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Resonant enhancement of an oscillating electric field in an atom
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When an atom is placed into an oscillating electric field with frequency far from atomic resonances, the
atomic electrons partly shield this field at the nucleus. It is conjectured that when the frequency of an electric
field reaches an atomic resonance, the electric field at the nucleus may be significantly enhanced. In this paper we
systematically study the mechanisms of this enhancement and show that it may reach five orders in magnitude
in particular cases. As an application, we consider laser-assisted neutron capture in 139-lanthanum nucleus and
screening and resonance enhancement of nuclear electromagnetic transitions by electrons.
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I. INTRODUCTION

It is well known that electron shells in an atom screen
the atomic nucleus from an external electric field. As a
consequence, a nuclear electric dipole moment (EDM) is
practically unobservable due to this screening [1], and the
atomic electrons partly shield the radiation to and from the
nucleus [2]. This screening is a big obstacle in the study
of CP -violating nuclear forces, which may provide valuable
information about new physics beyond the Standard Model;
see, e.g., [3–8] for reviews. Therefore, it is tempting to study
not just small violations of the Schiff theorem, but to find large
enhancements of nuclear electric moments.

To recall the basic idea of the Schiff theorem [1], let us
consider a Hamiltonian H0 of an atom with stationary states
|n〉 and energy levels En,

H0|n〉 = En|n〉. (1)

The electric field induced by the atomic electrons at the center
of an atom is described by the operator

Ee = −e
∑

i

ri

r3
i

= i

eh̄Z
[H0, p], (2)

where Z is the charge of the nucleus and p is the momentum
operator for the electrons, p = ∑

i pi (pi is the momentum of
the ith electron; below we omit the summation symbol over
the atomic electrons). When the atom is placed in a static
electric field E0, according to the Schiff theorem [1], this
electric field in the center of an atom is screened due to the
electric field induced by atomic electrons,

〈Ee〉 + E0 = 0. (3)

It is instructive to recall a proof of this theorem. Let ψ be
an exact wave function of the atom in the static electric field
HEψ = Eψ , where HE = H0 − e E0 · r is the full Hamilto-
nian and e is the electron charge (e = −|e|). Then the relation
(3) immediately follows from the identity

0 = 〈ψ | i

eh̄
[HE, p]|ψ〉. (4)

Physically, this means that the nuclear EDM is screened by
the electron shells. For real atoms, however, this shielding is
not complete due to effects of the finite size of the nucleus [1].
The shielding is incomplete in atomic [9] and molecular ions
[10] and in atoms in a nonstable state [11].

Recently it was shown that an oscillating electric field also
has only partial shielding inside the atom since the electrons
respond to the changes in the electric field with a delay [2,12].
More specifically, when the frequency of an external electric
field is far from atomic resonance, the field at the nucleus is
proportional to the atomic dynamical polarizability, and the
nuclear EDM is shielded only partly.

In the case when the frequency of an external field reaches
the atomic resonance the situation changes drastically: the
resulting electric field at the nucleus may be enhanced signif-
icantly. This case, however, requires a careful consideration
since the solution at a resonance is very different from the
off-resonance case. The aim of this paper is to provide an
appropriate study of this case and to determine properties of
an electric field inside an atom when the external electric field
oscillates in a resonance with an atomic transition.

When the frequency of an external electric field is in
resonance with an atomic transition between a ground state
|0〉 and an excited state |1〉, it is possible to neglect other
atomic states and treat the atom as a two-level system. In this
case, there are temporal oscillations in the populations in the
two-level system known as the Rabi oscillations [13].

For real atoms, however, it is necessary to take into account
the spontaneous decay of the excited state with a rate �. Such
an atom is in a mixed state, and the density matrix description
is appropriate now. The evolution of such a system is gov-
erned by the optical Bloch equation [14]. The nonperturbative
solution of these equations is studied in detail in [15]. We
will apply this solution to find the electric field at the nucleus
described by the operator (2).

It is pertinent to give an intuitive description of the Rabi
oscillation when the spontaneous decay of the excited state is
allowed. The behavior of this system is similar to the damped
harmonic oscillator with a driving force in resonance with
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the oscillator. At a sufficiently large time, when the transient
oscillation may be neglected, the amplitude of the driven
oscillation is independent of the amplitude of the applied
force, and the phase of the resulting oscillation is shifted by
π/2 with respect to the phase of the applied force. A similar
situation is observed in atoms: as we will show in this paper,
the amplitude of the electric field at the center of an atom
is independent of the amplitude of an applied field (and, so,
may be significantly enhanced) while the phase of this field is
shifted by π/2 with respect to the phase of the applied electric
field. This observation is one of the main results of this paper.

The rest of the paper is organized as follows. In Sec. II
we start with a revision of the two-level atom description
within the density matrix approach and apply this density
matrix for deriving the shielding of the oscillating external
electric field at the center of the atom when the frequency
of this field is far from atomic resonances. In Sec. III we
consider the density matrix near an atomic resonance and
apply it to estimate the enhancement of the electric field at the
atomic nucleus. In Sec. IV we give numerical estimates for
the enhancement of the oscillating electric field in resonance
with an E1 transition in a xenon atom and argue that the
atomic resonance may give a significant enhancement of the
amplitude of the process of the laser-induced neutron cap-
ture to the 139La nucleus. We also consider qualitatively the
shielding and the resonant enhancement of the photon capture
and radiation with energy above the ionization potential in
atoms. Section V is devoted to a summary of the results and
an overview of their possible applications. In the Appendix,
using the standard time-dependent perturbation theory based
on the wave function approach, we re-derive the results of the
screening of an electric field reported in Sec. III.

II. SHIELDING OF AN OSCILLATING ELECTRIC
FIELD IN AN ATOM

We start this section with a short review of the density
matrix description of a two-level quantum system with nonva-
nishing decay rate � from the excited state |1〉 to the ground
state |0〉. Details of this approach may be found in many
monographs, see, e.g., [16]. Then we apply the density matrix
solution for determining the shielding of an oscillating electric
field inside an atom when the frequency of the field is far from
atomic resonances.

A. Free two-level atom

Let us consider a two-level atom with a ground state
|0〉 and an excited state |1〉. The free Hamiltonian can be
represented as

H0 = E0|0〉〈0| + E1|1〉〈1|, (5)

where E0 and E1 are the energies of the ground and excited
states, respectively. If there is no spontaneous decay from
the excited state to the ground state, the atom is in a pure
state in any moment of time. However, if the excited state
|1〉 has a finite lifetime, the atom is in a mixed state at any
moment of time t > 0. In this case the state is described

by a Hermitian density matrix ρ = (
ρ11 ρ10

ρ01 ρ00
), ρ† = ρ, with

tr ρ = 1. The density matrix obeys the von Neumann equation

∂tρ = − i

h̄
[H0, ρ] + (∂tρ)spont, (6)

where the term (∂tρ)spont describes the damping due to spon-
taneous emission:

(∂tρ11)spont = −�ρ11, (7a)

(∂tρ10)spont = −�

2
ρ10. (7b)

Equations (7) have a clear interpretation: Eq. (7a) describes
how the population of the excited state |1〉 decays because of
the spontaneous emission with a rate � while Eq. (7b) shows
that the damping of the coherence ρ10 between |1〉 and |0〉
appears with a rate twice smaller (see, e.g., [16] for details).

B. Two-level atom in an oscillating electric field

Let us consider an oscillating electric field

E(t ) = E0 cos ωt, (8)

with amplitude E0 and frequency ω. The Hamiltonian of the
two-level atom in this field reads

H = H0 + V (t ), (9a)

V (t ) = −D · E cos ωt, (9b)

where D = e r is the electric dipole operator. In the ba-
sis of states |0〉 and |1〉 the interaction potential V can be
rewritten as

V = h̄�(|0〉〈1| + |1〉〈0|) cos ωt, (10)

where

� = − 1

h̄
〈0|D · E|1〉 (11)

is the Rabi frequency.
The von Neumann equation

∂tρ = − i

h̄
[H, ρ] + (∂tρ)spont (12)

implies the following equations for the components of the
density matrix:

∂tρ11 = −�ρ11 + i� cos ωt (ρ10 − ρ01), (13a)

∂tρ10 = −iω10ρ10 − �

2
ρ10 − i� cos ωt (ρ00 − ρ11), (13b)

where ω10 ≡ 1
h̄

(E1 − E0). Note that ρ10 = (ρ01)∗ and ρ00 =
1 − ρ11.

We stress that Eqs. (13) describe exact evolution of the two-
level atom in an oscillating electric field where the excited
state |1〉 may decay spontaneously to the ground state |0〉 with
the rate �.
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It is suitable to introduce the following notations:

a(t ) = ρ00, b(t ) = ρ10 − ρ01, c(t ) = ρ10 + ρ01. (14)

The system of equations (13) may be equivalently rewritten as

ȧ + �a = − �

ω10

(
ċ + �

2
c

)
cos ωt, (15a)

b = i

ω10

(
ċ + �

2
c

)
, (15b)

c̈ + �ċ +
(

ω2
10 + �2

4

)
c = 2�ω10(2a − 1) cos ωt. (15c)

Below we consider explicit solutions of these equations in
a weak field and apply them for determining the electric field
inside the atom.

C. Weak external electric field

According to Eq. (11), the Rabi frequency � is small
when the external electric field is weak. More specifically,
we consider the regime when 2�2 � �2. In this case, we
can keep the leading in � terms in the function a(t ) and
c(t ): a(t ) ∝ �2 and c(t ) ∝ �. In this approximation Eq. (15c)
acquires the form of the classical damped harmonic oscillator

c̈ + �ċ +
(

ω2
10 + �2

4

)
c = −2�ω10 cos ωt. (16)

The steady state solution of this equation reads

c(t ) = 2�ω10√
(ω2 − ω2

10 − �2/4)2 + �2ω2
cos(ωt + ϕ), (17)

where

ϕ = arctan
�ω

ω2 − ω2
10 − �2/4

. (18)

Given the solution (17) it is straightforward to find the func-
tions a(t ) and b(t ) from Eqs. (15a) and (15b). However, we
do not need these functions in our further considerations.

When the frequency of the external electric field is far
from the atomic resonance, it is appropriate to apply the
approximation

ω2 − ω2
10 − �2/4 ≈ ω2 − ω2

10. (19)

Taking into account this approximation and considering � as
a small parameter, we keep only the leading terms in � in the
series expansion of the function (17):

c(t ) = 2�ω10

ω2 − ω2
10

cos ωt − 2��ωω10

(ω2 − ω2
10)2

sin ωt. (20)

Below we apply this solution to find the induced electric field
at the center of the atom in the case when the applied electric
field is weak.

D. Induced electric field at the center of the atom

The electric field at the center of the atom consists of two
contributions: (i) the external electric field (8) and (ii) the field
induced by the atomic electrons which we denote by Ee,

Etot = E(t ) + 〈Ee〉. (21)

The latter may be found from the relation

〈Ee〉 = i

eh̄Z
tr ([H0, p]ρ) = − i

eh̄Z
tr ([H0, ρ]p), (22)

where H0 is the free Hamiltonian (5) and p is the momentum
operator.

Without loss of generality we assume that the external elec-
tric field is directed along the z axis, E0 = (0, 0, E0). Then we
need to consider only the z component of the electric field due
to the atomic electrons 〈Ee〉z ≡ 〈Ee,z〉 = − i

eh̄Z
tr ([H0, ρ]pz)

[17]. Assuming the nonrelativistic relation between the mo-
mentum and position operators p = i me

h̄
[H0, r], the operator

pz may be written in the basis of |0〉 and |1〉 states as

pz = i

e
meω10〈1|Dz|0〉(|0〉〈1| − |1〉〈0|), (23)

where Dz = e z is the z component of the electric dipole
operator.

Substituting (23) into (22) we find

〈Ee,z〉 = −ω2
10me

Ze2
〈1|Dz|0〉(ρ10 + ρ01)

= −ω2
10me

Ze2
〈1|Dz|0〉c(t ), (24)

where we employed the introduced above notation (14).

E. Partial shielding of an electric field off-resonance

When the frequency of the applied electric field is far from
the atomic resonance, the function c(t ) is given by Eq. (20).
Substituting this function into Eq. (24) we find the electric
field at the center of the atom produced by the atomic electrons

〈Ee,z〉 = 2me

h̄e2Z

ω3
10|〈1|Dz|0〉|2
ω2 − ω2

10

E0 cos ωt

− 2me

h̄e2Z

ω3
10ω�|〈1|Dz|0〉|2

(ω2 − ω2
10)2

E0 sin ωt. (25)

This expression can be easily generalized to a real atom with
a complete system of atomic states |n〉,

〈Ee,z〉 = E1 cos ωt + E2 sin ωt, (26a)

E1 = E0
2me

h̄e2Z

∑
n

ω3
n0|〈n|Dz|0〉|2
ω2 − ω2

n0

, (26b)

E2 = −E0
2meω

h̄e2Z

∑
n

ω3
n0�n|〈n|Dz|0〉|2
(ω2 − ω2

n0)2
, (26c)

where ωn0 = 1
h̄

(En − E0).
Equations (26) are derived in the assumption that the

widths �n are constant while they may have strong depen-
dence on energy in a general case. For example, the radiative
widths scale on energy as �(r )

n ∝ ω3
r , and all �(r )

n → 0 if
ωr → 0, which is the case of an atom in the ground state.

Using the identity ω2
n0

ω2−ω2
n0

= ω2

ω2−ω2
n0

− 1 and completeness

of the system of states |n〉 the amplitude of the electric field
(26b) can be cast in the form

E1 = −E0 − E0αzz(ω)
ω2me

e2Z
, (27)
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where

αzz(ω) = 2

h̄

∑
n

ωn0|〈0|Dz|n〉|2
ω2

n0 − ω2
(28)

is the atomic dynamical polarizability.
The first term on the right-hand side in (27) cancels the

external electric field when substituted into Eq. (21). The
resulting electric field at the center of the atom is

Etot = −αzz(ω)
ω2me

e2Z
E0 cos(ωt ) + E2 sin(ωt ), (29)

where E2 is given in Eq. (26c). Thus, the shielding of an os-
cillating electric field by the atomic electrons is not complete.

The first term in (29) was first derived in [2] using the
wave-function approach. The last term in (29) is a correction
due to finite widths of the states. Although this correction is
small, it dampens the shielding of the electric field by atomic
electrons. This damping appears due to the finite lifetime of
excited states of the atom.

Recall that expression (29) is obtained in the approxima-
tion when the applied electric field is weak. In this case,
the standard time-dependent perturbation theory based on the
wave function description is also applicable. In Appendix
we demonstrate that the standard time-dependent perturbation
theory yields the same result (29) for the electric field at the
center of the atom.

III. ENHANCEMENT OF AN ELECTRIC FIELD
NEAR RESONANCE

A. Density matrix near resonance

Let us consider the frequency of the external electric field
near the atomic resonance,

ω = ω10 + δ, (30)

where δ is a small parameter. To obtain a solution of Eqs. (13)
in this case, it is useful to apply the rotating wave approxi-
mation (RWA), see, e.g., [16]. This approximation is effec-
tively taken into account by representing the cosine factor
as cos ωt = 1

2 (eiωt + e−iωt ) and keeping only the following
(resonant) terms in Eqs. (13):

∂tρ11 = −�ρ11 + i

2
�(eiωtρ10 − e−iωtρ01), (31a)

∂tρ10 = −iω10ρ10 − �

2
ρ10 − i

2
�e−iωt (ρ00 − ρ11). (31b)

A steady state solution of these equations near the reso-
nance has the simple form [16]

ρ =
⎛
⎝ �2

�2+2�2+4δ2
�(2δ−i�)e−iωt

�2+2�2+4δ2

�(2δ+i�)eiωt

�2+2�2+4δ2
�2+�2+4δ2

�2+2�2+4δ2

⎞
⎠. (32)

In particular, for c(t ) = ρ10 + ρ01 we have

c(t ) = 4�δ

�2 + 2�2 + 4δ2
cos ωt − 2��

�2 + 2�2 + 4δ2
sin ωt.

(33)
We stress that (32) is a particular solution of Eqs. (31)
remaining nonvanishing at large time. The general solution
includes also the terms which are suppressed by the factor

e−�t . We neglect these terms assuming the time t sufficiently
large.

B. Resonant enhancement of an electric field

Substituting the solution (33) into Eq. (24) we find the
induced electric field at the center of an atom due to atomic
electrons

〈Ee,z〉 = E1 cos ωt + E2 sin ωt, (34)

where

E1 = − me

e2Z
ω2

10〈0|Dz|1〉 4�δ

�2 + 2�2 + 4δ2
, (35)

E2 = me

e2Z
ω2

10〈0|Dz|1〉 2��

�2 + 2�2 + 4δ2
, (36)

where δ is the detuning parameter.
The case when the applied electric field is in resonance

with the atomic transition δ = 0 is of special interest. In this
case, the first term on the right-hand side in (34) vanishes,
E1 = 0, while the last one simplifies,

〈Ee,z〉 = me

e2Z
ω2

10〈0|Dz|1〉 2��

�2 + 2�2
sin ωt. (37)

We stress that the electric field (37) produced by the atomic
electrons at the center of the atom has the phase shift π/2 as
compared with the applied electric field (8). Therefore, in the
two-level approximation, the external electric field cannot be
screened. Indeed, the total field at the center of the atom (21)
reads

Etot ≡ E0 + 〈Ee,z〉 = Et cos(ωt − α), (38)

where

Et =
√

E2
0 + E2

2 , (39)

α = arctan
E2

E0
. (40)

When the external electric field is weak, 2�2 � �2, the
amplitude of the electric field (37) simplifies:

E2 = − 2me

h̄e2Z

ω2
10

�
|〈0|Dz|1〉|2E0. (41)

Since the width � is typically small, this field is much stronger
than the external electric field, E2 
 E0, and, so, Et ≈ E2. In
Appendix we demonstrate that formula (41) can be derived
from the standard time-dependent perturbation theory which
is valid for a weak external electric field. The derivation given
in the Appendix shows that Eq. (41) is applicable in the
general case of a multilevel atom in which the excited state
may decay to any lower state with a rate �.

In real atoms it is necessary to take into account also off-
resonance atomic levels, which provide partial shielding of
the applied electric field in a similar way as is described in the
previous section. This case is considered in detail in Appendix
A 2, see Eqs. (A16).

It is important to note that the induced electric field (37)
may be much larger than the applied electric field E0. The
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function ��
�2+2�2 reaches its maximum 1

2
√

2
at

�max = �/
√

2. (42)

Thus, the maximum amplitude of the induced electric field is

E2,max = me√
2e2Z

ω2〈0|Dz|1〉. (43)

As it follows from Eqs. (11) and (42), the maximal ratio of the
field on the nucleus (43) to the applied external field E0,∣∣∣∣E2,max

E0

∣∣∣∣ = meω
2|〈0|Dz|1〉|2
h̄e2Z �

(44)

is achieved for the applied field amplitude

E0 = − h̄�√
2〈0|Dz|1〉 . (45)

This ratio E2,max/E0 may be very large due to a small
linewidth � in the denominator. Below we illustrate this
enhancement on a particular example of xenon atoms in a laser
light.

IV. APPLICATIONS

A. Resonant enhancement of an electric field in a xenon atom

Let us consider a state |1〉 with the energy E1 = ω =
8.44 eV in a xenon atom, Z = 54. The natural width
of this state and the corresponding matrix element can
be deduced, e.g., from [18]: � ≈ 2 × 10−7 eV, 〈1|z|0〉 =
− 1√

3
D 3

2
= −0.66aB, where aB is the Bohr radius. According

to Eq. (45), the amplitude of the applied electric field should
be

E0 ≈ 40 V/cm. (46)

The maximum amplitude (43), however, is independent of the
strength of the applied field,

E2,max ≈ 4.3 × 106 V/cm. (47)

Thus, the ratio of the amplitudes of the resulting electric field
on an atomic nucleus and the applied field is

E2,max

E0
≈ 105. (48)

We conclude that the enhancement of an electric field inside
an atom may be up to five orders of magnitude. However, it
may be smaller if there is a collisional or Doppler broadening.

B. Laser-stimulated neutron capture in 139La

It is predicted [19–22] that a laser electric field can stim-
ulate the neutron capture in the 139La nucleus, Z = 57. This
laser field provides mixing of the s and p compound states
and may enhance the capture of a neutron to the p-wave
resonance. Indeed, a p-wave resonance is kinematically sup-
pressed ∼ 106 times at low neutron energy as compared with
an s-wave resonance. The resonance of the p wave is found
at energy E = 0.734 eV. However, if one applies a laser field
at this energy to excite a low-energy (thermal) neutron to the
resonance, this field is significantly screened since it is far

from atomic energy levels. According to (27), the electric field
is suppressed by the factor

αzz

ω2me

e2Z
≈ 0.003, (49)

where we applied the atomic polarizability αzz ≈ 214 a3
B =

4.1 × 10−9 eV−3 calculated in [23].
In the experiment [24–26], a laser was used with the

frequency ω = 1.165 eV and strength E0 = 8700 V/cm. The
off-resonance suppression of this field gives the amplitude of
the total field at the center of an atom

E1 + E0 = αzz

ω2me

e2Z
E0 ≈ 44 V/cm. (50)

Such a weak field cannot give a significant enhancement of
the neutron capture by the 139La nucleus.

As we demonstrate in this paper, a significant enhancement
of the electric field can be achieved when the laser field is in
resonance with an atomic transition. We consider the excited
state |1〉 = |4f 6s2〉 in the La atom with energy E1 = 1.88 eV.
The natural width of this state and the E1 matrix element for
the |0〉 ↔ |1〉 transition may be deduced from the NIST data
[18]: � ≈ 6 × 10−9 eV, 〈0|z|1〉 = −1.3aB. Substituting these
parameters into Eq. (45) we find that a relatively weak laser
field is sufficient to saturate the atomic transition,

E0 ≈ 0.6 V/cm. (51)

The amplitude of the induced electric field is found from
Eq. (43),

E2,max ≈ 4 × 105 V/cm. (52)

Thus, the external field is enhanced by six orders of mag-
nitude. However, the enhancement is smaller if there is a
collisional or Doppler broadening.

C. Screening and resonance enhancement of nuclear electric
dipole transitions by electrons

The excitation energies of nuclear states are typically
higher than the ionization energies for atomic electrons. When
the photon energy is higher than all atomic electron ionization
energies, the screening of the electric field by atomic electrons
is negligible, and the high-energy photons penetrate the atom
and may be radiated or absorbed by the nucleus.

However, when the energy of a photon is in the region from
the ionization energy of outer electrons to the ionization of the
lowest 1s electron, there is an interesting interplay between
the external photon field and induced electron field at the
nucleus. In this section we consider this situation qualitatively,
without specifying particular examples.

Let us start from off-resonance contributions to the induced
electric field, which are described by Eq. (26b). When the
photon energy ω is higher than the ionization potentials Ik for
electrons in the outermost atomic shell, the contribution of this
shell to Ee is suppressed by a small factor ω2

k0/ω
2. However,

the contribution of inner shells with Ik > ω is still significant.
This case is analogous to an ion with a number of electrons N

in a static field where the electric field on the nucleus is equal
to E0(Z − N )/Z [9]. In the case of the oscillating field we
also have the electron field on the nucleus Ee ∼ −E0Neff/Z,
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and the total field is E(0) ∼ E0(Z − Neff )/Z, where Neff is
the number of atomic electrons with the ionization potential
Ik > ω.

Now let us consider the role of autoionization resonances.
When the energy of the incident photon is close to one of the
autoionization energy levels, we can apply the formula (41) to
estimate the amplitude of the electric field at the center of the
atom. Let us rewrite this formula identically as

Etot = 2

Z

ω

�n

ω̃D̃2
0nE0 sin ωt, (53)

where

ω̃ ≡ ω
h̄aB

e2
, D̃0n ≡ 〈0|Dz|n〉

eaB
(54)

are the energy and dipole transition matrix element in atomic
units, respectively.

For typical E1 atomic transitions in outer electron shells,
the factor ω̃D̃2

0n may be estimated as

ω̃D̃2
0n ∼ 1. (55)

When the photon energy is sufficient for ionizing deeper
atomic electrons, this estimate is still applicable. Indeed, we
can describe the situation using the effective charge Zeff which
a deep electron “sees.” The ionization energy ω̃n0 scales as
Z2

eff while the electric dipole matrix element D̃0n scales as
1/Zeff . Therefore, Eq. (55) may be used for rough estimates
of the electric field near the resonance of autoionizing states.

The ratio ω/�n is typically of order from 300 to 1000 (see,
e.g., the data for the energies and lifetimes of hole states in 4p

shell in xenon [27]). Assuming ω/�n ∼ 500, we estimate the
electric field (53) as

Etot ∼ 1000

Z
E0 sin ωt. (56)

Thus, the amplitude of the electric field is enhanced by the
factor of the order from 10 to 1000, depending on the atomic
number Z.

We conclude that the interaction with atomic electrons may
strongly affect nuclear electric dipole transitions for energies
near autoionization levels of deep atomic shells.

V. CONCLUSIONS

In this paper we systematically studied the problems of
shielding and enhancement of the oscillating electric field in-
side an atom. When the frequency of the external electric field
is far from atomic resonances, the electric field at the nucleus
is partly shielded. As was found in [2], the shielding coeffi-
cient is proportional to the atomic dynamical polarizability.
Equation (29) shows that this screening is slightly suppressed
when the widths of the states are taken into account.

Note that the electron shells partly screen not only the
external electric field inside the atom, but also the nuclear
radiation. Thus, the dipole radiation from nucleus may be
observed, but it is suppressed by the same factor as in Eq. (29)
when its energy is far from atomic resonances.

When the frequency of the external electric field ap-
proaches an atomic resonance, the atomic polarizability has
a pole and the screening formula (29) is not applicable any

more. In resonance, the oscillating electric field causes the
atomic transition which may be considered using standard
time-dependent perturbation theory. However, the perturba-
tion theory should be applied with care since it gives a diver-
gent result for the electric field induced by atomic electrons on
the nucleus unless a width of the state is taken into account.

When the excited state in an atom is allowed to decay
spontaneously to the ground state, the wave function descrip-
tion is not appropriate since the atom interacts with a photon
and appears in a mixed quantum state. Thus, to describe the
atom near resonance it is necessary to use the density matrix
solution for a two-level atom [15] (see also [16] for a modern
presentation). Recall that when the width of the excited state
is small, the atom experiences the Rabi oscillations [13], but
these oscillations are damped when the spontaneous decay
is taken into account. We apply this solution for the density
matrix to derive the resulting electric field at the center of
an atom (38) when the external electric field is in resonance
with an atomic transition. This is the main result of this
paper.

It is important to note that at resonance a relatively weak
external electric field is sufficient to saturate the atomic tran-
sition. In this case, the electric field induced by the atomic
electrons at the center of an atom may be several orders in
magnitude stronger than the applied electric field [see, e.g.,
Eq. (48)]. Another interesting feature is that the phase of
the resulting electric field at the center of an atom is shifted
approximately by π/2 with respect to the applied field. These
facts should be taken into account when considering physical
applications of these results.

As an application, we consider a laser-induced neutron
capture in 139La nucleus which was conjectured in [19–22].
However, the experiments [24–26] did not confirm a signif-
icant enhancement of the neutron capture process due to the
laser field. We argue that one of the reasons for this negative
result is the shielding of the electric field in atoms which was
not taken into account. Indeed, the shielding factor for the
electric field off the atomic resonances in the La atom may
be as small as 0.003. However, when the electric field is in
resonance with the E1 atomic transition, the electric field at
the nucleus may reach 4 × 105 V/cm.

The screening and resonance enhancement of the photon
field by electrons may strongly affect emission and absorption
of photons by nuclei if the photon energy is smaller than the
ionization potentials of deep atomic electrons.

In conclusion, we stress that the resonant enhancement
of an electric field in an atom studied in Sec. III B may, in
principle, have many further applications and generalizations.
In particular, it would be interesting to develop a technique for
measuring nuclear EDM using an oscillating electric field in
resonance with an atomic or molecular transition. It is also
tempting to study a similar enhancement of an oscillating
magnetic field, as well as quadrupole and octupole waves due
to atomic resonances. These issues deserve separate studies.
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APPENDIX: PERTURBATIVE COMPUTATION
OF INDUCED ELECTRIC FIELD

Let us consider an atom with stationary states |k〉 and
energies Ek ,

H0|k〉 = Ek|k〉. (A1)

When the atom is placed into a weak oscillating electric field
(8), the evolution of the ground state may be described by
the wave function ψ0(t ), which in the leading order in the
perturbation theory reads

ψ0(t ) = e−iω0t

[
|0〉 − i

h̄

∑
k

∫ t

0
dτ e−iωk0(t−τ )− �k

2 (t−τ )

× |k〉〈k|V (τ )|0〉
]
, (A2)

where V (τ ) is given in Eq. (9b) and �k are the widths of
the excited states |k〉. In general, the widths are not just
constants, but rather functions of energy of the system, which
is E = E0 + h̄ω. For example, dipole radiative widths have
dependence ∝ ω3

γ , where ωγ is the energy of the radiated
photon which is determined by the energy of the system.

Using this wave function we find the expectation value of
the operator (2)

〈Ee〉 = − ime

h̄Z

∑
k

e−iωk0t−�k t/2ω2
k0

×
∫ t

0
dτ eiωk0τ+�kτ/2 cos(ωτ )〈0|r|k〉〈k|E0r|0〉

+ ime

h̄Z

∑
k

eiωk0t−�k t/2ω2
k0

×
∫ t

0
dτ e−iωk0τ+�kτ/2 cos(ωτ )〈0|E0r|k〉〈k|r|0〉. (A3)

Here we applied the nonrelativistic relation between the mo-
mentum and position operators p = i me

h̄
[H0, r].

Without loss of generality we assume further that the
external electric field is along the z axis,

E0 = (0, 0, E0). (A4)

Then, it is sufficient to consider only the z component of the
induced electric field (A3),

〈Ee,z〉 = − ime

h̄Z
E0

∑
k

|〈0|z|k〉|2ω2
k0

×
[
e−iωk0t−�k t/2

∫ t

0
dτ eiωk0τ+�kτ/2 cos(ωτ )

− eiωk0t−�k t/2
∫ t

0
dτ e−iωk0τ+�kτ/2 cos(ωτ )

]
. (A5)

Upon computation of the integrals we represent the induced
electric field in the form of a sum of the dumped term Edump

and steady term Est,

〈Ee,z〉 = Edamp + Est, (A6)

Edamp = me

2h̄Z
E0

[ ∑
k

ω2
k0 sin(ωk0t )e− �k t

2 |〈0|z|k〉|2g+
k (ω)

−
∑

k

ω2
k0 cos(ωk0t )e− �k t

2 |〈0|z|k〉|2f −
k (ω)

]
, (A7)

Est = me

2h̄Z
E0 sin(ωt )

∑
k

|〈0|z|k〉|2ω2
k0�kg

−
k (ω)

− me

h̄Z
E0 cos(ωt )

∑
k

|〈0|z|k〉|2ω2
k0f

+
k (ω), (A8)

where

f ±
k (ω) = ωk0 + ω

(ωk0 + ω)2 + �2
k/4

± ωk0 − ω

(ωk0 − ω)2 + �2
k/4

, (A9)

g±
k (ω) = 1

(ωk0 + ω)2 + �2
k/4

± 1

(ωk0 − ω)2 + �2
k/4

. (A10)

In what follows, we will discard the terms Edamp which are
suppressed by the factor e−�t/2 at large time t . We will focus
on the driven oscillations Est.

For large ω the functions (A9) and (A10) are vanishing. In
this case the induced electric field (A6) vanishes, and there is
no shielding of the external electric field. This simply means
that the high energetic gamma quanta are not screened by
atomic electrons and penetrate inside the atom.

1. Off-resonance case

Let us consider the external electric field with the fre-
quency ω far from any atomic resonance,

(ωk0 ± ω)2 + �2
k/4 ≈ (ωk0 ± ω)2. (A11)

Taking into account this approximation in Eqs. (A9) and
(A10), for the induced electric field (A6) we find

〈Ee,z〉 = −2me

h̄Z
E0

∑
k

|〈0|z|k〉|2 ω3
k0(

ω2
k0 − ω2

)2

× [
�kω sin(ωt ) + (

ω2
k0 − ω2

)
cos(ωt )

]
. (A12)

Applying the identity ω2
k0

ω2
k0−ω2 = 1 + ω2

ω2
k0−ω2 and completeness

of the system of states |k〉, Eq. (A12) may be cast in the form

〈Ee,z〉 = −E0 cos ωt − meω
2

e2Z
αzz(ω)E0 cos ωt

− 2meω

h̄Z

∑
k

|〈0|z|k〉|2 ω3
k0�k(

ω2
k0 − ω2

)2 E0 sin ωt, (A13)

where αzz(ω) is the dynamical atomic polarizability (28).
In Eq. (A13), the first term cancels the external electric

field (8). The second term in this equation, which is propor-
tional to the dynamical atomic polarizability, was found in [2]
as the residual electric field at the nucleus. The terms in the
last line in Eq. (A13) represent the corrections to the electric
field which appear when we take into account the spontaneous
decay of the excited states.

Note that Eq. (A13) fully agrees with the expression for
the electric field in the atom (29) which was derived using the
solution for the density matrix for a weak external field.
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2. Near-resonance case

When the external electric field is in resonance with an
atomic level |n〉, ω = ωn0, the functions (A9) and (A10) may
be written as

f +
k (ω) =

{ 1
2ω

, k = n,

2ωk0

ω2
k0−ω2 , k �= n,

(A14)

g−
k (ω) =

{− 4
�2

n
, k = n,

−4 ωk0ω

(ω2
k0−ω2 )2 , k �= n .

(A15)

Here we assume that all linewidths are small in compari-
son with energies, �n � ωn0 = ω and (ωk0 ± ω)2 + �2

k/4 ≈
(ωk0 ± ω)2 for k �= n. Substituting these functions into (A6)
we find〈Ee,z〉 = −E1 cos ωt − E2 sin ωt, (A16a)

E1 = E0

[
1 + meω

2

e2Z
βzz(ω)

]
, (A16b)

E2 = E0
2meω

e2h̄Z

∑
k �=n

|〈0|Dz|k〉|2 ω3
k0�k(

ω2
k0 − ω2

)2

+E0
2meω

2

e2h̄Z�n

|〈0|Dz|n〉|2, (A16c)

where

βzz(ω) = − 3

2h̄ω
|〈0|Dz|n〉|2 + 2

h̄

∑
k �=n

ωk0

ω2
k0 − ω2

|〈0|Dz|k〉|2.

(A17)
This function differs from the atomic polarizability (28) only
in the nth term.

The first term in (A16b) cancels the external electric field
(8) while the second one represents the residual field after
screening. The terms in the first line in (A16c) are analogous
to the ones in the second line in (A13). The last term (A16c)
appears much larger than the other terms owing to the small
linewidth �n in the denominator. Thus, the leading contribu-
tion to the total electric field (21) at the center of the atom
reads

Etot ≈ − 2meω
2

e2h̄Z�n

|〈0|Dz|n〉|2E0 sin ωt. (A18)

We stress that the phase of this field is shifted by π/2 with
respect to the applied field (8).

Naively, the field (A18) may be very large if the width of
the state �n is small enough. However, this is an artifact of the
perturbation theory which is resolved in the nonperturbative
solution (37).
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