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Flat bands and dynamical localization of binary mixtures of Bose-Einstein condensates, with spin-orbit
coupling subjected to a deep optical lattice which is shaking in time and to a periodic time modulation of
the Zeeman field, are investigated. In contrast with usual dynamical localization in the absence of spin-orbit
coupling, we find that to fully suppress the tunneling in the system the optical lattice shaking is not enough, and
a proper tuning of the spin-orbit term, achievable via the Zeeman field modulation, is also required. This leads to a
sequence of Zeeman parameter values where energy bands become flat, the tunneling in the system is suppressed,
and the dynamical localization phenomenon occurs. Exact wave functions at the dynamical localization points
show that the binary mixture localizes on a dimer with the two components occupying different sites. This type
of localization occurs in exact form also for the ground state of the system at the dynamical localization points
in the presence of nonlinearity and remains valid, although in approximate form, for a wide range of the Zeeman
parameter around these points. The possibility of observing the above phenomena in real experiments is also
briefly discussed.
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I. INTRODUCTION

Significant attention is presently devoted to the study of
time-periodically driven many-body systems [1,2] that exhibit
interesting transport phenomena that resemble the ones ob-
served in condensed matter physics under the action of static
or time-periodic electric fields. In this context, it is well known
that a constant electric field cannot induce transport in perfect
crystals, due to the phenomenon of Bloch oscillations. In the
presence of a time-periodic electric field, however, transport
becomes generically possible, except for specific ratios of the
field amplitude and frequency for which the phenomenon of
dynamical localization (DL) appears.

As first demonstrated in Ref. [3] for the Schrödinger tight-
binding model of electrons in perfect crystals, DL emerges
due to the tunneling suppression between adjacent sites in-
duced by the periodic electric field. For harmonic fields this
happens when the amplitude frequency ratio matches zeros
of the Bessel function J0. DL is not a peculiarity of lin-
ear systems but exists also in the presence of nonlinearity
(interactions), as has been shown for the discrete nonlinear
Schrödinger equation (DNLS) in Ref. [4] and its quantum ver-
sion (Bose-Hubbard model) in Ref. [5]. To date, DL has been
observed in many physical systems, among which are spin
chains [1], periodically curved arrays of optical waveguides
[6,7], and cold atoms loaded in shaken optical lattices [8].

In Bose-Einstein (BEC) condensates, the analogs of peri-
odic electric fields can be realized by means of shaking optical
lattices. This leads to very interesting phenomena including
the generation of synthetic gauge fields [9], topological insu-
lators [10], etc. In these systems it is also possible to modulate
the interactions (scattering lengths) in time, a fact that allows

one to change the inter-site tunneling of BEC in optical lattices
in a manner that depends not only on the amplitude and
frequency of the modulation but also on the relative atomic
imbalance between adjacent sites [11,12]. This leads to the
appearance of new quantum phases [13], density dependent
gauge fields [14], and matter wave excitations localized on
a compact domain (compactons) [12,15]. Time-dependent
modulations of the scattering lengths have been also shown
to be very effective to suppress dynamical instabilities and
to induce long-living Bloch oscillations [16] and DL [17] of
matter-wave gap solitons.

Spin-orbit coupling (SOC) opens new possibilities for in-
vestigating the above phenomena in BEC systems. In partic-
ular, due to the interplay between SOC, periodicity, and non-
linearity, DL could display interesting new features. In BEC
systems the effective SOC stemming from internal atomic
states which are coupled by Raman laser fields [18] can be
tuned by means of fast and coherent modulations of the laser
intensities [19]. This can be achieved via modulations of the
Raman term, as experimentally demonstrated in Ref. [20], by
modulating gradient magnetic fields [21], or by time-periodic
modulations of the Zeeman field [22].

In spite of this, however, very few investigations of flat
bands and DL for SOC-BEC systems presently exist. In this
context we mention the spin-dependent DL of a SOC single
atom in a driven optical bipartite lattice [23], the DL in a
SOC two-level atom trapped in periodic potential under the
action of weak harmonically varying linear force [24], and
the dynamical suppression of the tunneling in a double well
potential for a noninteracting (linear) SOC-BEC system [25].
Moreover, almost no studies exist on the effect of combined
modulations on the DL phenomenon. In this respect we can
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mention only the work [26], where combined modulations
of interactions and lattice shaking are used to generate the
extended Hubbard models with asymmetric hopping which
predict new quantum phases in BEC.

The aim of the present paper is to investigate DL phe-
nomena in binary BEC mixtures subjected to optical lattice
shaking, time-periodic Zeeman field, and equal SOC contribu-
tions of Rashba and Dresselhaus type. For this we use a tight
binding model for BEC-SOC mixture appropriate for deep
optical lattices [27,28] and treat the time modulations in the
fast frequency limit. This leads to an effective time-averaged
Hamiltonian system which can be analytically solved in the
linear case and analytically (at DL points) and numerically
investigated in the nonlinear case.

As a result we find that, in contrast with usual DL (e.g., in
absence of SOC), the shaking of the optical lattice alone is not
enough to fully suppress the tunneling, and suitable tunings
of the SOC term with the optical lattice shaking, achieved
via Zeeman field modulation, are also required. This leads to
a sequence of Zeeman parameter values for which DL can
occur (DL points). We show that at DL points the energy
bands become flat and the tunneling is fully suppressed. In
the linear case, exact wave functions derived at the DL points
show that the localization occurs on a dimer with the BEC
components occupying different sites. We show that this holds
true, in exact form, also for the ground state wave functions at
the DL points in the presence of contact interactions, and it
remains valid, in approximate form, for a wide range around
these points.

The paper is organized as follows. In Sec. II we introduce
the model equations and derive the effective averaged Hamil-
tonian system. In Sec. III we study the dispersion relation and
the linear spectrum as a function of the system parameters. In
Sec. IV exact analytical wave functions at the DL points of
the linear case are derived and in Sec. V we extend results to
the ground state of the system in the presence of nonlinearity.
Finally, in Sec. VI we discuss parameters design for possible
experiments and briefly summarize the main results of the
paper.

II. MODEL AND AVERAGED EQUATIONS

A BEC with equal Rashba and Dresselhaus SOC con-
tributions loaded in a deep optical lattice can be described
in the mean field approximation by the following DNLS
equation [27,28]:

i
dun

dt
= −�(un+1 + un−1) + i

σ

2
(vn+1 − vn−1)

+�un + (γ1|un|2 + γ |vn|2)un + f (t )nun,

i
dvn

dt
= −�(vn+1 + vn−1) + i

σ

2
(un+1 − un−1)

−�vn + (γ |un|2 + γ2|vn|2)vn + f (t )nvn. (1)

Here σ and � denote the SOC and the Zeeman parameters
while the linear ramp potential, modeling the optical lat-
tice shaking, is assumed to be time-periodic with amplitude
f (t ) = f0 cos(ωt ). In order to have SOC tunability we also
assume that the Zeeman term is varying periodically in time as
� = �(t ) = �0 + �1 cos(ωt ), where �0 is a constant fixed

part and �1 is the amplitude of the part that is modulated with
the same frequency ω of the lattice shaking. In the following
we assume rapid and strongly varying fields, �(t ), f (t ), of
the form

�(t ) = �0 + 1

ε
�1 cos(ω τ ), f (t ) = 1

ε
f0 cos(ω τ ), (2)

with ε � 1 and τ = t
ε

denoting a fast time variable. To
remove the explicit fast time dependence from Eq. (1) it is
convenient to perform the following transformation:

un = Une
−i

sin(ωt )
ω

(�1+γ0n), vn = Vne
i

sin(ωt )
ω

(�1−γ0n). (3)

By substituting into Eq. (1) and averaging with respect to the
fast time variable we obtain the following averaged system:

iU̇n = − �J0(χ )(Un+1 + Un−1) + iσ

2
(J−

0 Vn+1 − J+
0 Vn−1)

+�0Un + (γ1|Un|2 + γ |Vn|2)Un,

iV̇n = − �J0(χ )(Vn+1 + Vn−1) + iσ

2
(J+

0 Un+1 − J−
0 Un−1)

−�0Vn + (γ2|Vn|2 + γ |Un|2)Vn, (4)

where J0(χ ) denotes the zero-order Bessel function of a
variable χ , while J±

0 stands for

J±
0 ≡ J±

0 (η) = J0(η ± χ ) (5)

with

χ = f0

ω
, η = 2

�1

ω
.

Notice that Eq. (4) has two conserved quantities: the norm

N =
∑

n

(|Un|2 + |Vn|2) (6)

and the Hamiltonian (energy)

H =
∑

n

{
−J0(χ )�(U ∗

n Un+1 + V ∗
n Vn+1)

+ i
σ

2
U ∗

n (J−
0 Vn+1 − J+

0 Vn−1)

+ �0

2
(|Un|2 − |Vn|2) + c.c.

}
+ Eint,

where Eint is the interaction energy,

Eint =
∑

n

{
1

2
(γ1|Un|4 + γ2|Vn|4) + γ |Un|2|Vn|2

}
, (7)

and c.c. denotes the complex conjugate of the expression in
the curly brackets. From Eq. (4) it is clear that the interwell
tunneling induced by the dispersive term � can be suppressed
if χ is taken as a zero of the Bessel function J0. Notice that in
absence of SOC this would be sufficient to fully suppress the
tunneling in the system but in the presence of SOC this is not
so because tunneling remains possible through the σ term in
Eq. (4).
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III. DISPERSION RELATIONS AND LINEAR
ENERGY SPECTRUM

In the absence of contact interactions [γ = γ1 = γ2 = 0
in Eq. (4)] it is possible to derive the dispersion relation by
assuming a dependence of Un, Vn on time and on the lattice
site n of the form

Un(t ) = A exp i(kn − εt ), Vn(t ) = B exp i(kn − εt ), (8)

where A,B are real constants, k is the crystal momentum
varying in the first Brillouin zone, k ∈ [−π, π ], and ε has the
physical meaning of chemical potential (≡ energy in linear
case). The dispersion relation, e.g., the dependence of ε on
k, directly follows from the compatibility condition of the
resulting linear system, and one can easily show that it leads
to

εν (k)

= −2�J0(χ ) cos(k)

+ ν

√
�2

0 + σ 2

4
[J+

0 (η) − J−
0 (η)]2 + σ 2J+

0 (η)J−
0 (η) sin(k)2

(9)

with the index ν assuming the values ν = −1, 1, in correspon-
dence with the lower and upper branches of the dispersion
curve, respectively.

Notice that in the absence of modulations (e.g., f0 =
�1 = η = χ = 0) we have J0(η) = J±

0 = 1 and the above
dispersion relation reduces the the one in Ref. [27] for the
case of a static optical lattice and constant Zeeman field.
Similarly, in absence of the shaking of the optical lattice (e.g.,
for f0 = χ = 0), Eq. (9) reproduces the one considered in
Ref. [22] for the case of SOC tunability induced by time de-
pendent Zeeman fields. Typical dispersion curves for different
modulating parameter values are depicted in Fig. 1. Notice
from the bottom panel the occurrence of a flat band for the
value η = 4.809 65, which is related to a zero of the Bessel
function J0 as we shall see in the following.

IV. SOC DYNAMICAL LOCALIZATION: LINEAR CASE

In this section we consider the effects of the optical lattice
shaking and Zeeman modulation on the band flatness, sup-
pression of tunneling, and DL existence, in the absence of
any contact interaction. To this end we fix the optical lattice
shaking parameter χ to a zero of the Bessel function, say χ =
ξ̄ , so that the effective inter-well tunneling constant, J0(χ )�,
vanishes. In this case the lower and upper bands are related by
the symmetry ε1(k) = −ε−1(k), and their dependence on k is
fully controlled by the Zeeman parameter η through the factor
σ 2J+

0 J−
0 in Eq.(9).

Considering the SOC parameter different from zero, we
have that the band flatness is achieved when one of the
equations: J±

0 (η) ≡ J0(η ± ξ̄ ) = 0, is satisfied. This occurs
for η taken as

η±
n = ξn ± ξ̄ , (10)

with ξn, n = 1, 2, . . . denoting the nth zero of J0. Flat bands
in k-space are found in correspondence with the N -fold

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

k

(k)

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

k

(k)

FIG. 1. Typical dispersion curves of the linear SOC-DNLS sys-
tem (g = 0) for two values of the optical lattice shaking parameter,
χ = 1.2 (top panel) and χ = ξ1 = 2.40483 (bottom panel), and
different Zeeman field modulations. The black continuous, blue
dotted, and red dot-dashed curves in the top and bottom panels refer
to η = 0.5, 1.0, 2.5, and η = 3.0, 4.809 65, 5.0, respectively. Other
parameters are fixed as � = 0.3, �0 = 0.8, σ = 2.5.

degenerate eigenvalues

εν = ν

√
�2

0 + σ 2

4
J±

0 (η±
n )2, (11)

which depend on σ and with ν = −1, 1 referring to the lower
and upper bands, respectively. From this it follows that for
χ = ξ̄ ≡ ξm, the mth zero of J0, the band flatness occurs in
correspondence with the sequence of η values (DL points),
listed in increasing order,

{η−
m, η−

m+1, . . . , η
−
2m, η+

1 , η−
2m+1, η

+
2 , η−

2m+2, η
+
3 , η−

2m+3, . . . }.
(12)
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Thus, for m = 1, e.g. χ = ξ1 = 2.404 83, the first zero of J0,
the η sequence is

{η−
1 , η−

2 , η+
1 , η−

3 , η+
2 , η−

4 , η+
3 , η−

5 , η+
4 , η−

6 , η+
5 , η−

7 , . . . }.
(13)

Notice that the flat band depicted in the bottom panel of
Fig. 1 just corresponds to the η+

1 value in the above sequence.
Also notice that at DL points the band velocity v = dε(k)/dk

vanishes for all values k, so the transport is fully suppressed
and DL occurs.

In Fig. 2 we report the energy spectrum as a function of the
modulation parameter η for χ fixed as the first (top panel)
and second (bottom panel) zeros of J0. In both cases the
effective interwell tunneling J0(χ )� vanishes and we see the
shrinking of the spectrum into two degenerate points exactly
at the values predicted by Eq. (12). Notice that the degenerate
energies at these points correspond to different values of the
crystal momentum k and generate the upper and lower flat
bands seen in the bottom panel of Fig. 1, when plotted in
k-space.

In Fig. 3 we show the energy spectrum as in Fig. 2 but
for χ slightly different from a zero of J0. Since the effective
interwell tunneling is not zero, no shrinking of the spectrum
into single points can be observed in this case. Obviously, no
flat bands, tunneling suppression, or DL phenomena can arise
for any value of η.

Notice that when the Zeeman field modulation is switched
off, e.g. η = 0, the flatness of the bands and the DL phe-
nomenon occur when the intrawell tunneling is suppressed,
e.g., when χ matches a zero of J0. In this case, however, J±

0 =
J0(χ ) = 0 so there are only the trivial flat bands εν = ν�0

and no SOC contribution to the DL at all, since σ disappears
from the dispersion relation. From this it is clear that in the
presence of SOC the suppression of the interwell tunneling
by means of the optical lattice shaking alone is not enough to
induce DL, and the matching of the Zeeman field parameters
with the values in Eq. (12) is absolutely necessary for DL and
band flatness to exist.

Let us now investigate the eigenstates of the system at
the DL points. In this respect, we remark from Eq. (4) that
for J0(χ ) = 0 and η satisfying one of the two equations
J±

0 (η) = 0, the system reduces to a chain of uncoupled dimers
described by the equations

iȦ ∓ iσ

2
J∓

0 B − �0A = 0, iḂ ± iσ

2
J∓

0 A + �0B = 0,

(14)

with A,B standing for Un, Vn±1 and the signs appearing in
the equations related to which of the two equations J±

0 = 0
is satisfied by η. In this case one can readily check that the
following stationary dimer solution exists:

Aν ≡ Un = −2i

√
(εν + �0)

(
ε2
ν − �2

0

)
2εν (σJ∓

0 )2
e−iεν t δn,n0 , (15)

Bν ≡ Vn = −ν

√
εν − �0

2εν

e−iεν t δn,n0±1, (16)

with εν being the flat band energy at the DL point in Eq. (11).

FIG. 2. Energy spectrum versus η for parameter χ fixed
as the first (top panel) and second (bottom panel) zeros of
the Bessel function J0, e.g., χ = 2.404 83 and χ = 5.520 08,
respectively. Blue and red dots correspond to the η− and
η+ values (e.g., to solutions of the equations J + = 0 and
J − = 0, respectively), leading to the sequences in Eq. (12):
{0, 3.115 25, 4.809 65, 6.2489, 7.9249, 9.386 71, 11.0586} (top
panel) and {0, 3.133 65, 6.271 46, 7.9249, 9.410 84, 11.0402}
(bottom panel). Dashed blue and red lines have been drawn just
as a guide for the eyes through the band shrinking points. The full
spectrum for a given η has been derived for a chain of 99 sites. Other
parameters are fixed as in Fig. 1.

Notice that the above eigenstates are normalized according
to |A|2 + |B|2 = 1 and they can exist, on any lattice point, for
a total of N orthonormal states per band (N being the number
of lattice sites in the chain). Actually, from this complete set
of localized states one can construct extended (Bloch) states
at the DL points in terms of a Fourier transform. The fact that
the two components of the above dimer solution are localized
on different sites implies that they exist also in the presence
of the intraspecies interactions, e.g., at the DL points the

053606-4



FLAT BANDS AND DYNAMICAL LOCALIZATION OF … PHYSICAL REVIEW A 98, 053606 (2018)

FIG. 3. Energy spectrum versus η as in Fig. 2 but for χ detuned
from the first two zeros of J0 by −0.25, e.g., χ = ξi − 0.25 with
i = 1, 2 for top and bottom panels respectively. Other parameters are
fixed as in Fig. 2.

SOC system remains dimerized even in the presence of the
interspecies nonlinearity if the nonlinearity intrasite scattering
lengths are detuned to zero.

V. SOC DYNAMICAL LOCALIZATION: NONLINEAR CASE

In the presence of contact interactions the spectrum cannot
be computed analytically, but it can be computed numerically,
with high accuracy, by means of self-consistent diagonaliza-
tion (SCD) procedure [29]. Quite surprisingly, we find that

FIG. 4. Chemical potential μ = ε + Eint for the equally attrac-
tive case γ1 = γ2 = γ = −0.8 (top panel) and the equally repulsive
case γ1 = γ2 = γ = 0.8 (bottom panel). Other parameters are fixed
as χ = ξ1 = 2.404 83, � = 0.3, �0 = 0.8, σ = 2.5.

the results of the previous section for DL points survive in the
presence of nonlinearity. This is shown in Fig. 4 where the
spectrum of the Hamiltonian versus η is depicted for the cases
of all attractive interactions (top panel) and all repulsive inter-
actions (bottom panel). We see that, except for the presence
of additional nondegenerate bound state curves introduced by
the interactions, both in the semi-infinite and interband gaps,
the top and bottom bands curves are very similar to the ones
depicted in Fig. 2, shrinking into single points and leading to
flat bands in k-space, at exactly the same values of η derived
in Eq. (12) for the linear case (similar results are found for
other values of the nonlinearity parameters). The fact that the
DL points are unaffected by the interaction is a consequence
of the dimer localization and of the onsite nonlinearity.

From Fig. 4 it is also clear that while in the attractive case
the degeneracy of the ground state at the DL points is fully
removed by the nonlinearity, in the repulsive case the ground
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state remains highly degenerate and almost unaffected by the
interaction (see bottom panel of Fig. 4). We remark that, in
analogy with gap solitons of the continuous Gross-Pitaevskii
equation [30], the nondegenerate localized states which ap-
pear in the band gaps originate from linear Bloch states at
the center (resp. edges) of the Brillouin zone that become
modulationally unstable when an attractive (resp. repulsive)
interaction is switched on. The energies (chemical potentials)
of these states, due to their negative (resp. positive) interaction
energy contributions, are pulled just below (resp. above) the
linear flat band value in the case of attractive (resp. repulsive)
interactions. This explains why the ground state degeneracy
at the DL points is fully removed for attractive interactions
but not for repulsive interactions. The irrelevance of repulsive
nonlinearities for flat band ground states also correlates with
similar behaviors observed in the pure quantum regime of flat
band interacting bosons in the small density limit [31].

In the following we restrict to the case of all attractive
interactions and concentrate on the ground state curve shown
in the top panel of Fig. 4. In this respect we remark that the
ground states at the DL points can be computed exactly by
assuming the same type of dimerized localization found in the
linear case. In this respect let us look for states localized on
two sites of the form Un0 = ae−iεt , Vn0+1 = ibe−iεt with a,
b real constants and with Un = 0, and Vn = 0 on all other
sites different from n0 and n0 + 1, respectively. Substituting
into Eq. (4) and looking for stationary solutions, we obtain
the following cubic system:

1
2σJ+

0 b − (μ − �0)a + γ1a
3 = 0, (17)

1
2σJ+

0 a − (μ + �0)b + γ2b
3 = 0, (18)

which can be solved, together with the normalization con-
dition a2 + b2 = 1, exactly for a, b, μ, with μ = ε + Eint

denoting the chemical potential. Here we assumed η to be
a solution of the equation J−

0 = 0, but results for the case
J+

0 = 0 follow in similar manner. From this we obtain exact
nonlinear localized states at the DL points and, although the
analytical expressions for a, b are too involved to be reported,
it is possible to obtain them numerically with high accuracy.
Despite these results being strictly valid at the DL points
where bands are flat, the above equations can be solved in
general by considering η a varying parameter, to see how
results deviate (away from DL points) from the ones obtained
by SCD in Fig. 4. This is shown in Fig .5 for the ground state
energy curve. Quite remarkably, we see that the comparison
with the SCD curve in Fig. 4 is exact at the DL points and
very good for a wide interval, at least up to η ≈ 4.

VI. DISCUSSION AND CONCLUSIONS

We briefly discuss possible parameters design and
experimental setting to observe the above results presented in
this paper. In this respect we refer to the SOC for the case of
87Rb atoms in the field of three laser beams implemented in
a tripod scheme. The ground states from the 5S1/2 manifold
are coupled via differently polarized light, by choosing
|1〉 = |F = 2, mF = −1〉, |2〉 = |F = 2, mF = +1〉,
and |3〉 = |F = 1, mF = 0〉 [32].

0 2 4 6 8 10
−2.1

−2.0

−1.9

−1.8

−1.7

−1.6

η

μ

FIG. 5. Comparison between the exact nonlinear ground state
curve in Fig. 4 (black solid line) and the corresponding approximated
one obtained from Eq. (18) (red dotted line). Notice that the two
curves coincide at the DL points (red dots) and are in very good
agreement both around these points and in the range 0 < η ≈ 4. All
parameters are the same as in Fig. 4.

The optical lattice can be generated with two additional
counterpropagating linearly polarized laser beams of wave-
length λ = 2π/kL = 842 nm with a strength of the order of
10ER , with ER the recoil energy ER = h̄2k2/(2m). These val-
ues guarantee the applicability of the tight-binding model we
used. The passage of the optical lattice laser beams through an
acousto-optic modulator permits one to introduce a frequency
difference between them which can be used for the shaking
of the lattice as discussed in Ref. [33]. The strong modulation
limit can be reached by considering a Zeeman field of normal-
ized amplitude >20 and frequency of the modulation fixed by
ω = 2�1/η. Under these circumstances, it should be possible
to observe the described results and in particular the dimer
localization properties of the ground state at the DL points.

In conclusion, we have discussed flat bands, tunneling
suppression, and DL in binary BEC mixtures with spin-orbit
coupling subjected to a shaking optical lattice and periodic
time modulations of the Zeeman field. For this we have used
a tight binding model of the BEC mixture valid for deep
optical lattices and considered the effects of the modulations
by means of the averaging method. In particular, we showed
that the suppression of the interwell tunneling is not enough
to observe the DL phenomenon, and a suitable tuning of the
SOC parameter with the optical lattice shaking is required.
The SOC tuning, achieved via the Zeeman field, was shown
to lead to a series of parameter values at which flat bands and
DL can occur.

Exact analytical expressions of the BEC wave functions at
the DL points have been derived, both in absence (linear case)
and and in presence (nonlinear case) of interactions. In the
latter case we have shown that the dimer localization occurs
also for the ground state of the system, in exact form at DL
points and in a very good approximation around these points.
Parameter designs for possible experimental implementations
of the above phenomena were also briefly discussed.
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