽ)√
1 − Ẽ2

Tm(H̃0). (13)

Ẽ = (E − b)/a is the energy rescaled like the Hamiltonian.
Again, the expansion is exact for M = ∞ with KM

m = 1.
When it is truncated to order M , Gibbs oscillations develop
[44], which are suppressed by the kernel KM

m . We use the
Fejér kernel KM

m = (1 − m/M ) and check convergence with
respect to M .

III. ANALYTICAL RESULTS

It is known that the population of a discrete level coupled
to a smooth continuum of infinite width decays exponentially
with time at a rate given by the Fermi golden rule [1,2,4,5].
The same result can be obtained as a short-memory approx-
imation [45]. When the continuum has finite width, the time
evolution is modified by the bound states leading to a finite
return probability [38].

A. Clean lattice without disorder

As already pointed out, in the thermodynamic limit the first
term in Eq. (10) vanishes for t → ∞. The infinite-time limit
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of Eq. (3) is therefore given by the second term as

Qd =
∑
Eb

1

|1 − ∂E�1(E)|E=Eb
|2 . (14)

The bound-state energies solutions of Eq. (11) can be found
graphically as the intersections of �1(E) and E − Ed where
�2(E) = 0, that is, outside the band. Equation (8) indeed
shows that �2(E) = −πg2N (E) is simply proportional to
the lattice density of states N (E) in the clean system. Since
the real part of the self-energy follows different power laws
at the band edges in different dimensions, the existence of
bound states depends on the dimension of the lattice. Figure 3
illustrates how the number of intersections depends on the
dimension and the parameters g and Ed . The figure shows
the line (E − Ed )/g2 for various values of g and Ed as
well as �1(E)/g2 and −�2(E)/g2. The last two quantities
are independent of g and the latter highlights the range of
the continuum where bound states cannot exist. In 1D and
2D, �1(E) has square-root and logarithmic singularities at
the band edges, respectively. Therefore, there are two in-
tersections for any values of Ed and g �= 0. For a 3D or
higher-dimensional lattice, �1(E) is finite at the band edges.
Therefore, a critical coupling gc exists below which there is no
bound state. For Ed = 0 and g > gc, two symmetric bound
states form like in 1D and 2D. If Ed �= 0, we can have a
situation where only one bound state exists, either above the
band if Ed > 0 or below the band if Ed < 0.

The bound-state energies are exactly known in 1D,
while one must resort to numerics in 2D and 3D. In
1D, we have �1(E) = g2/(2π )

∫ π

−π
dk/(E + W cos k) =

(g2/W )sgn(x)Re[(x2 − 1)−1/2] with x = E/W . The equa-
tion giving the bound-state energy at positive x becomes
(g/W )2 = (x − y)

√
x2 − 1 with y = Ed/W . The general so-

lution is complicated but simplifies for Ed = 0 to

Eb

W
= ±

√
1
2 + 1

2

√
1 + 4(g/W )4.

Inserting these expressions in Eq. (14) yields

Qd =
⎧⎨
⎩

1, g = 0,[√
1+4(g/W )4−1

]2

2[1+4(g/W )4] , g �= 0.
(15)

The return probability increases very slowly like 2(g/W )8 at
small g and approaches 1/2 from below with a correction
− 1

2 (W/g)2 at large g.

B. Strong impurity-lattice coupling

For large g, the problem can be formulated as an effective
two-level Hamiltonian of the form

Heff =
(

Ed g

g Vr=0 + �(E)

)
,

where the function �(E) = J 2 ∑
ss′ Ḡ(s, s′, E) takes into

account the hybridization of the site r = 0 with the rest of
the lattice. The sum runs over all sites s connected with the
site 0 and Ḡ is the “cavity” Green’s function, i.e., the Green’s
function of the lattice without the site 0. For g � V,W ,
the eigenvalues of Heff approach ±g and Eq. (8) shows that

FIG. 3. Graphical solution of Eq. (11) for the bound states in
dimensions 1, 2, and 3. The shaded curves show −�2(E)/g2, which
is proportional to the lattice density of states and defines the energy
range where bound states are forbidden. The band edges are marked
with gray vertical lines. The brown solid lines show �1(E)/g2 and
the dark solid lines show (E − Ed )/g2 for Ed = 0. The intersections
outside the forbidden range correspond to bound states and are
marked with circles. For the 1D and 2D lattices, �1(E) diverges
at the band edges and therefore there are always two bound states.
For the 3D lattice, the number of intersections can be 0 (solid
line), 2 (dashed line), or 1 (dotted line). The solid and dashed lines
correspond to Ed = 0 while the dotted line has Ed > 0.

−∂E�1(E)E=±g approaches
∑

α |〈0|α〉|2 = 1. According to
Eqs. (10) and (3), the limiting value for g → ∞ is therefore
Qd = 1/2. If Ed,W 	 V 	 g, the leading correction to the
eigenvalues is V0/2 ± V 2

0 /(8g) and the value of −∂E�1(E)
becomes g2/[±g + V0/2 ± V 2

0 /(8g)]2. Evaluating Qd with
this expression and performing the impurity average, we get
the asymptotic behavior

Qd = 1

2
+ 2

3

(
V

4g

)2

(Ed,W 	 V 	 g), (16)

053607-5



A.-M. VISURI, C. BERTHOD, AND T. GIAMARCHI PHYSICAL REVIEW A 98, 053607 (2018)

which shows that Qd approaches 1/2 from above in this
regime. In the weak-disorder regime, Ed, V 	 W 	 g, the
leading correction to the eigenvalues is �(E)/2 and we can
approximate �(E) by 2DJ 2/E. The reason is that there are
2D sites s connected with the site 0 and the high-energy
limit of Ḡ(s, s, E) is 1/E, while Ḡ(s, s′, E) is of order 1/E2

for s �= s′. Solving for the eigenvalues and expanding the
resulting Qd in powers of W/g yields a behavior consistent
with the one we deduced from Eq. (15),

Qd = 1

2
− 1

2D

(
W

g

)2

(Ed, V 	 W 	 g), (17)

which shows that for weak disorder the asymptotic value
of 1/2 is approached from below. Note that the consistency
of the W/g expansion requires us to include the subleading
term in the high-energy expansion of the self-energy, namely
−∂E�1(E) = g2/E2 + 3g2W 2/(2DE4). Our numerical data
confirm these asymptotic results.

C. Model for strong disorder

When the strength of the disorder exceeds the bandwidth,
the eigenstates |α〉 are strongly localized and eventually con-
fined to a single site in the limit W/V → 0. One of these
states sits on the site r = 0 and forms a two-level subsystem
with the impurity, while all other lattice eigenstates are decou-
pled. The energy of the state localized at site 0 takes arbitrary
values in the range [−(W + V ),W + V ] as the disorder
configurations are scanned. We show in Appendix E that if all
values in this interval are equally likely, the disorder-averaged
return probability becomes in this limit, for Ed = 0,

Qd = 1 − g

W + V
arctan

(
W + V

2g

)
. (18)

As a function of g, this decreases linearly at small g like
1 − g(π/2)/(W + V ) and approaches 1/2 from above at
large g with the asymptotic correction 2

3 [(W + V )/(4g)]2,
consistently with Eq. (16). At sufficiently strong disorder, the
particle gets locked on the impurity and Qd approaches unity.

IV. NUMERICAL RESULTS

A. No disorder

We begin by checking numerically and illustrating the
solution given in Eq. (10). We use exact diagonalization in
1D, whereas in higher dimension we use the Chebyshev
expansion, Eq. (12). Figure 4 shows 〈nd (t )〉 = |〈d|e−iH t |d〉|2
calculated in the case of a clean 1D lattice. The result obtained
with Eq. (10) using the known analytical expression of the
impurity spectral function agrees with the solution by exact
diagonalization and the long-time average equals the return
probability given by Eq. (15). The contribution of the contin-
uum [first term in Eq. (10)]

|IBC |2 =
∣∣∣∣
∫ Emax

Emin

dE e−iEtA(E)

∣∣∣∣
2

(19)

is shown separately. It decays as t−3 because the contin-
uum vanishes as a square root at the edges (see Fig. 2 and

FIG. 4. Occupation probability 〈nd (t )〉 = |〈d|e−iH t |d〉|2 as a
function of time for an impurity coupled to a clean 1D lattice. The
dark solid line is calculated by exact diagonalization (ED) for a
chain of length L = 1000 and the red dashed line shows 〈nd (t )〉
calculated by Eq. (10). The nonzero occupation at t → ∞ is due to
the two bound states [second term in Eq. (10)]. The contribution of
the continuum decays as Ct−3, where C is a constant, as indicated.
The model parameters are Ed = 0 and g/W = 0.5.

Ref. [43]). The long-time behavior of 〈nd (t )〉 is therefore
given by the second term due to the bound states.

The case of a 2D lattice is similar to the 1D case, with
two bound states leading to a nonzero return probability.
Additional structures develop as a function of time due to the
Van Hove singularity in the lattice DOS, without conse-
quences for the long-time behavior. For D > 2, three qualita-
tively different evolutions can occur depending on the number
of bound states. This is illustrated in Fig. 5 for D = 3. For

FIG. 5. Occupation probability as a function of time for an impu-
rity coupled to a clean 3D lattice. Panels (a), (b), and (c) correspond
to the solid, dashed, and dotted lines in Fig. 3, respectively. (a) When
there are no bound states, 〈nd (t )〉 is given by the first term in Eq. (10)
and vanishes as t−3. (b) Two bound states lead to Rabi oscillations as
for a 1D lattice. (c) Only one bound state leads to saturation to a
nonzero constant value. The Chebyshev expansion was truncated at
order M = 1000.
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FIG. 6. Return probability as a function of g for an impurity
of energy Ed = 0 coupled to a clean lattice. The 1D result is
Eq. (15) and the 2D and 3D curves are obtained numerically from
Eqs. (14) and (11). In 3D, Qd vanishes at gc ≈ 0.8W as indicated
with an arrow. The return probability changes when the lattice is
disordered, as shown in Figs. 8 and 10.

g < gc, 〈nd (t )〉 decreases as t−3 due to the absence of bound
state. Note that for D ≥ 3, A(E) vanishes at its edges like
the lattice DOS with an exponent D/2 − 1, because �1(E)
is finite at the edge. The two-bound-states case shows Rabi
oscillations like in 1D and 2D. Finally, in the case where only
one bound state exists, 〈nd (t )〉 approaches a constant value at
long time.

The evolution of the return probability with increasing
impurity-lattice coupling is displayed in Fig. 6 for the 1D,
2D, and 3D lattices. The return probability is discontinuous
at g = 0: In 1D and 2D, Qd vanishes when g approaches zero
from above and in 3D it is identically zero, whereas Qd (g =
0) = 1 in all dimensions. For a 3D lattice, there is a critical
coupling gc at which bound states appear, such that Qd = 0
for 0 < g < gc. In Fig. 3, 1/g2

c is the slope of a line crossing
�1(E)/g2 at the band edge. At large g, Qd approaches 1/2
with a correction that decreases with increasing dimension,
consistently with Eq. (17).

B. Return probability in a disordered lattice

As seen in the previous sections, the return probability
depends on the coupling g due to possible bound states and
is small at small g (Fig. 6). In a disordered lattice, the bound
states are modified and the existence of other localized states
can lead to a large return probability even for small g. We
investigate the effect of the coupling and disorder strength
on the disorder-averaged return probability and the relation
between Qd and the localization length in the lattice.

1. One-dimensional lattice

The disorder-induced localization generally increases the
return probability. A particle initially in the impurity state has
an overlap with a certain number of localized states. The time
evolution at long times is given by the oscillation between
these localized states, which leads to an irregular oscillation
of the occupation probability 〈nd (t )〉, as seen in Fig. 7. The
occupation of an impurity state for a single realization of
the disorder was studied in Ref. [46]. We consider here the
return probability averaged over a large number N of disorder
realizations. For N between 1000 and 2000, the results are
well converged. The return probability is calculated by exact
diagonalization using Eq. (3). Figure 8 shows the disorder-

FIG. 7. Impurity occupation probability as a function of time for
a clean (orange curve) and disordered (blue curve) one-dimensional
lattice. The disorder increases the occupation probability, which
oscillates with an irregular pattern. Upon averaging over 1000 re-
alizations of the disorder, a well-defined return probability may be
defined (red curve). The model parameters are Ed = 0 and g/W =
0.5 with a chain of L = 1000 sites ruling out any finite-size effects
within the simulation time.

averaged return probability as a function of the coupling.
When there is no coupling, Qd = 1, and the limiting value
for g/W → ∞ is 1/2, as shown in Sec. III B. For very strong
disorder, V = 50W , the points calculated by ED agree well
with the model Eq. (18), which assumes that the impurity state
is coupled to only one localized state of the lattice. The model
overestimates Qd for V = 10W . If V > W , the value of Qd

is mostly set by the potential at the site r = 0 (see Sec. III B);
when |V0| is on average large, the impurity gets effectively
decoupled and Qd approaches unity. In the intermediate to
weak disorder regime, V � W , the value of Qd is controlled
by the hybridization with the lattice: it first decreases from
unity as g increases, displays a minimum close to g = V , and
approaches the value 1/2 from below like in the clean case.

At weak coupling g/W � 0.5, the contribution of the
bound states is negligible (Fig. 6). The finite value of Qd

in this regime must therefore reflect the disorder in the lat-
tice. The behavior of Qd may be explained qualitatively by

FIG. 8. Disorder-averaged return probability as a function of g

for an impurity of energy Ed = 0 coupled to a 1D lattice. The
markers show the numerical results for different disorder strengths
V . The black solid line is the exact result for V = 0, Eq. (15),
the dashed lines show the strong-disorder model, Eq. (18), and the
dash-dotted lines show Eq. (20). The values of ξ used in Eq. (20)
are 400, 17, and 4.5, corresponding to the disorder-averaged values
calculated for V = 0.1, 0.5, and 1, respectively (see Appendix F).
The lattice sizes used here are between L = 1000 and 5000, for
which finite-size effects are negligible.
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considering a simplified model where the impurity state is
coupled to the center of a box of length 2ξ . The impurity
occupation is expected to decay exponentially over the time
T = 2ξ/v—during which the particle reaches the edge of
the box and returns back to the origin—and this process is
expected to repeat. An estimate of Qd is therefore given
by the time average of the exponential decay over the time
T . Here, v is the group velocity at the impurity energy Ed .
This simple model does not take into account the oscillations
due to interferences between different eigenstates. Since the
decay rate is weakly affected by the disorder, we can use
the Fermi golden rule value for the clean system, namely
� = 2πg2N (Ed ). In 1D, the density of states N (Ed ) is simply
1/(πv). The return probability would then be

1

T

∫ T

0
dt e−�t = v2

4g2ξ

(
1 − e−4g2ξ/v2)

.

This expression captures the behavior at small g, but not at
large g where the bound states dominate. An interpolation is
obtained by adding their contribution given in Eq. (15):

Qd ≈ v2
(
1 − e−4g2ξ/v2)

4g2ξ
+

[√
1 + 4(g/W )4 − 1

]2

2
[
1 + 4(g/W )4

] . (20)

In this simple model, the box size 2ξ corresponds to twice the
localization length at energy E = Ed = 0, which we calculate
as the length ξα defined in Eq. (6) and averaged over the
disorder at E = 0, as described in Appendix F. The result
for ξ = 400, 17, and 4.5, corresponding to V/W = 0.1, 0.5,
and 1, is plotted in Fig. 8 and agrees reasonably well with the
numerical solution.

Note that Fig. 8 reveals a range of coupling 1 � g/W � 2
where the inclusion of disorder slightly decreases the
return probability with respect to the clean case. This
counterintuitive result may be explained by the change of
�1(E) with disorder. With increasing V , the divergences at
the band edges become finite peaks which move outwards
from the band edges. As seen in Eq. (14), the return
probability depends on the derivative ∂E�1(E)|E=Eb

. When
the peaks shift outwards, the magnitude of the derivative at
Eb increases, leading to a smaller return probability. The
energies Eb also depend on the disorder but we expect that
the average values of Eb are unchanged.

We come now to our central question: Can the return
probability Qd , which is a local quantity, serve as a measure
of the localization length ξ in the disordered lattice? The
localization length is a function of both energy and disorder
strength. As shown in Appendix F, different definitions of the
localization length give slightly different but qualitatively con-
sistent results: ξ (E,V ) is largest at E = 0, which corresponds
to the band center, and diverges as 1/V 2 at small V . As E

approaches the band edges, ξ drops to a value of the order
of the lattice spacing. On the other hand, Qd (g,Ed, V ) is a
function of the coupling, the impurity energy, and the disorder
strength. At weak coupling, the spectral function A(E) shown
in Fig. 2 approaches a delta function at energy Ed . One
may expect that the value of Qd would then be set by the
localized states close to E = Ed and that Qd would be a
function of ξ (Ed, V ) rather than Ed and V separately. In a
hypothetical situation where Qd only depends on ξ instead of

all the parameters g, Ed , and V , there should be a universal
relation between Qd and ξ found by a proper scaling of the
parameters. We find that this is only approximately true, and
only provided that the contribution of the bound states to the
return probability is negligible. We focus here on V � W ,
for which ξ (E,V ) varies from infinity to about two lattice
spacings.

At small g and V � W , Fig. 8 shows an approximate
agreement between the ED results and the first term of
Eq. (20). As the velocity v/W =

√
1 − (Ed/W )2 is a constant

for fixed Ed , this suggests that the return probability may
become a universal function of g2ξ in this regime. We test this
hypothesis by plotting Qd as a function of 1/(g2ξ ) in Fig. 9.
We use for 1/ξ the value at E = Ed . For each value of the
coupling g, we vary 1/ξ by sweeping the disorder strength
between 0.1W and 2W . With the impurity in the middle of
the band, Ed = 0, Fig. 9(a) shows that the points with varying
couplings and disorder widths fall approximately on the same
line when 1/(g2ξ ) � 0.5, corresponding to a weak disorder
and not too small a coupling. The scaling function seems to
be slightly different from Eq. (20), which is drawn as lines
corresponding to each value of g; the agreement between
the ED data and Eq. (20) is best for the leftmost points
corresponding to the weakest disorder or largest coupling.

The second term of Eq. (20) results in a constant vertical
shift between the different lines, which on a log-log scale is
seen as a change of slope at small 1/(g2ξ ). For Ed = 0, this
shift is very small and the different lines mostly overlap. For
Ed �= 0, the second term of Eq. (20), which gives the contri-
bution of the bound states, is modified as can be calculated
numerically from Eqs. (11) and (14). A nonzero Ed results in
a larger weight of the bound states, which is seen as a larger
vertical shift in Figs. 9(b) and 9(c). Therefore, Qd depends
separately on Ed and is not only a function of 1/(g2ξ ) even
for small values of 1/(g2ξ ). For g/W = 0.5 and g/W = 0.4,
one can see that the combined effect of the bound states and
disorder leads to a minimum in Qd instead of a monotonic
increase: First, the weight of the bound states decreases due
to disorder, creating a minimum of the return probability,
and for large disorder the return probability increases again
due to localization. Therefore, in order to measure ξ via the
return probability Qd in a regime where Qd does not depend
separately on V , g, and Ed , one should choose V � W ,
g/W � 0.5, and Ed close to the center of the band. In this
regime, Qd is approximately proportional to 1/(g2ξ ), and one
can effectively use the impurity as a probe of the localization
length of the disordered lattice.

2. Two-dimensional lattice

Differences can be expected when the impurity state is
coupled to a 2D lattice, since the localization length is
known to be much larger than in 1D. Figure 10 shows that
for V/W � 1, Qd decreases faster as a function of g/W

than in 1D, indicating a smaller effect of localization. The
estimates shown as dash-dotted lines are calculated in a
similar way as in Fig. 8, albeit the values of ξ used in the
estimates are obtained by a finite-size scaling procedure, as
explained in Appendix F. We approximate the density of states
by a constant, N (Ed ) ≈ 1/(2W ), leading to the decay rate
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FIG. 9. Return probability Qd as a function of W 2/(g2ξ ) cal-
culated by varying V and keeping g and Ed fixed. The dots are
calculated by ED and the lines show (a) Eq. (20) or (b), (c) Eq. (20)
with the second term replaced by the corresponding numerical solu-
tion of Eqs. (11) and (14) for Ed > 0. For small W 2/(g2ξ ) and Ed

close to the band center (a), (b), the points for different values of g

approximately fall on the same curve, which is in good qualitative
agreement with the model. When Ed is close to the band edge (c),
the larger contribution of bound states leads to a shift in Qd and
the points deviate even at small W 2/(g2ξ ). The leftmost markers
correspond to V/W = 0.1 and the disorder increases from left to
right in steps of 0.1. The lattice size L � ξ so that finite-size effects
are negligible.

� = πg2/W . For the velocity v, we use the average ve-
locity of the constant-energy contour, which for E = 0 is
v = √

2W/π and for other values of E is calculated numeri-
cally. The first term of Eq. (20) thus becomes

1

T

∫ T

0
dt e−�t = Wv

2πg2ξ

(
1 − e− 2πg2ξ

Wv

)
. (21)

The contribution of the bound states, corresponding to the sec-
ond term of Eq. (20), is calculated numerically from Eqs. (11)
and (14). This simple model agrees reasonably well with the

FIG. 10. The disorder-averaged return probability Qd as a func-
tion of g as in Fig. 8, in the case of a 2D lattice. The black
solid line for V = 0 is obtained from Eqs. (14) and (11), and the
dashed lines show the strong-disorder result of Eq. (18). The dash-
dotted lines show the estimate of Eq. (21) to which the V = 0 result
has been added. The values of ξ used in Eq. (21) are 5600, 350,
and 8, corresponding to V/W = 0.1, 0.5, and 1.0, respectively, and
are obtained by finite-size scaling (see Appendix F). The lattice
sizes used here are between 40×40 and 100×100. For V/W = 0.1
and 0.5, one can expect finite-size effects since L < ξ . They would
however not be visible on the scale of the figure.

numerical data. For 1 � g/W � 2, the numerical data points
fall more below the V = 0 analytic result than in 1D. This
may be explained by a change in ∂E�1(E)|E=Eb

as in 1D,
which is more pronounced in 2D because Eb is closer to the
band edge for the same values of g/W . A disappearance of the
bound states due to rounding of the band-edge singularity by
disorder may also play a role. A definitive assessment would
require us to identify in the numerics the bound states among
the other discrete states of the disordered lattice and follow
them as a function of g and V , which is not straightforward.

To analyze the dependence of Qd on ξ in the case of a
2D lattice, we perform a finite-size scaling of ξ as explained
in Appendix F. The return probability on the other hand is
calculated for a specific size L×L, and in the case of weak
disorder depends on L. In Fig. 11, points for which ξ > L

are marked with hollow circles to indicate that the results are
size-specific, for a lattice of 100×100 sites. The simple model
of Eq. (21) together with the bound-state contribution does
not take into account the finite size of the lattice, which leads
to differences between the numerical results and the model.
For Ed = 0, the points for different g fall approximately on
the same line when 1/(g2ξ ) is sufficiently small and V � W .
Close to the band edge (Ed/W = 0.8), the bound states lead
to large deviations between the points for different g in the
region of small 1/(g2ξ ) where localization is weakest. The
nonmonotonic behavior of the return probability shows again
the combined effect of the bound states and disorder. For
Ed/W = 0.4 and 0.8, the leftmost points with smallest V

show a slightly different trend than other points: this is a
regime of disorder where ξ exceeds 103 lattice spacings and
its precise value is uncertain (see Appendix F).

V. DISCUSSION AND POSSIBLE
EXPERIMENTAL REALIZATIONS

The previous sections highlight interesting phenomena oc-
curring when an impurity level is coupled to a lattice in a
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FIG. 11. Return probability Qd in the case of a 2D lattice, shown
as a function of W 2/(g2ξ ) (with W = 4J ) as in Fig. 9. The values of
V and Ed are the same as in Fig. 9. We use here values of ξ obtained
by finite-size scaling (Appendix F). The hollow circles correspond
to ξ > L, for which Qd is expected to depend on L and therefore is
size-specific. Here, Qd is calculated for a lattice of size 100×100
sites. At the center of the band (Ed = 0), the points for different
couplings align approximately on the same line, whereas for larger
Ed/W , there are more deviations between the points due to a larger
contribution of the bound states. The solid lines given by the simple
model of Eq. (21) and the bound-state contribution do not take into
account the finite size of the lattice, which leads to deviations from
the numerical results.

regime where the Fermi golden rule is not applicable. For a
clean lattice, the coupling can give rise to bound states outside
the continuum and result in a nonzero return probability—
i.e., a nonzero occupation of the impurity level—at infinite
time. In dimensions one and two, two bound states neces-
sarily arise below and above the lattice energy band such
that persistent Rabi-like oscillations of the return probability
survive at long times. The amplitude of these oscillations
scales with a relatively high power of the impurity-lattice
coupling and may be hard to detect at weak coupling. For a

three- or higher-dimensional lattice, there can be two, one, or
no bound states depending on the coupling and the energy of
the impurity level relative to the band center. Each situation
leads to a different behavior of the return probability at long
time, namely oscillations, a saturation to a constant value, or
a decay to zero, respectively.

For a disordered lattice, there are various regimes where
the return probability is either dominated by the impurity-
induced bound states like in the clean case, or by the Anderson
localization of the lattice eigenstates. Strong disorder with
respect to the lattice bandwidth eventually leads to eigenstates
that are localized on a single lattice site, such that the impurity
level is effectively coupled to only one state of the lattice.
The disorder-averaged return probability in this limit can be
understood by means of a two-level system involving the
impurity and the localized state, provided that an average is
made over the range of possible energies that the localized
state can take. At strong impurity-lattice coupling, on the other
hand, an effective two-level representation is again possible,
which leads to an asymptotic return probability of 1/2 with
corrections scaling like the square of the disorder strength or
bandwidth, whichever is largest.

In the most interesting case of weak coupling and low
disorder, a simple model suggests that the return probability is
a function of g2ξ , where g is the impurity-lattice coupling and
ξ is the localization length. We find that this is approximately
true when the impurity level is close to the center of the
band, both in 1D and 2D with similar behaviors. Hence in this
particular regime—where (i) the coupling is weak enough and
(ii) the impurity energy as far as possible from the bound
states, such that the latter have negligible weight at the impu-
rity, and (iii) the disorder is sufficiently low for the particle to
have a chance of visiting the lattice—a measurement of the
return probability yields information about the localization
length in the lattice. When the impurity level is close to
the band edges, however, the combined effect of the bound
states and disorder leads to a nonmonotonic and nonuniversal
behavior of the return probability as a function of g2ξ .

Our results are for example relevant for experiments with
ultracold atoms in optical potentials, where various quantum-
mechanical models have been realized with a remarkable
control over geometry and parameters. In particular, various
techniques exist for implementing disorder potentials. A re-
cent experiment demonstrated a state-dependent laser speckle
disorder potential [47]. Radio-frequency coupling was used to
transfer atoms from a Bose-Einstein condensate in a harmonic
trap to another hyperfine state which feels the disorder [47].
The model studied here could be realized with a similar
scheme, using instead a local coupling and a state-dependent
disorder potential in an optical lattice. The impurity state |d〉
would correspond to a hyperfine state that is unaffected by
the disorder. Proposals have been made to use such local
coupling for measuring the single-particle Green’s function
[48]. The single-atom and single-site precision required by
these measurements is enabled by the recent development
of quantum gas microscopy [49]. Coupling an atom on a
single site to a different hyperfine state [50,51], as well as
disorder potentials [52], have already been implemented in ex-
periments with quantum gas microscopes [49]. Furthermore,
the digital micromirror device (DMD) allows one to create
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arbitrary potential landscapes for atoms [53]. In an experiment
which demonstrated the “quantum walk” of an atom, the
DMD was used for creating an initial state of a single atom
localized at one site of a one-dimensional lattice [54]. As a
realization of the model studied here, one could create a lattice
with a side-attached impurity site as an alternative to locally
coupling the atom to a different hyperfine state.

The combined presence of disorder and interactions can
lead to strong modifications of the localization properties
[35,55–62]. Recently, the question of the ergodicity of such
many-body localized states of interacting particles has been
investigated in experiments [52,63–70]. How a finite density
of interacting particles in the lattice affects the return proba-
bility to an impurity level remains an open problem.

VI. CONCLUSIONS

In this paper, we have investigated the return probability
of a particle to an impurity level hybridized with a clean or
disordered lattice. We have shown that depending on dimen-
sion, bound states can emerge and lead to a nonzero return
probability even in a clean lattice. For disordered lattices, dif-
ferent regimes of the hybridization and disorder strength lead
to different behaviors of the return probability with nontrivial
effects of the bound states and disorder combined. We have
investigated the possibility of using the return probability,
which is an out-of-equilibrium local observable, as a probe
of the localization length in the lattice, which is a nonlocal
property. In short, the return probability can provide a useful
measure of the localization length for 1D and 2D lattices in
the regime Ed ≈ 0, g � W/2, and V � W , where Ed is the
impurity energy measured from the center of the lattice energy
band, 2W is the bandwidth, g is the impurity-lattice coupling,
and V is the strength of disorder. In this regime, the return
probability is roughly proportional to 1/(g2ξ ), where ξ is the
localization length at the energy Ed .

The present study deals with an impurity level coupled
to the simplest bath, that is, an empty lattice. A first step to
extend the study to more complex baths would be to consider a
bath occupied by a finite density of particles. In the clean case,
this would allow one to study effects such as the Anderson
orthogonality catastrophe [71,72]. In the case of a disordered
interacting bath, an interesting question is whether a particle
in an impurity state could be used as a probe of many-body
localization.
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APPENDIX A: LATTICE RETURN PROBABILITY

Localization can be measured by the return probability to
a given initial state |ψ〉. The probability of remaining in the

state |ψ〉 after a time t is

〈nψ (t )〉 = | 〈ψ | e−iH0t |ψ〉 |2

=
∑
αβ

〈ψ | e−iH0t |α〉 〈α|ψ〉 〈ψ | eiH0t |β〉 〈β|ψ〉

=
∑
αβ

e−i(Eα−Eβ )t | 〈ψ |α〉 |2| 〈ψ |β〉 |2,

where |α〉 and |β〉 are eigenstates of H0. The return probability
is the long-time limit of the time-averaged probability:

Qψ = lim
T →∞

1

T

∫ T

0
〈nψ (t )〉dt

=
∑
αβ

| 〈ψ |α〉 |2| 〈ψ |β〉 |2 lim
T →∞

1

T

∫ T

0
e−i(Eα−Eβ )t

=
∑
αβ

| 〈ψ |α〉 |2| 〈ψ |β〉 |2δαβ =
∑

α

| 〈ψ |α〉 |4.

The last line holds under the assumption of nondegenerate
energies Eα . If the initial state is a position eigenstate |r〉 and
after performing a disorder average, we arrive at Eq. (4).

APPENDIX B: SOLUTION BY LAPLACE TRANSFORM

We project the wave function |ψ (t )〉 = e−iH t |d〉 on the ba-
sis formed by the impurity state |d〉 and the lattice eigenstates
|α〉 with energies Eα:

|ψ (t )〉 = e−iEd tψd (t ) |d〉 +
∑

α

e−iEαtψα (t ) |α〉 . (B1)

In this basis, the Hamiltonian given by Eq. (1) is H =∑
α Eα|α〉〈α| + Ed |d〉〈d| + g

∑
α (〈0|α〉|d〉〈α| + H.c.). The

Schrödinger equation i∂t |ψ (t )〉 = H |ψ (t )〉 becomes

i∂tψd (t ) = g
∑

α

〈0|α〉 ei(Ed−Eα )tψα (t ), (B2)

i∂tψα (t ) = g 〈α|0〉 e−i(Ed−Eα )tψd (t ). (B3)

This is to be solved with initial condition ψd (0) = 1 and
ψα (0) = 0. Integration of Eq. (B3) and substitution in
Eq. (B2) yields

∂tψd (t ) = −
∫ t

0
dt ′ ψd (t ′)g2

∑
α

|〈0|α〉|2ei(Ed−Eα )(t−t ′ )

≡ −
∫ t

0
dt ′ψd (t ′)M (t − t ′), (B4)

where we have defined the memory function as

M (t ) = g2
∑

α

|〈0|α〉|2ei(Ed−Eα )t . (B5)

The Laplace transformation is well suited for initial-value
problems like Eq. (B4). We recall the main properties of this
transformation for clarity. The Laplace transform and inverse
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transform of a function f (t ) are defined as

L [f (t )] = f̃ (z) =
∫ ∞

0
dt f (t )e−zt ,

f (t ) = 1

2πi

∫ δ+i∞

δ−i∞
dz f̃ (z)ezt ,

where z ∈ C and δ ∈ R lies on the right side of all singu-
larities of f̃ (z). The derivative and convolution have simple
Laplace transforms similar to their Fourier transforms:

L [∂tf (t )] = zf̃ (z) − f (0),

L

[∫ t

0
dt ′f (t ′)g(t − t ′)

]
= f̃ (z)g̃(z).

The transformation of Eq. (B4) gives the algebraic equation
zψ̃d (z) − 1 = −ψ̃d (z)M̃ (z) with the solution

ψ̃d (z) = 1

z + M̃ (z)
. (B6)

The transformation of Eq. (B5) gives M̃ (z) as

M̃ (z) = ig2
∑

α

|〈0|α〉|2
iz + Ed − Eα

= i�(iz + Ed ), (B7)

where we took advantage of the analytic continuation of the
impurity self-energy defined in Eq. (8) into the complex plane:

�(z) = g2
∑

α

|〈0|α〉|2
z − Eα

. (B8)

Taking the inverse transform of Eq. (B6) and using Eq. (B7),
the amplitude on the impurity level can now be written as a
line integral in the complex plane,

ψd (t ) = 1

2πi

∫ δ+i∞

δ−i∞
dz

ezt

z + i�(iz + Ed )
. (B9)

All singularities of the integrand lie on the imaginary axis,
such that one can set δ = 0+. This can be seen by rewriting
the equation z + i�(iz + Ed ) = 0 in the form

z + g2
∑

α

[z∗ + i(Ed − Eα )]
|〈0|α〉|2

|z − i(Ed − Eα )|2 = 0,

which shows that all solutions have Re z = 0. It is convenient
to change the variable from z to z′ = iz + Ed in Eq. (B9),
which rotates the integration line to just above the real axis
and gives

ψd (t ) = −eiEd t

2πi

∫ ∞+iδ

−∞+iδ

dz′ e−iz′t

z′ − Ed − �(z′)
.

The phase factor cancels the one in Eq. (B1), such that the
time-dependent occupation amplitude of the impurity level is

〈d|e−iH t |d〉 = − 1

2πi

∫ ∞+iδ

−∞+iδ

dz
e−izt

z − Ed − �(z)
. (B10)

The integrand can be identified as the Green’s function of the
impurity level, Gdd (z) = 1/[z − Ed − �(z)], whose spectral
function A(E) = (−1/π )Im Gdd (z → E + i0) is given by
Eqs. (9) and (8). Gdd (z) has singularities on the real axis,
including the continuum extending from Emin to Emax—this

x x

FIG. 12. The integration contour C of Eq. (B11). The branch cut
between Emin and Emax is marked with red color and the possible
poles on the real axis with crosses.

becomes a quasicontinuum for a finite or sufficiently dis-
ordered system—and the possible bound states outside the
continuum.

Equation (B10) is transformed into Eq. (10) by means of
the residue theorem. Due to the factor e−izt and the fact that
t > 0, we must close the contour in the lower half of the
complex plane as illustrated in Fig. 12, avoiding the interval
between Emin and Emax such that the integrand is analytic
inside the contour, and correcting with the difference between
the value of the integrand above and below that interval.
The integral in Eq. (B10) thus becomes a sum of two parts,
〈d|e−iH t |d〉 = IC + IBC , where IC is the contribution of the
contour, which yields the residues at the bound states:

IC = − 1

2πi

∮
C

dz
e−izt

z − Ed − �(z)

=
∑
Eb

e−iEbt

1 − ∂E�1(E)|E=Eb

. (B11)

We use the notation �(E) ≡ �(z → E + i0) for the retarded
self-energy evaluated just above the real axis and we have
used the condition that �2(E) must vanish at the energy of
the bound states. Since the contour C goes under the real axis
for Re z between Emin and Emax, we must subtract this part
and add the part above the real axis. The second term IBC is
therefore

IBC = − 1

2πi

∫ Emax

Emin

dE e−iEt [Gdd (E + i0) − Gdd (E − i0)]

=
∫ Emax

Emin

dE e−iEtA(E). (B12)

We have used the property �(z∗) = �∗(z) [see Eq. (B8)],
which implies Gdd (z∗) = G∗

dd (z) and consequently Gdd (E +
i0) − Gdd (E − i0) = 2iIm Gdd (E + i0) = −2πiA(E). The
sum of Eqs. (B11) and (B12) yields Eq. (10).

APPENDIX C: SOLUTION BY EQUATION OF MOTION

The solution by Laplace transform uses the “Schrödinger
picture” with time-dependent wave function, while the equa-
tion of motion method for the Green’s function is based on the
Heisenberg picture with time-dependent operators. The latter
is more easily generalized to a many-particle context. We
describe it here for fermions. The retarded Green’s function
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of interest in our case is

Gμν (t ) = −i�(t ) 〈d|[cμ(t ), c†ν (0)]+|d〉 , (C1)

where μ, ν ∈ {d, α}, �(t ) is the Heaviside function, the op-
erators evolve in time according to cμ(t ) = eiHtcμe−iH t , and
[· , ·]+ is the anticommutator. Because c

†
d destroys the state

|d〉, one sees that

〈d|e−iH t |d〉 = iGdd (t ) (C2)

for t > 0. The equation of motion of Gμν (t ) is

i∂tGμν (t )=δμνδ(t )−i�(t ) 〈d|[[cμ(t ),H ], c†ν]+|d〉 , (C3)

where the first term on the right-hand side comes from dif-
ferentiating the Heaviside function and using the anticom-
mutation rule [cμ, c†ν]+ = δμν and the second term uses the
equation of motion of the operators, ∂tcμ(t ) = −i[cμ(t ),H ].
Expressed in terms of the cd and cα , the Hamiltonian is
H = ∑

α Eαc†αcα + Edc
†
dcd + g

∑
α (〈0|α〉c†dcα + H.c.). We

deduce the commutators entering Eq. (C3),

[cd,H ] = Edcd + g
∑

α

〈0|α〉cα,

[cα,H ] = Eαcα + g〈α|0〉cd,

and obtain two coupled equations for Gdd and Gαd that are
the counterpart of Eqs. (B2) and (B3):

i∂tGdd (t ) = δ(t ) + EdGdd (t ) + g
∑

α

〈0|α〉Gαd (t ), (C4)

i∂tGαd (t ) = EαGαd (t ) + g〈α|0〉Gdd (t ). (C5)

Fourier-transforming these equations from t to ω and contin-
uing analytically to the complex plane ω → z yields

(z − Ed )Gdd (z) = 1 + g
∑

α

〈0|α〉Gαd (z), (C6)

(z − Eα )Gαd (z) = g〈α|0〉Gdd (z), (C7)

with the solution

Gdd (z) = 1

z − Ed − �(z)
, (C8)

where �(z) is defined in Eq. (B8). The function Gdd (z) is
analytic in the upper half of the complex plane and vanishes as
1/z for z → ∞. These conditions are sufficient for the Fourier
transform of G(z → E + i0) to be proportional to �(t ) as
required by Eq. (C1). We therefore have

Gdd (t ) =
∫ ∞+i0

−∞+i0

dz

2π

e−izt

z − Ed − �(z)
, (C9)

which, on account of Eq. (C2), is just Eq. (B10).

APPENDIX D: CHEBYSHEV EXPANSION

The Chebyshev polynomials Tm(x) = cos(m arccos x)
with integer m � 0 form a basis for representing func-
tions f (x) having support in the interval −1 < x < 1. The
expansion reads f (x) = ∑∞

m=0 cmTm(x) with coefficients

given by

cm = 2 − δm0

π

∫ 1

−1
dx

f (x)Tm(x)√
1 − x2

. (D1)

In order to find the expansion of the evolution operator, we
consider the function e−ixt for 1 < x < 1, change variable
from x to ϑ with x = cos ϑ , use the representation e−it cos ϑ =∑∞

n=−∞(−i)nJn(t )e−inϑ , where Jn are the Bessel functions of
the first kind, as well as the property J−n(t ) = (−1)nJn(t ), to
arrive at cm = (2 − δm0)(−i)mJm(t ). It follows that

e−ixt =
∞∑

m=0

(2 − δm0)(−i)mJm(t )Tm(x). (D2)

Replacing x by H = b + aH̃ on the left-hand side, we deduce
Eq. (12). For expanding the Green’s function, we consider
f (x) = 1/(z − x) with z ∈ C and proceed with the same
change of variable. We then use the identity∫ π

0
dϑ

cos(mϑ )

z − cos ϑ
= −iπe−im arccos z

√
1 − z2

(Im z > 0)

to arrive at an expression valid for z in the upper half of the
complex plane:

1

z − x
=

∞∑
m=0

i(δm0 − 2)e−im arccos z

√
1 − z2

Tm(x). (D3)

The expansion of 1/(E + i0 − H0) follows and takes the form
given in Eq. (13).

A calculation of the time-dependent impurity-level oc-
cupation based on Eq. (12) or a calculation of the lattice
Green’s function based on Eq. (13) reduces to the evaluation
of the matrix elements 〈d|Tm(H̃ )|d〉 or 〈r|Tm(H̃0)|r ′〉. This
is greatly simplified thanks to the recursion relation Tm(x) =
2xTm−1(x) − Tm−2(x) obeyed by the Chebyshev polynomi-
als: rather than evaluating high-order polynomials of the
Hamiltonian, one uses an iterative procedure by applying the
Hamiltonian repeatedly. As the storage of the Hamiltonian
matrix in the computer memory is not required, this opens the
way for treating systems of very large size.

APPENDIX E: RETURN PROBABILITY
FOR STRONG DISORDER

The two-level subsystem formed by the impurity and the
disordered-lattice eigenstate localized at r = 0 is described by
the 2×2 Hamiltonian (

Ed g

g E0

)
,

where E0 is the energy of the localized state in the range
|E0| < W + V . The eigenvalues are

E± = Ed + E0

2
±

√(
Ed − E0

2

)2

+ g2

and the eigenvectors can be written as

|φ+〉 = cos θ |d〉 + sin θ |0〉
|φ−〉 = − sin θ |d〉 + cos θ |0〉
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FIG. 13. (a) Inverse participation ratio IPR(E) and (b) localiza-
tion length ξ (E) for a 1D lattice, binned according to eigenenergies
and averaged in each bin. The number of bins is 200 and the curves
are averages over N = 2000 to N = 10 000 disorder realizations. To
achieve convergence of ξ , the size of the lattice is increased from
L = 1000 to L = 5000 as disorder gets weaker. The different colors
correspond to values of V ranging from V/W = 0.1 (red line) to
V/W = 2.0 (black line) in steps of 0.2. Both IPR(E) and ξ are
symmetric for E < 0.

with the parametrization

tan(2θ ) = 2g

Ed − E0
.

Starting from the initial state |d〉 = cos θ |φ+〉 − sin θ |φ−〉,
the time evolution gives

〈d|e−iH t |d〉 = e−iE+t cos2 θ + e−iE−t sin2 θ,

|〈d|e−iH t |d〉|2 = cos4 θ + sin4 θ

+ 2 cos[(E+ − E−)t] cos2 θ sin2 θ.

The time-dependent term disappears upon time-averaging in
Eq. (3) and the return probability is given by the first two
terms,

Qd = cos4 θ + sin4 θ = 1 − 1/2

tan−2(2θ ) + 1

≈ 1 − 1

2(W + V )

∫ W+V

−(W+V )
dE0

2g2

(Ed − E0)2 + 4g2
.

At the second line, we have assumed that the energy E0 is
uniformly distributed over the interval [−W − V,W + V ].
Evaluating the integral for Ed = 0, we find Eq. (18).

FIG. 14. IPR and ξ as in Fig. 13 for a 2D lattice of 100×100
sites. The values of V range from V/W = 0.1 to V/W = 2.0 in
steps of 0.1. For V/W � 1.0, the curves shown here have not yet
converged as a function of the lattice size and we perform a finite-size
scaling to obtain the values used in the main text. The curves are
averages over N = 200 disorder realizations.

APPENDIX F: CALCULATION OF
THE LOCALIZATION LENGTH

As discussed in Sec. II B, we calculate the localization
length ξ from the inverse participation ratio according to
Eq. (6). Specifically, we solve the eigenstates by ED, bin the
values of ξα according to the eigenenergies Eα , and obtain

FIG. 15. Localization length λ for a 2D lattice, calculated as
in Eq. (7) using the Chebyshev expansion. The disordered lattice
has 100×100 sites and is connected with two ideal leads of size
100×950. The Chebyshev expansion order is M = 4000 and average
is made over N = 10 to 100 disorder realizations. The oscillations
that appear for the weakest disorder V/W = 0.2 are due to repeated
scattering from the boundaries of the disordered system and the
leads. The values of λ are larger than ξ in Fig. 14(b), but the energy
dependence is qualitatively similar.
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FIG. 16. Localization length ξ in 1D as a function of (V/W )2 for
various energies. The behavior approaches 1/V 2 at small V , showing
that ξ is proportional to the mean-free path.

ξ (E) as bin averages which are also averaged over disorder
realizations. Figures 13 and 14 show IPR and ξ as functions
of energy for a 1D and 2D lattice, respectively. The different
colors denote different values of V . The curves are averages
over 2000 to 10 000 realizations of the disorder potential in
the case of the 1D lattice and 200 realizations in the case
of the 2D lattice. The IPR and the localization length of an
eigenstate depend on the energy of the state: states at the band
center are less localized than those near the band edges. The
IPR does not however grow monotonically with increasing E

but has a maximum at a certain energy and then decreases
towards the edge of the spectrum E = W + V . This decrease
is due to rare configurations of the disorder potential where
a cluster of neighboring sites has an on-site energy close
to W + V . Figure 15 shows that the transport localization
length calculated with Eq. (7) is slightly larger and has a
different behavior close to the band edge. A similar difference
between the IPR and the Lyapunov exponent, another quantity
measuring localization, is discussed in Ref. [73].

The localization length shown in Figs. 14 and 15 is cal-
culated for L = 100 and, for the smallest disorder widths
V/W < 1, depends strongly on system size. According to the
scaling theory of localization [30], ξ scales with system size
like ξ = Lf (ξ̃ /L), where the function f is independent of L

and V and ξ̃ is the localization length in the thermodynamic
limit. Since the sizes reachable by exact diagonalization are
limited, we correct the values of ξ using the one-parameter
scaling function proposed in Ref. [74],

ξ

L
= 1

k
ln

(
1 + k

ξ̃

L

)
. (F1)

FIG. 17. Localization length ξ̃ in 2D as a function of (V/W )2

obtained by rescaling the calculated ξ values using Eq. (F1) for
various energies. The solid and dashed lines indicate the expected
behavior of the localization length and the mean-free path, respec-
tively, at small V/W .

As our geometry is different from that used in Ref. [74],
we determine the parameter k by least-squares fitting of the
function ln[1 + k ξ̃ (V )/L]/k to the values ξ (L,V )/L calcu-
lated for L = 30, 40, . . . , 100, the values ξ̃ (V ) being fitting
parameters as well. The resulting values of ξ̃ are of the same
order of magnitude as those reported in Ref. [75], except for
V/W � 0.5 where they are orders of magnitude smaller. The
values ξ̃ produced by this procedure are denoted by ξ in the
main text, where the values before scaling do not appear.
Performing the same finite-size analysis in the case of a 1D
lattice does not change the results, indicating that the values
of L are sufficiently large for the localization length to be
independent of L.

For weak disorder, the mean-free path varies with disorder
strength as 1/V 2. In 1D, the localization length is expected
to be proportional to the mean-free path and therefore also
proportional to 1/V 2, which is confirmed in Fig. 16 for
all the energies shown in the figure. Deviations are notice-
able for V/W > 1. In two dimensions, it is expected that
the localization length depends exponentially on the mean-
free path. The exponentially large values ∼e1/V 2

challenge
numerical approaches at small V . Our results shown in
Fig. 17 capture the crossover from 1/V 2 for V/W ∼ 1 to
e1/V 2

for V/W < 1, but saturate at small V to values of
order 104, showing the limitations of our finite-size scaling
approach.
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