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R-matrix-with-time-dependence theory for ultrafast atomic processes in arbitrary light fields
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We describe an ab initio and nonperturbative R-matrix with time-dependence theory for ultrafast atomic
processes in light fields of arbitrary polarization. The theory is applicable to complex, multielectron atoms and
atomic ions subject to ultrashort (particularly few-femtosecond and attosecond) laser pulses with any given
ellipticity, and it generalizes previous time-dependent R-matrix techniques restricted to linearly polarized fields.
We discuss both the fundamental equations, required to propagate the multielectron wave function in time, as
well as the computational developments necessary for their efficient numerical solution. To verify the accuracy
of our approach, we investigate the two-photon ionization of He, irradiated by a pair of time-delayed, circularly
polarized, femtosecond laser pulses, and compare photoelectron momentum distributions, in the polarization
plane, with those obtained from recent time-dependent close-coupling calculations. The predictive capabilities
of our approach are further demonstrated through a study of single-photon detachment from F− in a circularly
polarized, femtosecond laser pulse, where the relative contribution of the co- and counter-rotating 2p electrons
is quantified.
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I. INTRODUCTION

Precise control of the polarization state has become a
key research directive for femtosecond and attosecond light-
source technologies. In particular, in the extreme-ultraviolet
(XUV) and soft-x-ray spectral ranges, intense and coherent
elliptically polarized laser pulses have traditionally been real-
ized only through large-scale facilities, such as femto-sliced
synchrotrons [1–3] and free-electron lasers [4,5]. In recent
years, however, a substantial effort has been made toward the
development of compact alternatives, with the aim of meeting
the requirements of photon-demanding applications, such as
ultrafast metrology and spectroscopy, on a laboratory scale.
In particular, solid-state and gas-based media, for high-order
harmonic generation (HHG), continue to represent attractive
means of producing ultrashort light pulses with manipulable
polarization properties. To date, several schemes have been
explored, both experimentally and theoretically, with fruition,
relying on prealigned molecules as targets [6–8], bichromatic
and co- or counter-rotating drivers [9–12], cross-polarized,
multicolor laser light [13–15], HHG assisted with static elec-
tric fields [16,17], and even resonance effects inherent in the
dynamics of HHG itself [18]. Moreover, advances in plasma-
based laser technology have enabled the tabletop demonstra-
tion of stable, circularly polarized, soft-x-ray pulses, with
photon fluxes superior to current HHG sources [19].

The development, and increasingly widespread availabil-
ity, of polarization-tuneable light sources has facilitated a
host of experimental opportunities, both for the investiga-
tion and novel control, of laser-matter interactions on an
ultrafast timescale. Indeed, the use of elliptically polarized
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fields opens the possibility of probing dynamical effects,
and target properties, that may be inaccessible with linearly
polarized pulses alone. In particular, recent experiments on
atomic and molecular strong-field ionization, effected with
circularly and/or elliptically polarized, femtosecond pulses,
have revealed a number of new and exciting phenomena. Sev-
eral authors [20–22] have reported “counterintuitive” shifts
in photoelectron angular distributions (attributable to a dy-
namical phase shift [23]), as well as imprints of target orbital
characteristics therein [24–27]. Coherent, circularly polarized
laser pulses have also led to the observation of kinematic
vortex patterns in momentum spectra [28], and to the detection
of spin-polarized electrons, created by nonadiabatic tunneling
[29,30]. Moreover, the potential of such pulses to serve as
an attoclock, for timing attosecond-scale ionization dynamics,
has been demonstrated via the angular streaking technique
[31], yielding unprecendented insight into the nature of quan-
tum tunneling [20,32–35].

To complement these experimental efforts, theoretical
treatments of the laser-atom interaction are compelled to
address new challenges. Crucially, laser fields with nonzero
ellipticity drive atomic dynamics that is intrinsically multidi-
mensional in nature, largely invalidating simplified, reduced-
dimensionality models of strong-field ionization [36,37].
More fundamentally, the conservation of the total orbital mag-
netic quantum number, ML, that prevails for linear polariza-
tion is now lost: even in the dipole approximation, elliptically
polarized fields effect transitions in which ML must change by
±1. Accounting for all such transitions (sometimes referred
to as the ML-mixing problem in the literature [38,39]) can
render first-principles, quantum dynamic simulations compu-
tationally intensive.

As a consequence of this complexity, only a limited num-
ber of ab initio approaches have been developed for atomic
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systems in arbitrarily polarized light fields. First-principles
calculations have been reported for the H atom exposed to
circularly polarized, femtosecond pulses [40–43], where the
time-dependent Schrödinger equation (TDSE) was solved
numerically by means of spectral methods. More recently, a
computational technique based on the time-dependent close-
coupling (TDCC) formalism [44,45], combined with Wigner
frame transformations [38,39], was applied to the laser-driven,
two-electron problem, enabling the six-dimensional TDSE to
be solved for a He atom subject to elliptically polarized, at-
tosecond pulses [46,47]. These approaches have offered some
of the most detailed insight into the strong-field dynamics
of one- and two-electron systems, revealing a differential
response of co- and counter-rotating electrons [43], unusual
manifestations of Ramsey interference [46,47], as well as a
nonlinear dichroic effect in double-ionization [48].

Although full-dimensionality treatments have been effec-
tive in describing both single- and double-ionization phe-
nomena, driven by intense, elliptically polarized laser light,
their application to systems with more than two electrons is
computationally intractable. Thus far, time-dependent simu-
lations for multielectron atoms, exposed to ultrashort pulses
with arbitrary polarization, have been rooted in the single-
active-electron (SAE) approximation [21,24,27,49–52]. Such
approaches have played a key supporting role for experi-
mental efforts, particularly where the photoelectron emission
characteristics have been of primary interest.

While the value of SAE methods cannot be denied, it has
long been established that the dynamics of complex atoms,
exposed to ultrashort laser pulses, are fundamentally many-
body in nature [53–57]. Recently, experiments have begun
to uncover how spatially correlated electronic motion, previ-
ously probed with somewhat limited pulse-polarization con-
trol, might be manifest, and perhaps even coherently manip-
ulated, with multidimensional light-fields [20,33,35,58,59]. It
should be emphasized that adequate modeling approaches for
such experiments are largely lacking: SAE (one-body) tech-
niques can offer only a limited insight, and a computationally
feasible, yet truly multielectron (many-body) treatment, has
yet to be realized.

If theory is to play a complementary role for state-of-
the-art experiments in strong-field physics, then sophisticated
methods of calculation are required, offering an accurate
account of both multielectron correlations in atomic structure,
and a multielectron response to the light field. To this end,
R-matrix with time-dependence (RMT) theory [60] offers an
ab initio and nonperturbative technique for solving the TDSE,
appropriate to general, multielectron atoms and atomic ions
in strong laser fields. It represents the latest embodiment of
a time-dependent R-matrix formalism [61–63], whose flexi-
bility and generality have been reflected in a wide variety of
recent applications. These include multielectron correlation
in doubly and core-excited states of Ne [64], strong-field
rescattering in F− [65] and HHG from noble gas atoms in
the near-infrared regime [66]. RMT theory has even been ex-
tended for the description of double-electron continua [67,68].

In this article, we present a recent evolution in the RMT
methodology, facilitating the analysis of ultrafast atomic
dynamics in entirely arbitrary light fields. This capability
subsumes the previous RMT methodology that was tailored

specifically for linearly polarized laser pulses [60]. The gen-
eralization has been achieved by relaxing the constraint of
ML conservation, allowing transitions, among different LS-
coupled states of the target, in which �ML = 0,±1. Not
only does this accommodate arbitrary orientations for the axis
of linear polarization, but also enables the adoption of laser
pulses with circular or, more generally, elliptical polarization
in RMT computations. We detail our extension of the existing
RMT formalism, and associated computer codes, in Sec. II.
As a means of verifying the accuracy of our approach, we
investigate, in Sec. III, the formation of multistart, spiral vor-
tex features in the photoelectron momentum distributions of
He, irradiated by a pair of time-delayed, ultrashort, circularly
polarized laser pulses with opposite helicities. We compare
our predicted photoelectron momentum distributions, in the
polarization plane, with those obtained in a recent time-
dependent close-coupling study. The predictive capabilities
of our generalized RMT method are further demonstrated,
in Sec. IV, through a study of single-photon detachment
from F− in a circularly polarized, femtosecond laser pulse,
where we quantify the sensitivity of the dynamics to the sign
of the bound-electron magnetic quantum number. Section V
closes the article with relevant conclusions. Finally, we note
that atomic units are assumed throughout this work, unless
otherwise stated.

II. THEORETICAL AND COMPUTATIONAL APPROACH

We consider an atomic system, possessing N + 1 electrons
and nuclear charge Z, interacting with an intense and ultra-
short light pulse of arbitrary polarization.

A. Laser field

Throughout, the laser field is treated classically, and the
interaction with the atomic system described in the dipole ap-
proximation. The electric field of a single, arbitrarily polarized
laser pulse may be expressed in the form

E(t ) = F (t )Re[e e−i(ωt+ϕ)], (1)

where F (t ) specifies the temporal envelope, ω is the carrier
frequency, ϕ is the carrier-envelope phase (CEP), and e is
the polarization vector. In general, the vector e is complex
(e∗ · e = 1) and can be written in the form

e = (ε̂εε + iηζ̂ζζ )/
√

1 + η2,

where −1 � η � 1, ζ̂ζζ = k̂ × ε̂εε, and k̂, ε̂εε, and ζ̂ζζ indicate,
respectively, the propagation direction of the pulse and the
major and minor axes of the polarization ellipse. In particular,
for a linearly polarized field, η = 0, while for a right-hand
(left-hand) circularly polarized field, η = 1 (η = −1). For a
general, elliptically polarized pulse, |η| serves to quantify the
ellipticity.

For calculations incorporating elliptically (and especially
circularly) polarized laser fields, we shall often adopt ε̂εε =
x̂, ζ̂ζζ = ŷ and k̂ = ẑ (see, for instance, Secs. III and IV).
However, the formalism discussed here is entirely general and
applies for any choice of propagation direction and orientation
of the polarization plane.
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B. TDSE

Neglecting relativistic effects, the behavior of the atomic
system in the presence of the laser field, described by the
time-dependent and multielectron wave function �(XN+1, t ),
is governed by the TDSE,

i
∂

∂t
�(XN+1, t ) = [HN+1 + DN+1(t )]�(XN+1, t ). (2)

Here, HN+1 is the field-free Hamiltonian,

HN+1 =
N+1∑
i=1

⎛
⎝−1

2
∇2

i − Z

ri

+
N+1∑

i>j=1

1

rij

⎞
⎠, (3)

and DN+1(t ) is the dipole interaction operator, for N + 1
electrons, in the length gauge,

DN+1(t ) = E(t ) ·
N+1∑
i=1

ri .

In these equations, we have regarded the target nucleus (as-
sumed of infinite mass) to be located at the origin of coor-
dinates, and we have written rij = |ri − rj |, where ri and rj

are the position vectors of electrons i and j . Also, XN+1 =
x1, x2, . . . , xN+1, where xi = riσi denotes collectively the
space and spin coordinates of electron i. We highlight that
adoption of the length gauge, in the present theory, stands
in contrast to previous strong-field calculations for one- and
two-electron systems, wherein the velocity gauge was deemed
advantageous [69]. However, on the basis of earlier investiga-
tions, conducted with time-dependent R-matrix theory [70],
we have found that the interaction of a laser field with a
multielectron atom is most accurately described in the length
gauge. The velocity form of the dipole interaction operator
appears to be less appropriate for such systems, since it
emphasises the behavior of the multielectron wave function
at short-range. As a result, the latter requires a much superior
description of atomic structure relative to the length form,
and thus places a greater computational demand on time-
dependent simulations of atomic strong-field processes.

In extending the capabilities of the RMT approach, we
have nonetheless preserved the essential philosophy of the
method [60]. We therefore provide only a brief summary of
the basic principles here, and devote Secs. II C and II D to
a discussion of the key developments, and modifications, of
the original formulation. To enable a computationally effi-
cient solution of Eq. (2), we employ the traditional R-matrix
paradigm of dividing configuration space into two separate
regions. This partition is effected with respect to the radial
coordinate of an ejected electron, and yields an inner region,
containing the target nucleus, and an outer region of relatively
large radial extent. Within the inner region, multielectron
exchange and correlation effects are accounted for in the
construction of the many-body wave function. In the outer
region, the ionised electron is regarded as sufficiently distant
from the residual ion that exchange may be neglected. This
electron is thus subject only to the long-range, multipole po-
tential of the residual system, as well as the applied laser field.
Importantly, RMT relies on a hybrid numerical scheme, con-
sisting of a unique integration of basis set and finite-difference

techniques. This enables the most appropriate method for
solving the TDSE to be applied in each region.

Whereas previous implementations of time-dependent R-
matrix theory relied on a low-order Crank-Nicolson propa-
gator, together with the solution of a system of linear alge-
braic equations [63], the RMT approach adopts a high-order
Arnoldi scheme [71]. This replaces the solution of a linear
system with a series of matrix-vector multiplications, which
may reduce the numerical error in both the temporal and
spatial propagation of the wave function. Since the Arnoldi al-
gorithm is dominated by such operations, the RMT methodol-
ogy offers substantially improved parallel scalability, making
feasible calculations that exploit massively parallel computing
resources (with more than 10 000 cores).

C. Inner region

To solve Eq. (2) in the inner region, we expand the time-
dependent, (N + 1)-electron wave function in a basis com-
prising eigenfunctions, ψk (XN+1), of the field-free Hamilto-
nian HN+1,

�(XN+1, t ) =
∑

k

Ck (t )ψk (XN+1). (4)

Note that the time-dependence is incorporated purely in
the coefficients Ck (t ), such that they alone characterize the
temporal evolution of the multielectron wave function. The
basis functions ψk (XN+1) are, in turn, developed in a close-
coupling with pseudostates expansion [72,73], generated from
the N -electron wave functions of the residual ion states,
as well as from a complete set of one-electron continuum
functions, describing the motion of the ejected electron. Ad-
ditional (N + 1)-electron correlation functions can be added
to improve the quality of the basis set.

As in the original formulation of RMT theory, it can
be shown [60] that the time-dependent coefficients satisfy a
system of first-order, ordinary differential equations,

d

dt
Ck (t ) = −i

∑
k′

Hkk′ (t )Ck′ (t ) + i

2

∑
p

ωpk

∂

∂r
fp(r, t )

∣∣∣∣
r=b

.

(5)

The quantities Hkk′ (t ) are the matrix elements of the inner-
region Hamiltonian, computed with respect to a basis con-
sisting of the functions ψk (XN+1). Furthermore, ωpk are
surface amplitudes, defined in Ref. [60], and the functions
fp(r, t ) are the reduced radial wave functions of the ejected
electron, found by resolution of the outer-region problem (see
Sec. II D). The inner-region boundary radius is chosen as
r = b. Note that the inhomogeneous nature of Eq. (5) arises
due to inclusion of a Bloch operator in the analysis [72,73],
which suitably enforces hermiticity of the inner-region Hamil-
tonian. In fact, the second term on the right-hand side of this
equation plays a critical role in RMT theory, for it connects a
multielectron wave function in the inner region with a wave
function that, at the boundary, is one-electron in nature and
which, numerically, is obtained from the outer region.

Thus far, our formulation of the generalized RMT theory
follows that for purely linearly polarized laser light [60].
However, the complexities of modeling atomic systems,
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subject to multidimensional light fields, are already inherent
in Eq. (5). As mentioned previously, the RMT approach relies
on an efficient, high-order Arnoldi scheme to solve this system
of equations, and thereby propagate the inner-region wave
function in real-time. The latter entails numerical evaluation
of a series of matrix-vector products, involving powers of
the Hamiltonian matrix (Hkk′ ). Crucially, the precise struc-
ture of this matrix depends on the polarization state of the
radiation, reflecting the dipole selection rules that dictate the
admissible atomic transitions. Thus, to enable the treatment
of truly arbitrary light-field configurations within the RMT
framework, we must devise a single, robust computational
strategy, facilitating an accurate solution of Eq. (5) for any
relevant set of dipole selection rules.

We elaborate on this latter observation, and its implica-
tions for the generalization of the RMT approach, through
a specific example, pertaining to a neutral, noble gas atom
in two different light-field configurations. In particular, we
compare the structure of the matrix (Hkk′ ) for a linearly
polarized (one-dimensional) field, a case for which RMT
had originally been formulated, and an arbitrarily polarized
(three-dimensional) field. This comparison serves not only
to highlight the essential modifications for the inner-region
computations, but also to emphasize those features of the
RMT method which render it most appropriate (over previous
R-matrix techniques) for the advancements that we report
here. While, in the following discussion, we confine attention
to the noble gas systems, it should be emphasized that these
are merely exemplary. Indeed, the present methodology is
applicable to entirely general multielectron atoms and atomic
ions, offering the same flexibility, with respect to the choice
of target, as its predecessors [60,63].

1. Linearly polarized laser field

First, we consider a linearly polarized field, whose axis is
aligned along that of angular momentum quantization (typi-
cally the z axis). In this case, the only permissible radiative
transitions are those such that the change in the total orbital
angular momentum quantum number L, and that in the quan-
tum number associated with its projection ML, satisfy

�L = ±1, �ML = 0, (6)

together with a change in total parity π . Note that we have
assumed an initial atomic state with ML = 0 (for example,
the Se

0 ground state), such that L-conserving transitions are
forbidden. As a result of the aforementioned selection rules,
the Hamiltonian matrix (Hkk′ ) exhibits the following block-
tridiagonal structure,

(Hkk′ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

HSe
0Se

0
HSe

0P o
0

0 0 0 · · ·
HP o

0 Se
0

HP o
0 P o

0
HP o

0 De
0

0 0 · · ·
0 HDe

0P
o
0

HDe
0D

e
0

HDe
0F

o
0

0 · · ·
0 0 HFo

0 De
0

HFo
0 Fo

0
HFo

0 Ge
0

· · ·
0 0 0 HGe

0F
o
0

HGe
0G

e
0

· · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

Here, we have adopted the notation Lπ
ML

for the various
(N + 1)-electron target states, omitting the spin multiplicity
(which, in the present nonrelativistic theory, is conserved in
any transition). The diagonal blocks are, individually, diago-
nal matrices, consisting of the eigenvalues of the Hamiltonian
operator with respect to the basis of field-free eigenfunctions
ψk (XN+1). Their dimensions are determined by the total
number of (N + 1)-electron configurations that admit those
angular symmetry properties. The off-diagonal blocks consist
of the dipole matrix elements. It should be emphasized that
the linearly polarized laser field couples each target state to
no more than two others (for initial ML = 0), so that the
bandwidth of the matrix in Eq. (7) never spans more than a
single block. This represents a particularly simple structure
for numerical computations.

Of course, in any practical calculation, only a finite number
of basis functions ψk (XN+1) can be included. The basis set
is rendered finite by imposing an upper limit, Lmax, on the
total angular momentum L of the (N + 1)-electron states. As
a result, the number of target LSπ symmetries, in the present
case [with selection rules given by Eqs. (6)], is restricted to

Nsym = Lmax + 1. (8)

The choice of Lmax, in turn, is largely dictated by the
radiation-field parameters in the problem of interest. In par-
ticular, the number of target angular momenta (and therefore
basis-set size), required for numerical convergence, scales
rapidly with wavelength [65,66]. As a result, the study of
strong-field processes in the long-wavelength optical and
near-infrared regimes can become prohibitively demanding,
necessitating an efficient computational strategy for both
storing, and performing calculations with, large Hamiltonian
matrices.

Additionally, we highlight that a substantial increase in
the dimensions of (Hkk′ ) can also occur in treating more
general initial states of the target [74]. For atomic systems
with aligned initial states (e.g., Ne+ or Ar+, in their P o ground
state, with ML = 1), the selection rule on L is relaxed to
�L = 0,±1, while ML remains conserved, �ML = 0. The
possibility of transitions with �L = 0 increases the number
of accessible symmetries, allowing both even and odd parity
for each orbital angular momentum of the (N + 1)-electron
system. Moreover, the number of dipole-couplings is en-
hanced, with each LSπ state of the target interacting with
up to three others (rather than two in the case of ML = 0).
Such conditions further stress the need for an efficient scheme
of computation in time-dependent R-matrix approaches, ac-
commodating large quantities of atomic structure and dipole-
coupling data.

The current implementation of time-dependent R-matrix
theory, in the form of the RMT approach, provides an efficient
means of treating problems in which the R-matrix basis
must be enlarged, whether due to a change in the selection
rules (for aligned target states), or a more demanding set of
conditions for numerical convergence. Here, application of
the Arnoldi algorithm [60] enables the numerical solution
of Eq. (5) through a series of matrix-vector multiplications.
Not only does this facilitate accurate propagation of the wave
function, but the memory demands, imposed by the inclu-
sion of more target symmetries, can be mitigated through a
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block-distribution of the matrix, and vector, across multiple
parallel processors. Presently, the RMT suite of codes exploit
the message passing interface (MPI) library to achieve this
data decomposition. Each target LSπ symmetry is assigned
to one or more MPI tasks, and to facilitate the calculation of
matrix-vector products arising in the Arnoldi method, blocks
of the wave function vector are sent and received dynamically
(during each time-step of the propagation). The computational
tractability afforded by the RMT method, when a large num-
ber of target symmetries and their dipole-coupling need to
be accounted for, renders it suitable for subsequent devel-
opments and still more demanding applications, particularly
in regard of arbitrarily polarized light fields. Indeed, prior
to the progress reported here, both the data distribution, and

parallel communication strategies, implemented in the RMT
codes were uniquely specialized to the Hamiltonian structure
in Eq. (7) and its analog for aligned initial states.

2. Arbitrarily polarized laser field

The interaction of a neutral, noble gas atom with an arbi-
trarily polarized radiation field naturally presents the greatest
complexities. When all three components of the electric field
in Eq. (1) are active, the dipole selection rules become

�L = 0,±1, �ML = 0,±1, (9)

in addition to a change in parity. Correspondingly, the Hamil-
tonian matrix assumes the form

(Hkk′ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

HSe
0Se

0
0 0 0 HSe

0P o
−1

HSe
0P o

0
HSe

0P o
1

· · ·
0 HP e

−1P
e
−1

0 0 HP e
−1P

o
−1

HP e
−1P

o
0

0 · · ·
0 0 HP e

0 P e
0

0 HP e
0 P o

−1
HP e

0 P o
0

HP e
0 P o

1
· · ·

0 0 0 HP e
1 P e

1
0 HP e

1 P o
0

HP e
1 P o

1
· · ·

HP o
−1S

e
0

HP o
−1P

e
−1

HP o
−1P

e
0

0 HP o
−1P

o
−1

0 0 · · ·
HP o

0 Se
0

HP o
0 P e

−1
HP o

0 P e
0

HP o
0 P e

1
0 HP o

0 P o
0

0 · · ·
HP o

1 Se
0

0 HP o
1 P e

0
HP o

1 P e
1

0 0 HP o
1 P o

1
· · ·

...
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

This Hamiltonian governs a richer dynamics than that of
Eq. (7), by virtue of the increased number of relevant elec-
tronic degrees of freedom. Computationally, the difficulties
arising from its treatment are twofold. First, the replacement
of each LSπ symmetry, with (2L + 1) LMLSπ symmetries,
incurs a dramatic increase in the size of the matrix. Specifi-
cally, the number of symmetries (diagonal blocks), for a given
choice of Lmax, is now given by

Nsym = 2(Lmax + 1)2 − 1. (11)

Subtraction of unity in this equation accounts for the absence
of the So

0 symmetry, which is dipole-inaccessible for neutral,
noble-gas systems. Thus, when all possible magnetic sub-
states are accounted for explicitly, Nsym scales quadratically
with Lmax. This contrasts with the linear scaling of Eq. (8)
in the case of pure, linear polarization. Second, whenever
�ML = 0,±1 transitions are permitted, the total number of
dipole-couplings is enhanced. This is reflected by an increase
in the number of off-diagonal (dipole) blocks, which are no
longer distributed in the simple manner of Eq. (7) (along
the block super- and sub-diagonals), but which now span a
much larger bandwidth of the matrix. As a result, it becomes
essential to manage a much more intricate set of parallel
communications, among MPI tasks responsible for different
target symmetries, whenever the matrix-vector multiplications
are performed in a block-distributed fashion.

To tackle these complications, and thereby extend the
predictive capabilities of the RMT method to include arbitrary
light fields, we have made several critical modifications to
the suite of codes. Now, each LMLSπ (as opposed to LSπ )
symmetry is assigned to one or more MPI tasks, so that

Eq. (11) [rather than Eq. (8)] constitutes the minimum number
of processor cores required for the inner-region computations.
Such a scheme suffices for the description of atomic ionization
in low-intensity, XUV laser fields, for which only a limited
number of angular momenta (Lmax ≈ 10) are required for
satisfactory convergence (see Secs. III and IV). However,
as suggested by our previous work [65,66], the study of
strong-field processes in long-wavelength (especially optical
and near-infrared) fields necessitates much larger values of
Lmax for good convergence (Lmax ≈ 100–200). To render
such problems tractable, we have implemented a number of
computational measures and simplifications, which reduce
core requirements and improve load balancing for the inner-
region calculations. We mention two in particular. First, a
parameter Mmax

L has been introduced, which limits the target
magnetic substates to a range |ML| � Mmax

L . This parameter
proves valuable when only a subset of these are significantly
populated during the dynamics. Such behavior is realized,
for instance, in the cross-polarized laser-field configurations
explored in recent two-color HHG experiments [15,75], where
�ML = ±1 transitions are minimized through an appropriate
choice of z axis (i.e., such that it coincides with the polar-
ization axis of the longer wavelength, and/or higher intensity,
laser pulse). Under such conditions, restricting the number
of magnetic substates so that Mmax

L � Lmax can facilitate a
substantial reduction in the number of LMLSπ symmetries
retained in the calculations, now given by

Nsym = 2
[(

Mmax
L + 1

)2 + (
2Mmax

L + 1
)(

Lmax − Mmax
L

)] − 1

instead of Eq. (11), and thus, in the number of processor
cores assigned to the inner-region. Second, while we must
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set Mmax
L = Lmax for linearly or elliptically polarized fields

in the xy plane, not all LMLSπ symmetries of the target
are realizable via dipole transitions. Indeed, when only the x

and/or y components of the electric field in Eq. (1) assume
nonzero values, the selection rule on ML is �ML = ±1. Then,
for a neutral, noble-gas system, irradiated by a linearly or
circularly polarized field in the xy-plane (see, for example,
Sec. III), the symmetries P e

±1, P o
0 , De

±1, Do
0 , Do

±2, . . . are all
inaccessible by dipole-allowed transitions from the Se

0 ground
state. In practice, we therefore exclude the corresponding
symmetry blocks from the Hamiltonian in Eq. (10) when
such fields are considered. This affords a considerable saving
in computational effort, for the number of target LMLSπ

symmetries is almost halved relative to Eq. (11),

Nsym = (Lmax + 1)2.

Such measures to limit the computational load, where possi-
ble, aid in expanding the range of intensities and wavelengths
which can be explored using the latest RMT code for arbitrar-
ily polarized fields.

In tandem with these modifications, we have also adapted
the parallel linear algebra routines, critical to the imple-
mentation of the Arnoldi propagator, for the Hamiltonian
of Eq. (10). To compute matrix-vector products involving
this matrix, blocks of the vector must be sent and received
among MPI tasks responsible for different target symmetries.
Parallel communication strategies, employed in the original
RMT codes for linearly polarized fields, were developed
specifically for the block-tridiagonal structure of Eq. (7), as
well as its analog in the case of aligned initial states (ML �= 0).
To accommodate the Hamiltonian of Eq. (10), relevant for
a field of arbitrary polarization, we have devised a much
more robust set of communication routines for the efficient
exchange of data. Crucially, our scheme is now based solely
on the LMLSπ couplings prevalent in the problem of interest,
and not on a fixed structure of the Hamiltonian matrix (that
is, a specific arrangement of the off-diagonal dipole blocks).
This has two important implications. First, a high degree of
efficiency is maintained, by avoiding the unnecessary sending
or receiving of data whenever only a subset of the selection
rules in Eqs. (9) are satisfied. This is valuable in particular
special cases of Eq. (10) (e.g., for an elliptically polarized
field in the xy-plane, �ML = 0 transitions are forbidden, and
the corresponding dipole matrix elements are zero). Second,
our scheme could be adapted to manage the communications
required for other interactions, such as those of a nondipole or
relativistic nature.

D. Outer region

To solve Eq. (2) in the outer region, we expand the
time-dependent, (N + 1)-electron wave function in a standard
close-coupling form,

�(XN+1, t ) =
∑

p

�̄p(XN ; r̂N+1σN+1)
1

r
fp(r, t ). (12)

Here, the radial coordinate of the ejected electron, rN+1,
is denoted as r for brevity. The channel functions
�̄p(XN ; r̂N+1σN+1) are formed by coupling the orbital and
spin angular momenta of the residual ion with those of

the outgoing electron [72,73]. The time-dependence of
the multielectron wave function is incorporated solely
in the functions fp(r, t ), which describe the radial motion of
the ejected electron in each channel p. Note that Eq. (12)
features an unsymmetrized expansion: the spatial isolation
of the ionized electron, from the complex, many-body inner
region, ensures that the exchange interaction is negligible.
Moreover, since the number of electrons in the outer region
is limited to one, the dimensionality of the TDSE, for each
residual-ion state, is reduced to at most three. This affords a
substantial simplification of the computational problem.

As in the original formulation of RMT theory [60], it can
be shown that the one-electron, reduced radial wave functions
fp(r, t ) satisfy a system of coupled, second-order, partial
differential equations,

i
∂

∂t
fp(r, t ) = hp(r )fp(r, t ) +

∑
p′

[
WE

pp′ (r ) + WD
pp′ (t )

+ WP
pp′ (r, t )

]
fp′ (r, t ). (13)

The one-electron operator hp(r ), given by

hp(r ) = −1

2

d2

dr2
+ lp(lp + 1)

2r2
− Z − N

r
+ Ep,

includes terms corresponding to the kinetic energy, screened
nuclear attraction and centrifugal repulsion for the ejected
electron. The quantities lp and Ep are the angular momentum
of the outgoing electron, and the energy of the residual-ion
state, respectively. The remaining terms on the right-hand side
of Eq. (13) correspond to the long-range potentials [60,63].
The matrix WE has been discussed in the context of time-
independent formulations of R-matrix theory [72,73], and
arises from the repulsive interaction among the outgoing and
residual electrons,

WE
pp′ (r ) =

˝
�̄p

∣∣∣∣∣∣
N∑

j=1

1

|r − rj | − N

r

∣∣∣∣∣∣
�̄p′

˛
.

The matrix WD is time-dependent, and describes the interac-
tion of the light field with the N -electron residual ion,

WD
pp′ (t ) = 〈�̄p|E(t ) · RN |�̄p′ 〉, (14)

where RN is given by the sum of the position operators
ri for electrons i = 1, .., N . Finally, WP emerges from the
interaction of the light field with the ejected electron,

WP
pp′ (r, t ) = 〈�̄p|E(t ) · r|�̄p′ 〉. (15)

Note that the integration, implied in each of these equations, is
performed over all electron space and spin coordinates, with
the exception of the radial coordinate of the ejected electron.

The field-dependent potentials in Eqs. (14) and (15) play
a critical role in the RMT outer-region analysis. Information
pertaining to the polarization of the laser field, and concomi-
tantly, the dipole selection rules for laser-induced transitions,
is encoded entirely therein. Previously, these had been de-
rived, and implemented, purely for linearly polarized fields (in
the z direction), so that the couplings, among different elec-
tron emission channels, were appropriate only for �ML = 0
transitions of the (N + 1)-electron system. To enable the
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treatment of light fields with arbitrary polarization, we have
established a more general set of potentials, which also
express the essential channel couplings when �ML = ±1
transitions are allowed. Their derivation generalizes that given
in Ref. [63] for fields linearly polarized in the z direction, and
it relies on standard techniques for irreducible tensor operators
[76]. We summarize the results here for reference:

WD
pp′ =

∑
μ=−1,0,1

W
D (μ)
pp′ , (16)

W
D (μ)
pp′ = (−1)Lp+Lp′+μEμ(t )

√
2L′ + 1

× (1(−μ)L′ML′ |LML)W (1Lp′Llp; LpL′)

× 〈αpLp||RN ||αp′Lp′ 〉
× δlplp′ δmlp ml

p′ δSS ′δSpSp′ δMSMS′ δMSp MS
p′ , (17)

and

WP
pp′ =

∑
μ=−1,0,1

W
P (μ)
pp′ , (18)

W
P (μ)
pp′ = (−1)L+L′+1Eμ(t )

√
(2lp′ + 1)(2L + 1)

× (LML1μ|L′ML′ )W (1lp′LLp; lpL′)

× a(lp′ )

(lp010|lp′0)
r

× δαpαp′ δLpLp′ δSS ′δSpSp′ δMSMS′ δMSp MS
p′ . (19)

In these equations, Eμ(t ) are the spherical components of
the electric field intensity. For a given channel p, L,ML,
and S,MS denote the total orbital and spin angular momen-
tum quantum numbers, while Lp,MLp

and Sp,MSp
are the

quantum numbers pertaining to the residual ion state. Also, lp
and mlp are the orbital angular momentum quantum numbers
associated with the ejected electron. All remaining quantum
numbers, required to specify the ionic state, are denoted
collectively by αp. The quantities 〈αpLp||RN ||αp′Lp′ 〉 are the
reduced matrix elements of the N -electron position operator.
Finally, a(lp′ ) is defined by

a(lp′ ) =

⎧⎪⎨
⎪⎩

lp′

[(2lp′ − 1)(2lp′ + 1)]1/2 , lp = lp′ − 1,

− (lp′ + 1)
[(2lp′ + 1)(2lp′ + 3)]1/2 , lp = lp′ + 1.

Throughout, we have employed the Fano-Racah phase con-
vention [77]. It should be noted that, in the case of a field
linearly polarized along the z axis (E±1 = 0), we recover
the potentials employed in previous formulations of time-
dependent R-matrix theory [60,63,73].

III. APPLICATION TO TWO-PHOTON IONIZATION
OF He IN CIRCULARLY POLARIZED LIGHT FIELDS

As a first demonstration of the generalized RMT method-
ology, we investigate the formation of multistart, spiral vortex
features in the photoelectron momentum distributions of He,
irradiated by a pair of time-delayed, ultrashort, circularly
polarized laser pulses with opposite helicities. We validate
our results through comparison of the RMT data with that
of Ngoko Djiokap et al. [47], who previously treated the

same laser-driven, two-electron problem by means of the
TDCC approach [44,45] in conjunction with Wigner frame
transformations [38,39].

A. Calculation parameters

The He target considered in this work is as discussed in
previous R-matrix studies [70,78,79]. Within the inner region,
we regard the atomic system as He+ to which is added a
single electron. For the description of He+, we employ the
physical 1s orbital, together with 2s and 2p pseudo-orbitals.
The pseudo-orbitals are expressed analytically as a sum of
Sturmian-type orbitals, each of the form rie−αr , with the
same exponential decay as the 1s function, minimal degree
of the polynomial, and orthogonality with respect to the 1s

function. Their inclusion facilitates a more accurate account
of changes in the He+ ground state, induced by the laser field,
than might be achieved with the physical orbitals alone. The
initial state is the He 1s2 1Se ground state, with binding energy
Eb(He) ≈ 24.6 eV.

The radial extent of the inner-region is 20 a.u., which suf-
fices to effectively confine the orbitals of the residual He+ ion.
The inner-region continuum functions are generated using a
set of 70 B-splines of order 9 for each available orbital angular
momentum of the outgoing electron. The knot-point distri-
bution varies from a near-quadratic spacing, in proximity to
the nucleus, to a near-linear spacing towards the inner-region
boundary. Additional knot points are inserted, further inward,
to improve the description of the one-electron continuum
functions close to the nucleus. We retain all admissible elec-
tron emission channels up to a maximum total orbital angular
momentum Lmax = 9, as well as all permitted magnetic sub-
states with −9 � ML � 9. The outer-region boundary radius
is 3500 a.u., ensuring that no unphysical interference structure
in the wave functions arise through reflection of the ejected
electron wave packet. The finite-difference grid spacing is
0.08 a.u.. To advance the multielectron wave function in time,
we adopt an Arnoldi propagator of order 8, choosing a time-
step of 0.01 a.u..

We select a set of pulse characteristics appropriate for the
single-color, two-photon interferometry scheme proposed by
Ngoko Djiokap et al. [47]. Therein, the He atom is subject to
a pair of counter-rotating, circularly polarized, femtosecond
laser pulses, having controlled time-delay τ , and CEP values
ϕ1 and ϕ2. Both pulses exhibit a sine-squared ramp-on/off
temporal profile. For such a configuration, the electric field
may be expressed in the form

E(t ) = F (t )Re[e1 e−i(ωt+ϕ1 )]

+F (t − τ )Re[e2 e−i(ω(t−τ )+ϕ2 )], (20)

where, for circular polarization in the xy plane, e1 = e∗
2 =

(x̂ + iŷ)/
√

2. The sine-squared envelope is described by

F (t ) = F0 sin2(ωt/2N ), (21)

with F0 the peak electric field intensity. The latter is related
to the pulse peak intensity I0 by I0 = (c/4π )F 2

0 , where c is
the speed of light in vacuum. In line with Ngoko Djiokap
et al. [47], we adopt a carrier frequency of ω = 15 eV, a peak
intensity of I0 = 1×1012 Wcm−2, and a duration of N = 6

053442-7



CLARKE, ARMSTRONG, BROWN, AND VAN DER HART PHYSICAL REVIEW A 98, 053442 (2018)

cycles for each pulse. Note that the time-delay is measured
between the central peaks of the two pulses, and is always
chosen such that the right-hand circularly polarized pulse
attains peak intensity simultaneously with, or before, its left-
hand circularly polarized counterpart [i.e., τ � 0 in Eq. (20)].

By solving the TDSE, it is well-known [80] that the
ionized-electron momentum distribution can be extracted
from the wavepacket solution in three different zones: (i)
reaction zone, (ii) Coulomb zone, and (iii) free zone. In
the reaction zone, the momentum distribution is obtained by
projecting the wavepacket (immediately after termination of
the pulse) onto fully correlated, field-free scattering wave-
functions. In Ref. [47], the latter were computed by the J-
matrix method [81]. In the Coulomb zone, the photoelectron
properties are assessed through projection of the ionized-
electron wavepacket (long after termination of the laser pulse)
onto field-free, continuum wave functions, approximated by a
product of a Coulomb function and a bound-state wavefunc-
tion. In the TDCC study of Ngoko Djiokap et al. [47], such
projections were performed at times up to 20 a.u. following
the end of the laser pulse, with good agreement observed
between these Coulomb-zone spectra and that obtained in
the reaction zone. Finally, in the free zone, the momentum
distribution is calculated by projecting the wavepacket (after
a substantially long period of time following the end of the
pulse) onto a product of a plane-wave wave function and
a bound-state wave function. This method, which requires
extremely large simulation domains, is equivalent to a Fourier
transform of the wavepacket at long times, and is akin to the
procedure adopted in our present investigation.

To ascertain photoelectron momentum spectra in the RMT
approach, we must determine the angular momentum char-
acteristics of the continuum electron wave function in each
ionization channel of interest. Following a time-dependent
simulation, we obtain data for the reduced radial wave func-
tions [denoted fp in Eq. (12)], for every channel, at the final
time-step. However, all information pertaining to the orbital
and spin angular momenta of the outgoing electron is associ-
ated with the channel functions [denoted �̄p in Eq. (12)]. To
extract the spatial component of the continuum electron wave
function (including the angular dependence) in each channel,
we decouple the orbital and spin angular momenta of the
ejected electron and residual He+ states, employing Clebsch-
Gordan coefficients [82]. Once acquired, we transform the
wave function, for r > 200 a.u., into the momentum repre-
sentation, under the assumption that the long-range Coulomb
potential is negligible.

It is pertinent to highlight three important facets of this
analysis in the present context. First, although we retain the
nonphysical 2s and 2p pseudothresholds in computing the
momentum spectra, their associated ionization channels are
populated insignificantly under the prevalent field conditions.
This is to be expected: while absorption of at least two 15-eV
photons is required for production of the He+ 1s state, the 2s

and 2p pseudothresholds are accessible only through absorp-
tion of at least five such photons. The low pulse intensities,
regarded in this work, ensure that such higher-order processes
occur with negligible probability. As a result, the presence
of the pseudothresholds has no adverse consequences for our
comparison with the data of Ngoko Djiokap et al. [47], who
project the full, two-electron wave function onto field-free

FIG. 1. Photoelectron momentum distributions, in the polariza-
tion plane, following ionization of He by right- and left-hand cir-
cularly polarized laser pulses with zero time-delay (τ = 0). The
distributions acquired through the generalized RMT method (for
arbitrary polarization) are shown in (a) and (c), while those obtained
by Ngoko Djiokap et al. [47], employing a TDCC approach, are
shown in (b) and (d). Each pulse has a carrier frequency of 15 eV,
a duration of 6 cycles and a peak intensity of 1×1012 Wcm−2. In
(a) and (b), the CEPs are ϕ1 = ϕ2 = 0, but in (c) and (d), they are
chosen to be ϕ1 = 0, ϕ2 = π/2. Relative magnitudes are indicated
by the color scales.

scattering wave functions of the singly ionized He+(1s) + e−
continuum, constructed by means of the J -matrix method
[81]. Second, to minimize the role of dielectronic repulsion,
and thus ensure the validity of our procedure for assessing
photoelectron emission properties, we have propagated the
total wave function for a further 116 field cycles following
termination of the second laser pulse. Additional cycles of
field-free propagation (up to a total of 300) incur no significant
alterations to the spectra. Third, a minimum cutoff distance of
200 a.u. was deemed suitable following a direct examination
of the ejected-electron wave functions. Beyond this distance,
the latter exhibit clear continuum-wave characteristics. We
have also repeated our analysis for other distances, verifying
that the main features of the spectra are both qualitatively,
and quantitatively, insensitive to acceptable variations of the
minimum cutoff. Note, however, that effecting the transfor-
mation in this manner does artificially eliminate near-zero-
momentum features of the distribution, which arise from
threshold photoelectrons. The latter are typically 10 times
weaker than the dominant emission features discussed in
Sec. III B, and are not of interest for the present study.

B. Results

Figures 1 and 2 present photoelectron momentum dis-
tributions, in the polarization plane, for selected CEPs and
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FIG. 2. Photoelectron momentum distributions, in the polariza-
tion plane, following ionization of He by right- and left-hand circu-
larly polarized laser pulses with nonzero time-delay (τ �= 0). The
distributions acquired through the generalized RMT method (for
arbitrary polarization) are shown in (a), (c), and (e), while those
obtained by Ngoko Djiokap et al. [47], employing a TDCC approach,
are shown in (b), (d), and (f). Each pulse has a carrier frequency of
15 eV, a duration of 6 cycles, a peak intensity of 1×1012 Wcm−2

and zero CEP (ϕ1 = ϕ2 = 0). The pulses are delayed in time by
τ = 500 as in (a) and (b), τ = 1.1 fs in (c) and (d), and τ = 1.65 fs
in (e) and (f). Relative magnitudes are indicated by the color scales.

time-delays between the pulses. Our numerical RMT results
[Figs. 1(a), 1(c) and 2(a), 2(c), 2(e)] are compared with the
TDCC data reported by Ngoko Djiokap et al. [47] [Figs. 1(b),
1(d) and 2(b), 2(d), 2(f)]. Note that, in Ref. [47], only the
two-photon ionization channels (i.e., those with L = 0, 2 and
ML = 0,±2) were retained in computing the momentum
maps of Figs. 1(b), 1(d) and 2(b), 2(d), 2(f). To enable a true
comparison, we also include exclusively these channels in our
numerical projections. In any case, our data suggests that these
channels account for around 90% of the total ionization yield.

It should be highlighted that the momentum distributions,
in each of Figs. 1 and 2, are all normalized in the same manner,
such that the color scales extend from zero to one. This is
due to a discrepancy in the ionization yields suggested by the
present RMT approach and the TDCC calculations of Ngoko

Djiokap et al. [47], the origins of which remain unclear. We
note that the TDCC code developed by the latter authors, for
two-electron systems in circularly polarized laser fields, is a
generalization of a code employed in Ref. [81] for pure linear
polarization. Numerical results presented therein are well
reproduced by the TDCC code used in Ref. [47] for pulses
with small ellipticity. Regarding the RMT data, our predicted
yields have been verified in the specific case of Fig. 1(a),
where the laser field is linearly polarized in the x direction
(see below). For He, we expect to recover the same total yield
irrespective of the orientation of the linear polarization axis,
given the closed-shell nature of the system. In particular, for
an analogous field distribution, but linearly polarized in the z

direction, calculations relying on the original RMT approach
[60] reproduce the same yield to around 10−6. Moreover,
for the photon energy (15 eV) in question, our calculated
yields agree well (within 10%) with those estimated using
established data for the generalized two-photon cross-section
of He, acquired by means of previous R-matrix-Floquet cal-
culations [83] and alternative ab initio methods [84].

To focus the present treatment purely on a comparison of
the key qualitative features and their relative magnitudes, we
normalize the RMT and TDCC spectra in a consistent fashion.
By contrast, in Sec. III, we present energy and momentum
distributions with a scale that reflects the true wave function
density in momentum space.

We begin by discussing the results for zero time-delay
(τ = 0) and two values of the relative CEP (ϕ1 = 0, ϕ2 = 0
and ϕ1 = 0, ϕ2 = π/2) in Eq. (20). Under these conditions,
the superposition of two, counter-rotating, circularly polarized
pulses yields a linearly polarized one, where the orientation of
the polarization axis is determined by the relative CEP of the
two pulses. In both Figs. 1(a) and 1(c), we find the expected
quadrupole distribution of the ionized-electron momenta. For
zero relative CEP, the field is linearly polarized along the x

axis, so that in Fig. 1(a), the photoelectron peaks are aligned
along the kx axis, and the perpendicular ky axis. When the
relative CEP is π/2, the polarization axis is rotated clockwise
by π/4, giving rise to a disposition of the peaks shown in
Fig. 1(c). These properties of the spectra are entirely in line
with the results of Ngoko Djiokap et al. [47]. Irrespective of
the CEP values, we find that the peak positions are consistent
with the excess energy in a two-photon ionization event
(k = [2{2ω − Eb(He)}]1/2 ≈ 0.63 a.u.). Indeed, as empha-
sized in Ref. [47], the choice of pulse parameters (frequency
15 eV, bandwidth 3.6 eV and peak intensity 1×1012 Wcm−2)
ensure that two-photon ionization is, effectively, the only
active transition pathway, so that the peak structures in Fig. 1
are uniquely attributable to this process.

Aside from the gross symmetry properties and peak dispo-
sitions, we also consider the relative intensities of the on- and
off-axis emission features in Fig. 1. In qualitative agreement
with Ngoko Djiokap et al. [47], we find that the photoelectron
peaks, aligned along the polarization axis of the field, are con-
siderably more pronounced than those oriented perpendicular
to it. Once more, this is an expected characteristic, arising
due to interferences, among different ionization pathways,
involving absorption of two photons with equal or opposite
helicities. For on-axis emission, this interference is construc-
tive, but becomes destructive for emission in the perpendicular
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direction, thus reducing the brightness of the off-axis features
in Fig. 1. More quantitatively, however, a notable difference
appears in their relative magnitudes between the RMT and
TDCC spectra. We predict the off-axis photoelectron peaks
to be around three times smaller than those on-axis, whereas
in the data of Ngoko Djiokap et al. [47], the peak heights
differ by almost a factor of five. We have verified that this
disparity does not arise from a deficiency in our description
of the He target. Indeed, calculations employing more elab-
orate He+ basis sets (e.g., incorporating the 3s, 3p, and 3d

pseudo-orbitals [70,78,79]) yield no significant differences
in the predicted momentum distributions. Moreover, for a
field analogous to that of Fig. 1(a), but linearly polarized
in the z direction, calculations exploiting the established
RMT codes [60] suggest an almost identical spectrum in
the kxkz plane [with the same difference of peak heights as
in Figs. 1(a) and 1(c)]. Of course, the same photoelectron
emission properties should be recovered, for any orientation
of the polarization axis, in the case of He, or any other
closed-shell system. Notwithstanding this discrepancy in the
RMT and TDCC predictions, the favourable comparison of
the momentum spectra, for zero time-delay and both CEP
values, highlights the reliability of our generalized RMT
approach, at least for problems in which the axis of linear
polarization is inequivalent to that of angular momentum
quantization.

As discussed by Ngoko Djiokap et al. [47], nonzero time-
delays, between the two counter-rotating pulses, ellicit the
formation of multistart spiral vortex patterns in the photoelec-
tron momentum distribution, whose characteristics depend
sensitively on the relative handedness, phase and time-delay
between the pulses. Such conditions thereby offer a more
stringent test of accuracy for the present RMT methodology.

Figure 2 compares the momentum distributions, computed
by means of the present RMT method and the TDCC ap-
proach of Ngoko Djiokap et al. [47], for nonzero time-delays
between the right- and left-hand circularly polarized pulses.
In agreement with the TDCC data, we find four-start spiral
patterns, with a counter-clockwise handedness. Moreover,
with increasing time-delay between the pulses, we observe
the same evolution in the number, and locations, of the
maxima and minima in the distributions. Note that, for the
shortest nonzero time-delay of 500 as [Figs. 2(a) and 2(b)],
the disparity in relative peak heights, found for the RMT and
TDCC spectra in Fig. 1, persists, but once more appears to
constitute the only qualitative difference in the results. For
longer time-delays, and in further concurrence with the data
of Ngoko Djiokap et al. [47] shown in Figs. 2(d) and 2(f),
the photoelectron peaks in Figs. 2(c) and 2(e) assume a more
complete four-fold rotational symmetry. In fact, the variation
across the four maxima, in each of Figs. 2(e) and 2(f), is less
than 1%. Under these conditions, the RMT data of Figs. 2(c)
and 2(e), and the TDCC results in Figs. 2(d) and 2(f), describe
highly comparable photoelectron emission characteristics.

IV. APPLICATION TO SINGLE-PHOTON DETACHMENT
FROM F− IN A CIRCULARLY POLARIZED LIGHT FIELD

In Sec. III, we validated our new RMT methodology, for
arbitrarily polarized laser fields, in the context of two-photon

ionization of He by circularly polarized pulses. We now
discuss a further application of the method, to the problem of
single-photon detachment, from F−, in a circularly polarized
laser field.

Our motivation for investigating this process is twofold.
First, F− constitutes an ionic and truly multielectron system,
so that our treatment of the photodetachment dynamics therein
emphasizes the generality of our approach with respect to the
choice of target. Moreover, the theoretical description of neg-
ative ions presents an interesting challenge: both their struc-
ture and field-driven dynamics are influenced profoundly by
multielectron correlations, particularly the strong dielectronic
repulsion. A number of approximate methods are available to
model photodetachment from complex negative ions [85–87],
but they tend to be rather limited in their account of electron
repulsion. The role of multielectron correlations in negative-
ion photodetachment was highlighted in a recent RMT study
[65], addressing above-threshold detachment and strong-field
rescattering in F−. In the present work, the capacity of RMT
to capture both long-range Coulomb interactions, as well as
short-range exchange and correlation effects, is combined
with a newly developed capability to treat atomic ionization
dynamics in light fields of arbitrary polarization.

Second, for fields of nonzero helicity, the dependence of
the ionization characteristics on the atomic orbital phase, or
sign of the single-electron magnetic quantum number ml , has
garnered substantial interest. On the one hand, it has long
been recognized that circularly polarized fields preferentially
ionize corotating electrons (i.e., positive ml for right-hand
circular polarization), in both one-photon ionization and field-
ionization from Rydberg states [88,89]. On the other hand,
more recent experimental and theoretical works [29,90–93]
suggest that in the regime of strong-field tunneling, nonadi-
abatic effects alter the characteristics of this ml-dependence,
whereby counter-rotating electrons (i.e., negative ml for right-
hand circular polarization) are preferentially removed. Natu-
rally, a better understanding of the origins of this behavior,
together with a systematic assessment of how, and when, a
transition from one ml-dependence to another emerges, con-
stitute a matter of both fundamental and practical importance
alike. We aim to address these questions in a future publica-
tion. Here, we report on the first step in such an investigation,
employing our new RMT method to quantify the degree
of quantum-state selectivity in the process of single-photon
detachment, from F−, in the field of a right-hand circularly
polarized, femtosecond laser pulse.

A. Calculation parameters

Our treatment of the F− target in this work is as described
in a previous RMT study [65], and is based upon that of much
earlier R-matrix investigations of multiphoton detachment in
this system [94,95]. Within the inner region, we regard the
ion as F to which is added a single electron. To describe
the neutral F atom, we employ a set of Hartree-Fock 1s, 2s,
and 2p orbitals, acquired for the F ground state from the
data of Clementi and Roetti [96], in conjunction with addi-
tional 3s, 3p and 3d pseudo-orbitals [97]. Inclusion of these
pseudo-orbitals facilitates a more accurate determination of
the 1s22s22p5 2P o ground-state wave function, obtained in
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the form of a configuration-interaction expansion comprising
the 1s22s22p5, 1s22s2p53s, 1s22s22p43p, 1s22s22p33p2,
and 1s22s22p33d2 configurations. The present model sug-
gests a binding energy of Eb(F−) ≈ 3.420 eV for the initial,
1Se F− ground state, which is similar to the experimental value
of 3.401 eV [98].

The radial extent of the inner-region is 50 a.u., which
suffices to effectively confine the orbitals of the F− ion. The
inner-region continuum functions are generated using a set of
60 B-splines of order 13 for each available orbital angular
momentum of the outgoing electron. We retain all admissible
1s22s22p5εl channels up to a maximum total orbital angu-
lar momentum Lmax = 9, as well as all permitted magnetic
substates with −9 � ML � 9. The outer-region boundary ra-
dius (3500 a.u.), finite-difference grid spacing (0.08 a.u.) and
time-step for the Arnoldi propagator (0.01 a.u.) are the same
as those adopted in our calculations for He, as reported in
Sec. III.

To probe the differential ionization dynamics of the 2p±1

electrons in single-photon detachment, we subject the F− ion
to a single, right-hand circularly polarized laser pulse, whose
electric field is given by Eq. (1) with e = (x̂ + iŷ)/

√
2. The

pulse is assumed to have a ramp-on/off temporal profile of
the sine-squared form given in Eq. (21), with a peak intensity
I0 = 1×1013 Wcm−2, a carrier frequency ω = 8 eV, a CEP
ϕ = 0 and a duration of N = 6 cycles.

The photoelectron momentum distribution is computed via
the method discussed in Sec. III A. The distribution thereby
obtained incorporates the emission characteristics of initially
bound 2p electrons with ml = −1, 0 and 1, which we des-
ignate henceforth as 2p−1, 2p0, and 2p1, respectively. To
decompose this total spectrum into its constituent ml-selective
components, our numerical projections should include only
specific electron-detachment channels, identified by means of
the following simple consideration. In a right-hand (η=1)
circularly polarized laser field, the selection rule on the
single-electron ml value is �ml = 1. Thus, in a single-photon
detachment event, only those channels p, in which a final
value of mlp = 2 can be realized, contribute to the spectrum
for 2p1 electrons. Similarly, only those channels admitting a
final value mlp = 0 (or mlp = 1) contribute to the spectrum for
2p−1 (or 2p0) electrons. Of course, this procedure is readily
extended to multiphoton detachment processes.

B. Results

Figure 3 presents photoelectron momentum and energy
distributions, in the polarization plane, for single-photon de-
tachment from F−, as driven by an 8 eV, six-cycle, right-
hand circularly polarized laser pulse. As expected, the total
distribution of Fig. 3(a) exhibits a high degree of circular
symmetry, and comprises a single, dominant ring of radius
determined by the excess energy in this one-photon process
(approximately 0.58 a.u.). Note that the pulse peak intensity is
too low to elicit higher-order (multiphoton) detachment with
any substantial probability, so that the spectrum of Fig. 3(a)
displays primarily the single-photon feature. Nonetheless, a
very faint outer ring is discernible, and is attributable to weak
two-photon detachment (approximately 0.96 a.u.).

FIG. 3. Photoelectron momentum and energy distributions, in
the polarization plane, following single-photon detachment from
F−, initiated by a right-hand circularly polarized laser pulse with
a carrier frequency of ω = 8 eV, a duration of N = 6 cycles, a
peak intensity of I0 = 1×1013 Wcm−2 and CEP ϕ = 0. (a) Total
momentum distribution. Magnitudes are indicated by the color scale,
and expressed in units of 10−2 a.u. (b) Energy spectra for electrons
ejected with zero azimuthal angle. The total spectrum (solid black
line) is decomposed into individual spectra for the 2p1 (upper, dashed
blue line) and 2p−1 (lower, dashed green line) electrons. The totality
of the 2p1 and 2p−1 spectra (dash-dotted red line) is also shown.

The momentum distribution of Fig. 3(a) is determined
by the response of the 2p−1, 2p0, and 2p1 electrons of F−
to the laser field (note that only the 2p electron emission
channels are retained in the present calculations). To assess
the sensitivity of single-photon detachment to the sign of
the bound-electron magnetic quantum number, we decompose
the distribution in Fig. 3(a) following the procedure outlined
in Sec. IV A. The resulting momentum spectra possess the
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same qualitative (symmetry) properties as the total spectrum,
and so to emphasize their quantitative differences, we discuss
only one-dimensional energy spectra. Figure 3(b) displays
the energy distributions for the 2p±1 electrons of F−, ap-
propriate to a fixed photoelectron emission direction in the
polarization plane (corresponding to zero azimuthal angle).
For reference, the total spectrum for this direction is also
shown in Fig. 3(b), and corresponds to a one-dimensional
slice of the two-dimensional distribution of Fig. 3(a). Of
course, the circular symmetry of the momentum distribution
ensures that we may choose any emission direction, in the
polarization plane, to investigate the energy spectra arising
from ionization of these electrons. We observe that the total
energy spectrum is essentially determined by ionization of the
2p±1 electrons, which implies that the contribution of the 2p0

electrons is negligible. This behavior is to be expected and
reflects the spatial orientation of the 2p0 and 2p±1 electrons
of the target ion. The symmetry axes of the 2p±1 orbitals lie
in the polarization plane, and as such, they are depleted with
the highest probability. In contrast, the 2p0 orbital is aligned
perpendicular to the polarization plane (i.e., its symmetry
plane), and participates much more weakly. Moreover, the
yield of 2p1 (corotating) electrons is almost five times larger
than that of 2p−1 (counter-rotating) electrons. This dominance
of the corotating electrons, in a single-photon process, has
also been observed in previous studies of atomic hydrogen
in microwave fields [88,89], but is here demonstrated for
a truly multielectron target in the XUV range. Our results
therefore suggest that this ml-selectivity is likely a fundamen-
tal attribute of single-photon ionization in fields of nonzero
helicity, persisting not only in different wavelength regimes,
but even in spite of dynamical, multielectron correlations in a
more complex system.

V. CONCLUSIONS

We have introduced an ab initio and fully nonperturba-
tive RMT theory for ultrafast atomic processes in arbitrary
light fields. Our approach represents the very latest evolu-
tion in time-dependent R-matrix techniques, retaining the
same capacity as its predecessors [60,63] in treating de-
tailed, multielectron exchange and correlation effects, while
facilitating the description of atomic ionization dynamics in
truly multidimensional light-field configurations. These in-
clude, in particular, the fields arising from elliptically (and
especially circularly) polarized laser pulses, for which com-
pact and efficient radiation sources have become increasingly
widespread. As such, our predictive capabilities should prove
valuable in exploring the interplay between quantum many-
body physics, and strong-field dynamics, in realistic and
polarization-controllable laser fields.

Laser pulses with nonzero ellipticity effect atomic transi-
tions in which the total orbital magnetic quantum number ML

is not conserved. We have discussed the necessary alterations
to both the RMT formalism (inner- and outer-region analy-
ses), as well as the associated computer codes, to relax the
constraint of ML-conservation assumed in previous R-matrix
techniques, and thereby enable an explicit account of all
possible laser-induced transitions among magnetic substates
of the target. While modifications to the outer-region compu-

tational scheme are rather simple (requiring implementation
of the long-range potentials given by Eq. (16) to Eq. (19),
and no changes to the domain decomposition parallelisation
strategy), substantial alterations to the inner-region scheme
were essential. In particular, to facilitate the numerical so-
lution of the system of Eqs. (5), with the Hamiltonian in
Eq. (10) appropriate for a field of arbitrary polarization,
we have modified the inner-region parallelisation structure,
and developed a much more robust set of communication
routines for the efficient distribution, and exchange, of both
Hamiltonian-matrix and wave function data. We emphasize
that our strategy for such communications is now based solely
on the LMLSπ couplings (selection rules) relevant to the laser
field polarization of interest, and assume no fixed structure
of the Hamiltonian matrix. Our scheme could be extended to
manage the communications required for other interactions,
such as those of a nondipole nature, and has already been
adapted for time-dependent molecular R-matrix calculations.
As such, the computational progress reported here is not only
relevant to atomic RMT calculations for arbitrarily polarized
light fields, but bears important implications for future evolu-
tions and applications of the RMT methodology.

As a first demonstration of our generalized RMT approach,
we investigate the formation of multistart, spiral vortex fea-
tures in the photoelectron momentum distributions of He,
irradiated by a pair of time-delayed, ultrashort, circularly
polarized laser pulses with opposite helicities. Through com-
parison of the RMT data with the TDCC results of Ngoko
Djiokap et al. [47], we have verified that our calculations can
reproduce the key qualitative features of the photoelectron
momentum distributions in the polarization plane, correctly
capturing the sensitivity of the electron vortex properties
(number and orientation of the spiral arms) to the relative
handedness, CEP and time-delay of the pulses. Our predicted
ionization yields, in cases where the superposition of the two
circularly polarized pulses yields a linearly polarized one, are
supported by available data for the generalized two-photon
cross-section of He.

The predictive capacity of our latest RMT approach has
been further underlined in a study of single-photon detach-
ment from F−, initiated by a single, right-hand circularly
polarized, femtosecond laser pulse. We highlight that this
application relies on both the intrinsic ability of RMT to
capture many-body exchange and correlation effects, as well
as our developed capability to treat atomic ionization in light
fields of arbitrary polarization. To assess the sensitivity of the
photodetachment dynamics to the sign of the bound-electron
magnetic quantum number ml , we have decomposed the pho-
toelectron energy spectrum into its ml-selective components.
Our results suggest that the ionization response of corotating
(2p1) electrons dominates that of counter-rotating (2p−1)
electrons. Such behavior was previously identified in studies
of atomic hydrogen exposed to microwave fields [88,89], but
has here been evidenced for a truly multielectron target in the
XUV range. The latter observation may suggest that preferen-
tial removal of electrons, with one sign of ml , is a fundamental
attribute of single-photon ionization in fields with nonzero
helicity, persisting not only in different wavelength regimes,
but even in spite of dynamical, multielectron correlations in
more complex systems.
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More generally, the dependence of the ionization char-
acteristics on the atomic orbital phase, or sign of ml , has
been the subject of substantial research activity. Recent ex-
perimental and theoretical works [29,90–93] suggest that in
the regime of strong-field tunneling, nonadiabatic effects alter
the ml-dependence observed in this work, whereby counter-
rotating electrons (i.e., negative ml for right-hand circular
polarization) are preferentially ionized. The generalized RMT
approach, introduced in this article, represents a viable the-
oretical tool for investigating this transition, in a systematic
fashion, as the driving wavelength (or number of photons
required for ionization) increases. However, we emphasize
that the newly developed suite of codes appear promising for a
plethora of other novel applications, whether in regard of fun-
damental, laser-induced atomic processes (in particular, inner-
shell dynamics [99] and the production of valence ring cur-
rents [93]), or experimental schemes of contemporary interest
(including the attoclock [20,31–35], HHG in cross-polarized
[15,75], and circularly or elliptically polarized [9–12] laser
pulses, as well as attosecond photoelectron holography [100]).
As a result, the methodology presented here constitutes a
significant and timely development in R-matrix techniques,
facilitating the accurate simulation, and more profound under-

standing, of ultrafast, many-body dynamics in atomic systems
exposed to arbitrarily polarized light fields.

The data presented in this article may be accessed using
Ref. [101]. The RMT code is part of the UK-AMOR suite,
and can be obtained for free through Ref. [102].
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[88] K. Rzążewski and B. Piraux, Phys. Rev. A 47, R1612(R)
(1993).

[89] J. Zakrzewski, D. Delande, J.-C. Gay, and K. Rzążewski,
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