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We present a numerical study of the interaction quench dynamics in a superfluid ultracold Fermi gas confined
in a three-dimensional cigar-shaped harmonic trap. In the present paper, we investigate the amplitude mode
of the superfluid order parameter after interaction quenches, which start deep in the BCS phase and end in
the BCS-BEC-crossover regime. To this end, we exploit the Bogoliubov–de Gennes formalism, which takes
the confinement potential explicitly into account and provides a microscopic fully coherent description of the
system. We find an anharmonic nonlinear oscillation of the modulus of the superfluid order parameter, i.e., of the
Higgs mode. This oscillation persists for large times with only a small amplitude modulation being visible. We
connect the frequency and the mean value of this oscillation with the breaking of Cooper pairs in the superfluid
phase. Additionally, we demonstrate that the occurrence of this persistent oscillation is connected to the onset of
chaotic dynamics in our model. Finally, we calculate an interaction quench phase diagram of the Higgs mode for
quenches on the BCS side of the BCS-BEC crossover and discuss its properties as a function of the aspect ratio
of the cigar-shaped trap.

DOI: 10.1103/PhysRevA.98.053605

I. INTRODUCTION

Exploring collective excitations of quantum many-body
systems provides key insights in order to gain a deeper
understanding of the quantum nature of such systems. The
nature of such collective excitations changes dramatically in
the context of a spontaneously broken continuous symmetry
like the U(1) symmetry present in solid-state physics, i.e.,
in superconducting and superfluid systems, as well as in the
standard model of particle physics [1,2]. The spontaneous
symmetry breaking (SSB) of the U(1) symmetry leads to the
emergence of two fundamental collective modes: the massive
(Higgs) amplitude mode and the massless (Goldstone) phase
mode [2–4]. These collective modes are important probes of
the many-body system.

Ultracold Fermi gases provide an ideal test bed to investi-
gate the collective modes of superfluid systems, because they
ensure a very high controllability of most relevant system
parameters [5,6]. Using a Feshbach resonance [7], the interac-
tions in an ultracold Fermi gas can be tuned. A weak attractive
interaction leads to a Bardeen-Cooper-Schrieffer (BCS) su-
perfluid state and in the case of a strong attractive interaction
the fermionic constituents form dimers which condensate in
a Bose-Einstein condensate (BEC). Those two regimes are
connected by the continuous BCS-BEC crossover [8]. With
this control of the interaction, an excitation of the system
may be evoked by changing the interaction strength instanta-
neously, i.e., on a timescale much faster than the characteristic
timescales of the dynamics. Such an interaction quench can
be exploited to obtain direct access to the collective modes
of the system. The experimental implementation, however,
remains challenging. It has been proposed to be done either
by a radio-frequency (rf) flip of one spin state of the superfluid

to another spin state (cf. Ref. [9]), which exhibits a different
interaction strength due to the Feshbach resonance, or an
optical control of a Feshbach resonance [10].

Evidence of the Higgs mode has been found in various
condensed matter and quantum gas systems, namely in charge
density wave compounds [11–16] and materials [17–19], in
NbN, Nb1−xTixN, and NbSe2 superconductors [20–25], in
quantum antiferromagnets [26–28], in the superfluid 3He
[29,30], in an ultracold bosonic gas in a two-dimensional
(2D) optical lattice [31,32], and recently in a 6Li Fermi gas
by modulation spectroscopy [33]. However, a time-resolved
detection of the nonadiabatic regime in the Higgs mode, as
has been predicted [34,35] and achieved in superconducting
samples [20–22], has not been reported so far for ultracold
Fermi gases. Nevertheless, there are numerous theoretical
studies devoted to the Higgs mode in ultracold Fermi gases
and various superconducting systems [36–59].

The topics covered in these studies include (i) a damped
oscillation of the order parameter [36], (ii) the dynamical van-
ishing of the order parameter [37,38], (iii) relaxation and per-
sistent oscillations of the order parameter [38–40], (iv) spec-
troscopic signatures of nonequilibrium pairing in fermionic
condensates [41], (v) collective excitations in confined sys-
tems [42–47] and in a 2D system [48], (vi) an entire quantum
quench phase diagram of the superfluid condensate [49,50],
(vii) collective modes in strongly disordered superconductors
[51], (viii) the Higgs mechanism and the stability of the BCS
mean-field theory in the weak coupling limit [52], (ix) the
influence of phonon-mediated interactions [53], (x) the Higgs
mode in a moving condensate [54], (xi) collective modes in
a two-band BCS superconductor [55], and (xii) the modes in
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [56–59].

2469-9926/2018/98(5)/053605(10) 053605-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.053605&domain=pdf&date_stamp=2018-11-05
https://doi.org/10.1103/PhysRevA.98.053605


HANNIBAL, KETTMANN, CROITORU, AXT, AND KUHN PHYSICAL REVIEW A 98, 053605 (2018)

The general picture which emerges from the theory work
is that the perturbation of a 3D system of interacting fermions
leads to a variety of dynamical phases with properties quite
distinct from the equilibrium ones. A classification of the
nonequilibrium behavior arising from different excitations of
the BCS state has been established for a three-dimensional
homogeneous Fermi gas by calculating a quantum quench
phase diagram, which has revealed three distinct phases [49].
In “phase I”, the superfluid order parameter vanishes dy-
namically [37,38,49], in “phase II”, a damped oscillation
with a t−1/2 behavior was found [36,49], and “phase III”
is characterized by a persistent oscillation with a constant
amplitude [38–40,49]. Furthermore, studies in nanostructured
superconducting BCS systems where quantum confinement
may strongly influence the superconducting pairing [60–66]
show an alteration of the damping in phase II depending on the
geometry [43,44] while in an inhomogeneous Fermi gas with
a harmonic confinement in one dimension and a box potential
in the other two dimensions the homogeneous behavior has
been confirmed [45].

In our previous articles, we have studied the dynamical
phases I and II for a Fermi gas in a three-dimensional har-
monic trap and we have found a confinement-induced frag-
mentation of the Higgs mode in phase II [46] and an alteration
of the dynamical vanishing in phase I due to the confinement
[47]. In this paper, we continue investigating the impact of the
confinement potential on the Higgs mode of a superfluid order
parameter and present a numerical study of the dynamical
phase III as well as a quench phase diagram in a cigar-shaped
ultracold Fermi gas with a harmonic confinement.

The paper is organized as follows: Section II introduces the
model system and we will briefly sketch the used Bogoliubov–
de Gennes formalism. In Sec. III, we will analyze the persis-
tent dynamics for interaction quenches starting deep in the
BCS phase and ending in the BCS-BEC crossover regime.
Finally, in Sec. IV we discuss the interaction quench phase di-
agram of an inhomogeneous Fermi gas on the BCS side of the
BCS-BEC crossover. Here, we focus on the dependence on the
aspect ratio of our cigar-shaped harmonic trap. In Sec. V, we
provide a brief summary of the results obtained in the paper.

II. THEORETICAL MODEL

In our model, we consider an ultracold Fermi gas com-
posed of fermionic 6Li atoms in two different internal spin
states (labeled by ↑ and ↓) with a balanced population, i.e.,
N↑ = N↓ = N/2. We choose a cigar-shaped harmonic con-
finement potential with an aspect ratio r = f⊥/f‖ � 1 where
f⊥ (f‖) is the radial (longitudinal) trap frequency. Further, we
assume an attractive interaction between fermions of different
spins with zero range such that its strength can be charac-
terized by a single parameter, the so-called scattering length
a. This is commonly done for s-wave scattering processes in
ultracold gases and results in an effective contact potential
Vint = (4πh̄a/m0) δ(r) = g δ(r), where m0 is the mass of 6Li.
Our treatment here is restricted to negative scattering lengths,
i.e., to the BCS side of the BCS-BEC crossover. We aim
at describing the superfluid phase which evolves in such an
ultracold Fermi gas by means of the Bogoliubov–de Gennes
(BdG) formalism.

In the following, we will sketch the formalism briefly; for
a detailed discussion, we refer the reader to Refs. [46,67,68].
We start from the usual Hamiltonian for a contact interaction
written in terms of the field operators. Then, we introduce the
superfluid order parameter by applying a BCS-like mean-field
approximation which yields the BdG Hamiltonian

HBdG =
∑

σ

∫
d3r �†

σ (r)H0�σ (r)

+
∫

d3r �∗(r)�↓(r)�↑(r) + H.c. , (1)

where H0 is the one-particle Hamiltonian including the kinetic
energy of the bare atoms and the confinement potential. Then,
the superfluid order parameter is defined by

�(r) = g〈�↓(r)�↑(r)〉. (2)

Here, �σ (r) is a field operator annihilating an atom with spin
σ at position r. In order to diagonalize the Hamiltonian in
Eq. (1) and obtain the ground-state order parameter of the
system, we introduce Bogoliubov’s quasiparticles:

γ †
na =

∫
un(r)�†

↑(r) + vn(r)�↓(r) d3r, (3)

γ
†
nb =

∫
un(r)�†

↓(r) − vn(r)�↑(r) d3r. (4)

The indices a/b result from the two spin species and un(r)
and vn(r) are the eigenfunctions of the corresponding eigen-
value problem of the Hamiltonian in Eq. (1), the so-called
BdG equation. Exploiting Anderson’s approximation, which
only considers pairing in time-reversed states [69], we obtain
the BdG eigenenergies En = √

ε2
n + �2

n, where εn are the
eigenenergies of the atoms in the trap and �n = 〈n|�(r )|n〉.
Here, we use �(r) = ∑

n un(r)vn(r) and the eigenstates of
the confinement potential |m〉. From the solution of the BdG
equation, we obtain the well-known self-consistency equa-
tions for the order parameter and the chemical potential μ

where the latter is determined by a given particle number
N . We regularize and solve the obtained self-consistency
equations numerically for T = 0 K, which yields the BdG
eigenenergies and eigenfunctions. Here, the numerical cutoff
is chosen such that all states with energies up to twice the
Fermi energy EF are considered. By inverting Bogoliubov’s
transformation, we obtain �(r) according to Eq. (2).

In order to excite a nonequilibrium state of the system,
we consider an instantaneous change, i.e., a quench, of the
scattering length ai → af . We assume that the change of
the scattering length takes place on a timescale much faster
than typical system reaction times. Thus, the density n(r) =
〈�†

↑�↑〉 + 〈�†
↓�↓〉 immediately after the quench is the same

as before, i.e., the system is in a nonequilibrium state with
respect to the new interaction strength. In order to evaluate
the subsequent dynamics, it is convenient to express the
ground state of the initial system in terms of the eigenfunc-
tions corresponding to the final ground state. This yields
occupations xml = 〈γ †

maγla〉 = 〈γ †
mbγlb〉 and coherences yml =

〈γ †
maγ

†
lb〉 = 〈γlbγma〉∗ of the density matrix instantaneously

after the quench. However, an interaction quench does only
introduce excitations which are diagonal, i.e., xml =: xm δml
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and yml =: ym δml . These excitations provide the initial values
for our nonadiabatic dynamics.

In the next step, we make use of Heisenberg’s equation
of motion and obtain coupled ordinary differential equations
for the occupations and coherences. We solve these equations
numerically and finally invert Bogoliubov’s transformation in
order to obtain the superfluid order parameter

�(r, t ) = g
∑

n

2 vn(r)un(r)

[
xn(t ) − 1

2

]

+ u2
n(r) y∗

n (t ) − v2
n(r) yn(t ). (5)

in terms of the occupations and coherences. This formalism
provides the coherent quantum mechanical dynamics of an
ultracold Fermi gas confined in a cigar-shaped harmonic trap
in mean-field approximation. The numerical solution of the
present formalism relies on Anderson’s approximation and we
will address its implications in the following.

Anderson’s approximation applied to the BdG formalism
results in an identical self-consistency equation for the ground
state of the system as a multiband BCS Hamiltonian which
only includes intraband Cooper pairing with zero center-of-
mass momentum [70]. It was shown that also in the case of
a confined system these states provide the most significant
contribution to the Cooper pairing due to the interaction ma-
trix elements involved [46,71]. Hence, the BdG formalism in
Anderson’s approximation realizes the extension to a confined
system of the reduced BCS Hamiltonian, which has been
employed to study the dynamical phases after an interaction
quench before (see, e.g., Ref. [49]).

In a confined system, Anderson’s approximation has been
discussed as well as numerically tested for systems with
various geometries both in equilibrium and nonequilibrium.
The studies include superconducting nanowires in the weakly
interacting regime [60,63–65] and cigar-shaped ultracold
Fermi gases in the weakly interacting regime [71] as well as
in the BCS-BEC-crossover region [72]. These studies have
observed slight quantitative deviations due to Anderson’s
approximation, which increase with increasing interaction
strength. However, for both the weakly as well as the strongly
interacting regime, no qualitative deviations in the properties
of the superfluid ground state have been found.

The validity of Anderson’s approximation in the dynamical
case has been discussed in Ref. [43] and is expected to hold
if the excitation does not introduce further inhomogeneities,
which is the case for all investigated interaction quenches.
Furthermore, the order parameter dynamics in Anderson’s ap-
proximation has been investigated numerically for quenches
leading to phase II dynamics by solving the full BdG equation,
which is, however, extremely demanding in terms of numer-
ical resources. Therefore, those calculations can only be car-
ried out for systems with a very small number of states [72].
In this previously published study, the initial and the final
systems were both either situated in the BCS regime or in the
BCS-BEC-crossover region. In both cases, the dynamics in
Anderson’s approximation have been found to be qualitatively
correct with only slight quantitative deviations when com-
pared to the solution of the full BdG equation [72]. Based on
these findings, also the dynamics after quenches which lead to
phase III dynamics are expected to be described qualitatively

FIG. 1. Spatiotemporal dynamics of the modulus of the order
parameter after a sudden change of the scattering length from
1/(kF ai ) = −2.0 to 1/(kF af ) = −0.5 and an aspect ratio of r = 20.
τtrap = h/δE = 1/(2f‖) ≈ 4.2 ms is the characteristic timescale of
the trap [46].

correctly since both the initial and the final ground states as
well as the dynamical approach have been shown to yield
qualitatively correct results in Anderson’s approximation.

III. PERSISTENT OSCILLATIONS IN THE
INTERACTION QUENCH DYNAMICS

In this section, we will investigate interaction quenches
which start in the BCS regime [1/(kF ai ) < −1] and end in
the BCS-BEC crossover region [−1 < 1/(kF af ) < 0]. Here,
we follow the usual characterization of the coupling strength
of the system in terms of 1/(kF a), where we obtain kF =√

(2m0EF )/h̄2 from the Fermi energy EF by the dispersion
relation of free atoms. In the following, we will discuss the
spatiotemporal dynamics of the order parameter �(r, t ) of an
ultracold Fermi gas after such a quench.

In Fig. 1, we show the spatiotemporal dynamics of the
order parameter after an interaction quench starting from an
initial coupling of 1/(kF ai ) = −2.0 to a final coupling of
1/(kf af ) = −0.5. We choose an aspect ratio of r = 20 with
f‖ = 120 Hz. Furthermore, to ensure the comparability of
the different systems considered in this paper, we choose a
constant system parameter s = EF /(hf⊥) = 5.5 for all calcu-
lations with h being Planck’s constant. This parameter charac-
terizes the band structure which results from the cigar-shaped
trap and the value of s = 5.5 is chosen such that the system
size is small enough for a systematic numerical analysis and
at the same time the quantum-size oscillations occurring for
small systems are avoided [71]. In such a case, the results
can easily be scaled to a larger system size by making use
of the scaling relations which we discussed in Ref. [47].
Furthermore, the parameters chosen here are exemplary for
strong quenches from the BCS regime toward the BCS-BEC
crossover, as we will see later from the phase diagrams in
Sec. IV.
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Figure 1(a) shows the order parameter instantaneously
after the quench at t = 0 τtrap; i.e., the excitations introduced
by the quench are already included. The striped distribution
of �(r)—which is typical for the BCS regime—corresponds
to the order parameter of the initial system scaled by a factor
of af /ai . In the subsequent dynamics in Fig. 1(b), we observe
an increase of the order parameter which affects the whole
trap and which finds its maximum at t = 0.043 τtrap, shown in
Fig. 1(c). This rise in the order parameter is symmetrical with
respect to the trap center and the striped structure in the initial
distribution transforms into a monotonic distribution with a
maximum in the center of the trap. This spatial distribution is
characteristic in the BCS-BEC-crossover regime and results
from the order parameter in the ground state of the final
system. Figure 1(d) shows the succeeding minimum at t =
0.083 τtrap. Here, again the whole trap is affected and the order
parameter is slightly larger than in the initial frame while it
recovers its striped structure.

Overall, we find an oscillation that affects the whole trap
while the spatial distribution of the gap oscillates between the
distribution given by the ground states of the initial and of the
final system, respectively. Hence, in this case the modulus of
the spatially averaged order parameter correctly provides all
information necessary, i.e., the frequency and amplitude of the
oscillation for a detailed investigation. Hence, we introduce
the spatially averaged order parameter

�(t ) =
∣∣∣∣ 1

V

∫
d3r�(r, t )

∣∣∣∣, (6)

where we set the volume to V = [h̄/(m0π )]3/2f −1
⊥ f

−1/2
‖ .

The time evolution of the modulus of the spatially averaged
order parameter �(t ) is shown in Fig. 2(a) normalized to
the spatially averaged order parameter in the initial system
�i . We find an oscillation around the mean value �∞ (black
dashed line), which is reduced compared to the ground-state
value of the final system �f (solid red line). After a small
initial damping, the oscillation persists for several τtrap. Only
a modulation of the amplitude is visible, opposed to the
homogeneous case where the persistent oscillation features a
constant amplitude [39,49].

By investigating the Fourier transform of the order pa-
rameter, we observe that the persistent oscillation shows a
pronounced nonlinear character: In Fig. 2(b), we show the
Fourier spectrum of �(t ), which shows one dominant feature
at fHiggs = 14.2(2f‖) being smaller than twice the smallest
Bogoliubov eigenenergies 2Emin/h = 22(2f‖) (red crosses).
In contrast, in the linear case the spectrum is composed of
a series of peaks given by twice the quasiparticle energies.
This leads to linear dephasing dynamics of the Higgs mode
which break down after τtrap [46]. Hence, the absence of the
breakdown in the persistent oscillation is a consequence of
the nonlinear character. Additionally, we observe a further
contribution in the spectrum around 28.5(2f‖), which corre-
sponds to the second harmonic of the dominant frequency,
indicating that the oscillation of �(t ) is anharmonic. In order
to illustrate this, we depict in Fig. 2(c) the phase space of
the oscillation, i.e., d/dt (�) versus �, each being normalized
to their corresponding maximum value. In this phase space,
we find a trajectory, which is egg shaped. This demonstrates

FIG. 2. Amplitude mode of the spatially averaged order parame-
ter after an interaction quench from 1/(kF ai ) = −2.0 to 1/(kF ai ) =
−0.5 with identical parameters as in Fig. 1: r = 20, f‖ = 120 Hz,
and s = 5.5. (a) Time evolution of the spatially averaged order
parameter �(t ) normalized to the spatially averaged order parameter
in the ground state of the initial system �i . �f is the spatially
averaged order parameter of the final system in its ground state (red
line) and �∞ is the mean value over the whole calculation time
(black dashed line). (b) Fourier transformation of the signal in panel
(a). Ek are the Bogoliubov quasiparticle eigenenergies (red crosses).
(c) Phase space representation of the signal in panel (a) normalized
to the corresponding maximum values.

the anharmonic character of the oscillation in accordance
with what has been found in phase III in the homogeneous
system [49].

Summarizing, we observe an anharmonic nonlinear oscil-
lation that persists after τtrap where the amplitude is modu-
lated. In the next step, we will investigate the origin of the
frequency of the oscillation and of the reduction of the mean
value in more detail and we will demonstrate that those two
are interconnected.

An excitation of Bogoliubov quasiparticles in the BCS
phase reduces the modulus of the order parameter [73]. This
can be understood by considering that the population of
Bogoliubov’s quasiparticles xk corresponds to the breaking of
Cooper pairs. Bearing in mind that |�(r)|2 is proportional to
the Cooper pair density [74], it becomes apparent that such an
excitation also reduces the modulus of the spatially averaged
order parameter � which sets the mean value of the oscilla-
tion. Furthermore, from dynamical studies in homogeneous
systems it is known that the frequency of the Higgs mode,
i.e., the oscillation frequencies of the modulus of the order
parameter, is determined by the mean value of the modulus of
the order parameter itself [34,35,49]. Hence, on the one hand
a reduction of � due to excitations leads to a reduction of the
mean value �∞ and on the other hand it implies a reduction
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FIG. 3. Frequency of the Higgs mode fHiggs normalized to twice
the smallest BdG quasiparticle energy 2Emin (blue circles) and mean
value �∞ of �(t ) normalized to the ground-state value �f (orange
pluses) for various quench strengths characterized by 1/(kF ai ). The
final coupling is 1/(kF af ) = −0.5 and all other parameters are
identical to Figs. 1 and 2. The roman numerals mark phase II and
phase III, respectively.

of fHiggs. Indeed, from our numerical data we do not only
extract that this is the case. We also find that the reduction
of fHiggs is approximately given by the reduction of �∞ for
all investigated quenches, as we show in Fig. 3.

Figure 3 shows the frequency of the Higgs mode fHiggs

normalized to twice the smallest BdG quasiparticle energy
2Emin (blue circles) for r = 20, and �∞/�f for r = 20
(blue boxes) and r = 50 (orange crosses) as a function of
1/(kF ai ), i.e., of the quench strength. Here, we choose the
remaining parameters identical to Figs. 1 and 2. We choose
the normalization such that both quantities (fHiggs and �∞)
are normalized to the value they take in the case of a linear
dynamics induced by a weak quench. Both quantities in Fig. 3
decrease in the same nonlinear fashion when increasing the
quench strength, i.e., when choosing a smaller initial coupling
1/(kF ai ). From our data, we confirm that this close inter-
connection between fHiggs and �∞ applies for all considered
quenches and aspect ratios. This clearly shows a connection
between both quantities. Furthermore, comparing �∞/�f for
r = 20 and r = 50 in Fig. 3 reveals that the decrease with
increasing quench strength is independent of the aspect ratio r .
In accordance with our preceding discussion, the reduction of
�∞/�f is controlled by the initial quasiparticle occupations
introduced at the time of the quench, which is confirmed
by the numerical data. These initial quasiparticle occupations
only depend on the quench strength but not on the aspect ratio
r in the case of a constant system parameter s.

Overall, we have demonstrated that the decrease of fHiggs

and �∞ with increasing quench strength in the inhomoge-
neous system is caused by the breaking of Cooper pairs due
to the creation of quasiparticle occupations. These excitations
are introduced by the interaction quench and their occupation
increases with the quench strength [47] which leads to the
observed reduction of fHiggs and �∞. In the next step, we will
analyze the nonlinear nature of the oscillation further and we
will show that our model system shows a chaotic signature
when entering phase III of the quench dynamics.

In order to test whether the dynamics of the system is
chaotic, we introduce a small perturbation and calculate the
difference between the perturbed and unperturbed trajec-
tory in phase space, which is in this case defined by the

FIG. 4. Temporal evolution of the logarithm of the relative dif-
ference in phase space ln(‖z′ − z‖/‖z‖) between the two trajectories
z and z′. The black line shows a linear fit for t < 51 τtrap from which
we extract the largest Lyapunov exponent x

(1)
Ly . The parameters are

identical to those in Figs. 1 and 2.

occupations and coherences. To this end, we add a randomized
perturbation η

x/y

k to the unperturbed initial values and we
obtain the perturbed initial values x ′

k|t=0 = xk|t=0 + ηx
k and

y ′
k|t=0 = yk|t=0 + η

y

k . In the next step, we calculate the result-
ing trajectory z′ := z′(x ′

1, . . . , x
′
Nc

, y ′
1, . . . , y

′
Nc

) together with
the unperturbed trajectory z := z(x1, . . . , xNc

, y1, . . . , yNc
).

Here, Nc is the number of states in the calculation set by the
numerical cutoff. In order to measure the difference between
these two trajectories in phase space, we use the norm [75]

‖z‖ = 1

Nc

√∑
k

(|xk|2 + |yk|2). (7)

For our numerical calculation, we choose all perturbations
η

x/y

k to be within the same order of magnitude and we ensure
that the initial relative distance in phase space is small, i.e.,
‖z′ − z‖/‖z‖ � 10−8. With this choice, we ensure that the
numerical errors per time step in our calculations, which we
estimated to be on the order of 1 × 10−13, are kept orders
of magnitude smaller than the perturbation which provides
reliable data [76].

In Fig. 4, we illustrate the temporal evolution of
the logarithm of the relative difference in phase space
ln(‖z′ − z‖/‖z‖) between the two trajectories. We find that
ln(‖z′ − z‖/‖z‖) oscillates with an underlying linear increase
for t < 55 τtrap which saturates for larger times. The saturation
sets in at ln(‖z′ − z‖/‖z‖) ≈ 1 which corresponds to a situa-
tion where the difference in phase space is equal to the norm
of the trajectory itself. By this, the possibility of dealing with
unbound trajectories is ruled out since ln(‖z‖) is bounded.
Such a behavior is commonly considered as the signature of
systems which exhibit chaos. In this case, the exponent of
the exponential increase of ‖z′ − z‖/‖z‖ is the so-called first
Lyapunov exponent x

(1)
Ly which determines the behavior of the

systems dynamics. We extract the Lyapunov exponent from
the linear fit shown in Fig. 4 as x

(1)
Ly ≈ 0.38/τtrap.

These results raise the question of whether the positive
Lyapunov exponent indicating signatures of chaos is related
to the confinement potential. To answer this question, we
have performed corresponding calculations for a Fermi gas
within the homogeneous BCS model, which revealed the
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FIG. 5. Interaction quench phase diagrams of �∞/�f for aspect ratios of r = 20, 30, 40, 50, a longitudinal trap frequency of f‖ = 120 Hz,
and a system parameter of s = 5.5. The dynamical phases I, II, and III are marked as I, II, and III, respectively.

same behavior. This demonstrates that signatures of chaos are
characteristic for the phase III behavior both in homogeoeus
and in confined Fermi gases.

Summarizing, we have analyzed the dynamics after an
interaction quench from the deep BCS regime to the BCS-
BEC-crossover region, i.e., the dynamical phase III. After
the quench, we observe an anharmonic nonlinear oscillation
where both the frequency and the mean value are reduced
due to the breaking of Cooper pairs which is induced by
the excitation of quasiparticles at the time of the quench.
This oscillation is very robust with respect to the confinement
potential and persists well after τtrap with no confinement
frequencies visible in the Fourier spectrum. Furthermore, we
find that the dynamics in the BdG formalism after such a
quench shows a clear signature of chaos. Having analyzed
phase III in detail here and previously phase II in Ref. [46]
and phase I in Ref. [47], we will in the following complete
the picture by discussing the whole quench phase diagram for
an inhomogeneous system. The following analysis is similar
to what has been done for a homogeneous system in the
thermodynamic limit [49].

IV. QUENCH PHASE DIAGRAM

In this section, we will consider all types of interaction
quenches possible on the BCS side of the BCS-BEC crossover
which yields a dynamical quench phase diagram for an inho-
mogeneous ultracold Fermi gas. Further, we will discuss the
effect of the aspect ratio r on the phase diagram. However,
before we analyze this feature of the phase diagram we will
locate the different phases in the phase diagram and we will
briefly recall the characteristics of the two phases which have
been analyzed in detail in previous publications, i.e., phase I
[47] and phase II [46].

Figure 5 shows the interaction quench phase diagram for
four different aspect ratios r = 20, 30, 40, and 50. Here, we
depict �∞/�f , which shows a distinct characteristic for
each phase. We choose a longitudinal trap frequency of f‖ =
120 Hz and keep the system parameter s = 5.5 fixed in all

systems. Together with a given r , 1/(kF ai ), and 1/(kF af ), this
determines all remaining parameters.

Around the diagonal in each frame of Fig. 5, i.e., for
weak quenches in both directions, we find that �∞/� ≈ 1
which corresponds to the linear dynamics of phase II. Here,
the Higgs mode of the order parameter shows a damped
oscillation which breaks down at τtrap due to the dephasing
of the linearly coupled occupations and coherences of the
quasiparticle density matrix [46].

In the lower right corner of the phase diagram (marked
as I), we depict quenches from the BCS-BEC-crossover
regime to the deep BCS regime. These interaction quenches
lead to an initial exponential decay and a consecutive dy-
namical vanishing of the modulus of the order parameter,
i.e., the evolution of a flat plateau with an almost vanishing
average value. This vanishing is characterized by a small
value of �∞/�f . The onset of the dynamical vanishing was
found to depend crucially on the smallest quasiparticle en-
ergy of the final system Emin = Mink (Ek ) which determines
both the initial decay constant and the visibility of a plateau
in the dynamics of �(t ) [47]. One aspect that has not been
discussed previously is the increase of �∞/�f for very large
quenches, visible by the slightly darker area in the lowest right
corner. In this case, the strong interaction quench excites an
oscillation with the transverse confinement frequency f⊥ on
top of the plateau. This oscillation then prevents the modulus
of the order parameter to vanish further and, thus, leads to the
observed increase of �∞/�f in the phase diagram.

Finally, in the upper left corner of the interaction quench
phase diagrams in Figs. 5(a)–5(d), we find phase III which has
been discussed in Sec. III and is identified by a smooth reduc-
tion of �∞/�f , as we have discussed above. We have found
that the reduction of �∞/�f is induced by the breaking of
Cooper pairs at the time of the quench, which is independent
of the aspect ratio r . With this characterization, we will now
discuss the dependency of the quench dynamics on the aspect
ratio by means of the obtained phase diagrams.

Comparing the four phase diagrams in Fig. 5, we observe
that phase II around the diagonal and phase III in the upper
left corner of the dynamical phase diagram remain essentially
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unchanged when changing the aspect ratio. This is expected,
since we found that the breaking of Cooper pairs by quasipar-
ticle excitations at the time of the quench leads to the observed
reduction of �∞/�f . However, the amount of excitations
induced only depends on the quench strength and not on the
aspect ratio r in the case of a constant system parameter s, as
discussed above.

In contrast, investigating the lower right corner of the dy-
namical phase diagram, i.e., phase I, there are changes in the
transition visible. In the phase diagram for r = 20 in Fig. 5(a),
a darker blue-green area is visible at the transition between
phase I and phase II for 1/(kF af ) � −1.5. In comparison to
the phase diagram for larger aspect ratios, we observe that
the darker blue-green stripe, which starts at the quench from
1/(kF ai ) = −1.0 to 1/(kF af ) = −1.6 for r = 20 and extends
parallel to the diagonal, moves toward smaller effective in-
teraction strength in the final system until it is not visible
any more in the dynamical phase diagram for r = 50. The
observed shift results from an increase of Emin with on the one
hand the aspect ratio r and on the other hand the interaction
strength in the final system 1/(kF af ): The feature we observe
in the phase diagram, i.e., the darker blue-green area, occurs
for an identical Emin and quench strength for all aspect ratios
r . Therefore, it shifts toward smaller effective interaction
strength with an increasing aspect ratio r in order to account
for the increase of Emin with r . This shift takes place in
accordance with the dependence of the onset of the dynamical
vanishing order parameter we have previously found for phase
I [47]. In addition, an analogous effect leads to the darkening
blue-green feature for the quench from 1/(kF ai ) = −0.3 to
1/(kF af ) = −1.0 with an increasing aspect ratio.

Furthermore, we observe that the slightly darker area in
the far lower right corner of the phase diagram fades with
an increasing aspect ratio. We understand this in terms of the
oscillation with f⊥ on top of the plateau: Since f⊥ is increased
with the aspect ratio, a stronger quench is necessary in order
to excite the additional oscillation with the trap frequency.
Hence, these oscillations become less pronounced with an
increasing aspect ratio.

In order to highlight the dependence of the dynamical
phase diagram on the aspect ratio r , we depict �∞/�f versus
the aspect ratio r for three exemplary quenches in Fig. 6. The
first quench from 1/(kF ai ) = −1.5 to 1/(kF af ) = −0.7 (red
diamonds), which is located in the transition regime between
phase II and phase III, clearly demonstrates that �∞/�f is
independent of the aspect ratio r in the transition between
phases II and III as discussed in Sec. III.

The two other quenches in Fig. 6 are taken from the
transition region between phase I and phase II. For the
second quench from 1/(kF ai ) = −1.1 to 1/(kF af ) = −1.7
(blue dots), we find a jump in �/�f at r = 30, which
corresponds to a shift of the onset of the dynamical vanishing
to larger quench strengths with increasing aspect ratio. The
same holds true for the third quench from 1/(kF ai ) = −0.3
to 1/(kF af ) = −1.0 (black squares). However, here the jump
of �∞/�f at r = 42 is smaller and the shift as a function
of the aspect ratio is less pronounced due to the larger ef-
fective interaction strength 1/(kF af ) = −1.0, which leads to
an exponentially larger Emin. The observed behavior for both
quenches is in full agreement with our previously published

FIG. 6. �∞/�f in dependence on the aspect ratio r for three ex-
emplary quenches from the phase diagrams in Fig. 5. All parameters
are identical to those before and the dashed lines are a guide to the
eye.

result of a shift in the transition quench strength to phase I
with 1/Emin where we found that Emin ∼ r [47].

In the last step, we will further investigate the chaotic
signature of the dynamics in the obtained dynamical phase
diagram. To this end, we will discuss the phase diagram of the
first Lyapunov exponent x

(1)
Ly which reflects the most unstable

mode in the entire system. The analysis is carried out for a
system with an aspect ratio of r = 20, which is an example
for all other aspect ratios.

Figure 7 shows the phase diagram of the first Lyapunov
exponent calculated by the numerical procedure presented
in Sec. III. We find x

(1)
Ly = 0 around the diagonal and in

the lower right and lower left corners of the phase diagram.
Furthermore, we observe two regions where the Lyapunov
exponent takes a finite value: a stripe in the lower right part of
the diagram and an extended region in the upper left corner. In
the latter region, the Lyapunov exponent increases with an in-
creasing coupling strength in the final system 1/(kF af ) while
the dependence on the quench strength is nonmonotonic.

Comparing the results for x
(1)
Ly to the phase diagram of

�∞/� for r = 20 in Fig. 5(a) yields a good agreement
between the area of phase III and a finite and positive

FIG. 7. Phase diagram of the Lyapunov exponent x
(1)
Ly for r = 20

in units of 1/τtrap. Because of our numerical implementation, we
cannot expect x

(1)
Ly to vanish identically. Instead, we see a very

slow increase of ln(‖z′ − z‖/‖z‖) even for small quenches which is
not linear and saturates at values ln(‖z′ − z‖/‖z‖) < −15. In these
cases, we set x

(1)
Ly = 0 since the characteristic of a chaotic system is

not fulfilled.
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Lyapunov exponent. Hence, we confirm that the emergence
of the dynamical phase III is indeed connected to a chaotic
signature of the dynamics, which occurs if both the quench
strength and the final coupling strength are sufficiently large.

Furthermore, from comparing Fig. 7 to Fig. 5(a), we obtain
that the stripe-shaped region with a finite Lyapunov exponent
corresponding to the transition regime between phase I and
phase II. Here, we find a comparable situation as before: The
quench strength, i.e., the distance to the diagonal (black line)
is similar as for the onset of the chaos in phase III and the final
coupling is still fairly large. As discussed above, this leads to
a chaotic behavior of the system, whereas going deeper into
phase I the coupling strength in the final system decreases
and the dynamics is dominated by a dynamically vanishing
order parameter, which is still nonlinear but does not show
a chaotic signature due to the small coupling strength in the
final system.

Overall, we have obtained the dynamical phase diagram
for an inhomogeneous Fermi gas after an interaction quench.
We find three distinct phases, in agreement with the phases
obtained in a homogeneous system in the thermodynamic
limit [49]. We have analyzed the occurrence of each phase
in dependence of the aspect ratio r . We demonstrated that
phase III and phase II are unaffected by the aspect ratio for
a constant system parameter s. Further, we have discussed the
changes in the onset of phase I in dependence on the aspect
ratio, which agrees with our previously published results [47].
Overall, we have found that the three-dimensional harmonic
confinement alters the onset of the dynamical vanishing in
phase I, leads to a breakdown of the damped oscillation in
phase II, and introduces an amplitude modulation in phase
III. However, in phase III we have found no direct evidence
of the confinement frequencies in the dynamics, making the
persistent oscillations very robust with respect to the details
of the confinement potential. Additionally, we have observed
that the dynamics of phase III as well as in the transition
region between phase I and phase II is connected to a chaotic
behavior of the utilized BdG formalism.

V. CONCLUSION

In the current paper, we have analyzed the interaction
quench dynamics of an ultracold Fermi gas quenched from
the BCS regime to the BCS-BEC-crossover regime. In the

Higgs mode of the superfluid order parameter, we observe a
nonlinear persistent oscillation with a small modulation of the
amplitude. We have demonstrated that the frequency and the
mean value of the oscillation are closely interconnected: Both
are reduced simultaneously by the excitation of quasiparticles
at the time of the quench which breaks Cooper pairs of the
superfluid phase. These excitations are initially introduced at
the time of the quench and hence they increase with increasing
quench strength while they are independent of the aspect ratio
for the case of a constant system parameter s. Moreover, we
find that these persistent oscillations of phase III are robust
toward the influence of the confinement potential and no
signature of the confinement frequencies is imprinted on the
dynamics in contrast to the dynamical phases I and II [46,47].
In a further step, we have numerically demonstrated that
the occurrence of the persistent oscillation is connected with
a finite Lyapunov exponent of the dynamics which clearly
reveals the chaotic signature of the dynamics in phase III in
the BdG model.

In Sec. IV, we have presented an interaction quench
phase diagram of the Higgs mode for an ultracold Fermi
gas confined in a harmonic trap. We observe three phases in
accordance with the quench phase diagram in a homogeneous
system [49]. For weak quenches of either direction, we find
a damped oscillation dominated by linearly coupled oscilla-
tors which shows a confinement-induced breakdown at τtrap.
However, we observe that the location of phase II in the phase
diagram around the diagonal is independent of the aspect
ratio of the confinement potential. For strong quenches ending
in the deep BCS regime, we find a dynamical vanishing of
the order parameter with a revival of the order parameter at
τtrap. The onset of phase I is controlled by the ground-state
properties of the system, i.e., by Emin, which are controlled by
the confinement potential. This is reflected in the dependence
of the dynamical phase diagram on the aspect ratio. Finally,
for large quenches towards the BCS-BEC crossover, we find
persistent nonlinear oscillations which are connected to a
reduction of �∞/�f . The oscillations have been found to be
robust toward any imprinting of the confinement frequencies
and �∞/�f has been found to be independent of the aspect
ratio. Therefore, the dynamical phase III as well as the transi-
tion between phase II and phase III is unaffected by a change
of the aspect ratio, as we have demonstrated in the dynamical
phase diagram.
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