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Dynamics of electrons in plasmonic excitation of ring-shaped Na clusters
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Motion of electrons in plasmonic excitation of ring-shaped clusters Na4n+2 (n = 1, 2, . . . , 5) is analyzed by
inspecting trajectories of the Thouless parameters which describe photoexcitation to the plasmonic-excited state.
We examine the Floquet state produced by irradiation of stationary light inducing the transition between the
ground state and the plasmonic-excited state. The trajectories of the Thouless parameters demonstrate that
collective excitation of 4n + 2 valence electrons occurs when the intensity of light exceeds a threshold. The
occurrence of the collective excitation requires that the strength of the light field overwhelms the effect of electron
correlation in the ground state. The threshold intensity is found to decrease with the cluster size.
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I. INTRODUCTION

Plasmonic excitation in metal nanoparticles has attracted
much attention in the past few decades [1,2] due to enhanced
optical responses playing significant roles in various processes
such as single molecular spectroscopy [3,4], photocatalytic
reactions [5], biomedical treatments [6,7], and plasmonics [8].
The studies of the plasmonic excitation based on the Maxwell
equation have been developed and successfully applied to
nanoparticles regarded as continuous dielectric bodies [9–16].
Recently, one can theoretically predict the optical responses
of nanoparticles if a diameter is larger than 50 nm.

With decreasing size of nanoparticles, the classical theories
based on the dielectric models face limitations, and micro-
scopic theories directly describing the motion of electrons are
required. For instance, the classical electrostatic theory for the
description of the motion of electrons has successfully been
applied to photoionization and electron scattering from small
Na clusters [17,18]. On the other hand, quantum-mechanical
approaches to the optical responses of small clusters have
long been investigated [19–26]. In particular, Yannouleas,
Broglia, and co-workers [19,20,22,23] have studied the line
shape of the plasma resonance in small Na clusters and have
reported the existence of a single peak which carries most of
the oscillator strength. The nature of the plasmonic excitation
in Na clusters has been studied based on the linear-response
density-functional theory, and enhancement of the transition
moment by collective excitation, i.e., constructive superpo-
sition of plural number of individual particle-hole and hole-
particle excitation, has been reported [27] (hereafter called
paper I).

In this article, the attention is focused on dynamics of
electrons in the plasmonic excitation. Motion of electrons in
the plasmonic excitation is analyzed by a method recently re-
ported in Ref. [28] (hereafter called paper II). In this method,
the motion of electrons is depicted by trajectories of the
Thouless parameters [29] describing the Floquet state formed
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by irradiation of stationary light. The Thouless parameters
have been used for the description of collective motion of
nucleons in the field of nuclear physics [30–32]. The Thouless
parameters behave like classical mechanical variables and
help intuitive understanding of the dynamics of many fermion
systems. On the other hand, the use of the Floquet state has
been one of the standard methods in the field of atoms and
molecules in intense fields [33–36]. Analyses of the Floquet
state, i.e., a quasieigenstate in a periodic external field, are
known to provide insights complementary to those obtained
from wave-packet propagation.

We examine the Floquet state produced by irradiation of
stationary light inducing the transition between the ground
state and the plasmonic-excited state. The shape of the tra-
jectory of the Thouless parameters is governed by following
three factors: (1) electron correlation in the ground state,
(2) configuration mixing among singly excited states, and
(3) intensity of light. It is demonstrated that the plasmonic-
excited state is formed by nearly equal-weighted configuration
mixing among the singly excited configurations. The shape
of the trajectory shows that collective excitation occurs when
the intensity of light exceeds a threshold. The existence of
the threshold is ascribed to the balance between the electron
repulsion in the ground state and the driving force brought by
light.

This article is organized as follows: In Sec. II, a qualitative
analysis of the electronic structure of ring-shaped Na clusters
is presented. In Sec. III, a recipe of the analysis employing the
Thouless representation is described. The trajectories of the
Thouless parameters are presented in Sec. IV. The condition
for the occurrence of the collective excitation and the dynam-
ics of electrons are discussed in Sec. V. Section VI concludes
this article.

II. ELECTRONIC STRUCTURE OF RING-SHAPED
SODIUM CLUSTERS

In this section, molecular orbitals (MO’s) and electron
configurations of ring-shaped Na4n+2 (n = 1, 2, . . . , 5) are
qualitatively analyzed. Na4n+2 clusters having the D(4n+2)h
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symmetry are considered in this article. Lower-lying valence
MO’s are mainly composed of the 3s orbitals of Na. These
MO’s are named as {σ0, σ1, . . . , σ2n+1} in the order of in-
creasing MO energy. It should be noted that {σ1, . . . , σ2n}
are doubly degenerate due to the symmetry. The electron
configuration of the ground state is (σ0)2(σ1)4 . . . (σn)4, which
is hereafter denoted as �0.

The z axis of the coordinate is chosen as perpendicular to
the molecular plane. The attention is focused on the singly
excited states optically accessible from the ground state with
linearly polarized light having the polarization vector parallel
with the z axis. Main configurations of these excited states
are obtained by promoting a valence electron to one of the
valence virtual MO’s mainly composed of the 3pz orbitals of
Na. These MO’s are named as {π0, π1, . . . , π2n+1} in the order
of increasing MO energy. It should be noted that {π1, . . . , π2n}
are doubly degenerate due to the symmetry.

The singly excited valence configurations having the tran-
sition moment parallel with the z axis are restricted to the type
of (σj )−1(πj )1 (j = 0, 1, . . . , n). Symmetry species of these
configurations are analyzed as follows: It is convenient to use
the symmetry species of D∞h. For instance, σ1 MO can be
regarded as a degenerate pair, σ+1 and σ−1, having the angular
momentum quantum number m = +1 and −1, respectively.
It can immediately be seen that the singlet configuration
(σ0)−1(π0)1 belongs to 1�+

u . Therefore, this configuration is
optically accessible from the ground state. As regards quadru-
ply degenerate singlet configuration (σ|m|)−1(π|m|)1 (|m|�1),
the wave function of the symmetry species 1�+

u is given
by the linear combination �m[1�+

u ] = {(σ−m)−1(π−m)1 +
(σ+m)−1(π+m)1}/√2. The other linear combinations lead to
different symmetry species which are inaccessible from the
ground state by z-polarized light. Therefore, n + 1 excited
configurations �m[1�+

u ] (m = 0, 1, . . . , n) are focused on.
If one employs the Hückel method with further

simplification that the same interaction energy β is adopted
for 3s and 3pz, the excitation energies to (σj )−1(πj )1 (j =
0, 1, . . . , n) become all equal with each other. Therefore,
if MO calculations with higher accuracy are carried out,
nearly degenerate excitation energies are likely to be obtained
for the configurations �m[1�+

u ] (m = 0, 1, . . . , n). These
configurations, having the same symmetry, are expected
to be strongly mixed with each other due to configuration
interaction (CI). As a result, one particular state is formed
in which all the CI coefficients contribute constructively,
and comes to possess a large transition moment. That state
is considered to be the plasmonic-excited state, which is
hereafter denoted as �P . Such a constructive configuration
mixing in �P corresponds to the observation in paper I, in
which the RPA (random-phase approximation) mode of the

plasmonic-excited state is found to be composed of nearly
equal-weighted superposition of plural number of individual
particle-hole and hole-particle excitation.

III. METHOD OF VIEWING ELECTRON DYNAMICS
BY THE THOULESS PARAMETERS

A. Setup of the Thouless parameters

We consider the following situation: By irradiation of z-
polarized stationary light, the Floquet state composed of the
ground state and the plasmonic-excited state |�P 〉 is formed.
This Floquet state can be expressed as

|�(t )〉 = e−iEt
[∣∣�CM

0

〉 + e−iωt eiδμnI
1/2|�P 〉], (1)

where the atomic units are used, E is the quasienergy, ω is
the angular frequency of light, μn is the transition moment,
I is a parameter proportional to the intensity of light, δ is
a phase factor originating from the transition dipole matrix
element, and |�CM

0 〉 represents the ground state. By taking
account of electron correlation in the ground state, the wave
function |�CM

0 〉 is given by

∣∣�CM
0

〉 = |�0〉 +
n∑

m=−n

CD
m |(σm)−2(πm)2〉, (2)

where CD
m is the CI coefficients with the normalization defined

in this expression. According to the consideration in the
preceding section, the wave function of the plasmonic-excited
state is given by

|�P 〉 =
n∑

m=−n

CS
m|1�[(σm)−1(πm)1]〉, (3)

where 1�[(σm)−1(πm)1]〉 is the singlet configuration state
function, but not yet of the symmetry species �+

u . The CI
coefficient CS

m should satisfy CS
−m = CS

m for m �= 0 in order
to retain the 1�+

u symmetry of �P .
The intensity of light should be sufficiently weak so as to

neglect the other processes such as transitions to higher ex-
cited states and ionization. Within the first-order perturbation,
the intensity parameter I in Eq. (1) is given by

I =
(

ω10/ω

ω10 − ω

)2
π

c
IL, (4)

where ω10 is the transition angular frequency to the
plasmonic-excited state, c is the light velocity, and IL is the
intensity of light.

In paper II [28], electron dynamics of the He atom is
analyzed by the singlet wave function in the form of a linear
combination of two Thouless representations,

� = 1

2
[{χ1s (1) + ξ1(t )χ2pz

(1)}{χ1s (2) + ξ2(t )χ2pz
(2)} + {χ1s (1) + ξ2(t )χ2pz

(1)}{χ1s (2) + ξ1(t )χ2pz
(2)}]

× 1√
2
{α(1)β(2) − β(1)α(2)}

= |1S0[(1s)2]〉 + 1√
2

[ξ1(t ) + ξ2(t )]|1P1[(1s)1(2pz)1]〉 + ξ1(t )ξ2(t )|(2pz)2〉, (5)

053436-2



DYNAMICS OF ELECTRONS IN PLASMONIC EXCITATION … PHYSICAL REVIEW A 98, 053436 (2018)

where χ1s , etc., are the atomic orbitals, and ξ1(t ) and ξ2(t ) are
the Thouless parameters. Observation of the time evolution
of ξ1(t ) and ξ2(t ) has been shown to be useful to grasp the

dynamics of electrons. In this article, the above expression is
extended in order to describe the plasmonic excitation of the
Na4n+2 clusters. We adopt the expression

|1�〉 = (2n + 1)|�0〉 +
n∑

m=−n

[
1√
2

(ξma + ξmb )|1�[(σm)−1(πm)1]〉 + ξmaξmb|(σm)−2(πm)2〉
]
, (6)

and examine the time evolution of the Thouless parameters
{ξma, ξmb} (m = −n, . . . , n). Substituting Eqs. (2) and (3) into
Eq. (1) and comparing with Eq. (6), we obtain

ξma (t ) + ξmb(t ) =
√

2(2n + 1)eiδμnI
1/2CS

me−iωt (7)

and

ξma (t )ξmb(t ) = (2n + 1)CD
m . (8)

It follows that

ξma (t ) =
√

−(2n + 1)CD
m

[
γme−iωt +

√
1 + γ 2

me−2iωt

]
(9)

and

ξmb(t ) =
√

−(2n + 1)CD
m

[
γme−iωt −

√
1 + γ 2

me−2iωt

]
, (10)

where

γm = eiδμn

(
2n + 1

2
I

)1/2
CS

m√−CD
m

. (11)

Here, it is worth noting that CD
m < 0 due to the nature of the

electron correlation. The shape of the trajectory is independent
of the phase factor eiδ if the trajectory is evolved in time more
than one period 2π/ω to make a periodic orbit. In Eqs. (9)
and (10), the definition of the pair ξma and ξmb is chosen in
accordance with the signature of the square root in the solution
formula of the quadratic equation. This is a conventional
choice, and it is necessary to switch the signature so as to
obtain smooth time dependence in actual calculations.

As stated in paper II, the real part of ξma and ξmb serves
as an indicator of the position of electrons along the z axis.
On the other hand, the imaginary part serves as an indicator
of the z component of the momentum. The trajectory of the
time evolution of ξma (t ) and ξmb(t ) is called the “trajectory of
the Thouless parameters.” As can be seen from Eqs. (9)–(11),
the time evolution of the Thouless parameters can be obtained
from the CI coefficients and the transition moment. In order
to obtain these quantities, quantum chemical calculations of
ring-shaped Na4n+2 (n = 1, 2, . . . , 5) are carried out.

B. Methods of quantum chemical calculations

Quantum chemical calculations of Na4n+2 (n=1, 2, . . . , 5)
are carried out in the following manner: Na atoms are placed
on a circle with equal spacing. The radius of this circle is opti-
mized by the calculations based on the density-functional the-
ory with the Perdew-Burke-Ernzerhof exchange-correlation
functional and the basis set 6-31G(d).

The occupied MO’s are obtained by the restricted Hartree-
Fock method. The valence virtual MO’s are obtained by
the method in Ref. [37]. The CI space is chosen as
{σ0, σ1, . . . σn, π0, π1, . . . , πn}, and single and double excita-
tions within this space are considered. The plasmonic-excited
state |�P 〉 is identified by inspecting the CI coefficients.

IV. RESULTS

A. Trajectory of the Thouless parameters

Trajectories of the Thouless parameters for Na6, i.e., n=1,
are shown in Figs. 1 and 2. In Fig. 1, the horizontal axis
Re[ξmj ] (j = a, b) and the vertical axis Im[ξmj ] correspond
to the position and the momentum, respectively, and the
graph can be interpreted as the trajectory in the phase space.
In Fig. 2, the horizontal axis Re[ξma] and the vertical axis
Re[ξmb] correspond to the positions of two electrons in σm

MO, and the graph can be regarded as the trajectory in the
configuration space. Due to the symmetry, the trajectory for
m = −1 is the same as that for m = 1. In the case of I 1/2 =
0.05 shown in Fig. 1(a), the trajectories of ξma (thick lines)
for m = 0,±1 exhibit periodic oscillation in the region of
Re[ξma] > 0, and those of ξmb (thin lines) show similar os-
cillation but in the region of Re[ξmb] < 0. The same physical
contents can be seen in the trajectories in the configuration
space shown in Fig. 2(a), where the trajectories for m = 0,±1
always stay in the fourth quadrant indicating that Re[ξma]>0
and Re[ξmb] < 0. This observation can be interpreted as fol-
lows: The intensity of light is so weak that the Coulomb
repulsion among the electrons overwhelms the external force.
In consequence, two electrons in an MO, e.g., σ0, are shaken
in a manner that keeps two electrons on the opposite side
of the molecular plane with each other. In other words, two
electrons are so shaken that if one electron stays in the region
of z > 0, the other electron stays in the region of z < 0. In
paper II, this type of motion is called “a mode” (avoiding
mode). It can be shown that the a mode appears when the
parameter γm in Eq. (11) satisfies |γm| < 1.

The case of more intense light, i.e., I 1/2 = 0.1, is shown in
Figs. 1(b) and 2(b). While the trajectory of m = 0 is assigned
as the a mode, that of m = ±1 shows a different shape.
The latter trajectory in the configuration space [Fig. 2(b)]
runs almost along the horizontal axis. This indicates that one
electron in σ1 MO travels over both the regions of z > 0
and z < 0, while the other electron stays in the vicinity of
z = 0. This behavior can be confirmed by the trajectories in
the phase space shown in Fig. 1(b). This type of motion is
called “s mode” (single-electron excitation mode) in paper II.
This mode appears when |γm| � 1.

The case of further more intense light, i.e., I 1/2 = 0.2, is
shown in Figs. 1(c) and 2(c). All the trajectories of m = 0

053436-3



KIYOHIKO SOMEDA AND TOMOKAZU YASUIKE PHYSICAL REVIEW A 98, 053436 (2018)

- 0.5 0 0.5 1

- 0.5

0

0.5

1

- 1 0 1 2

- 1

0

1

2

- 2 - 1 0 1 2 3

- 2

- 1

0

1

2

3

I1/2 = 0.05
(a)

Re[ξmj]

Im
[ ξ

m
j]

I1/2 = 0.1
(b)

Re[ξmj]

Im
[ ξ

m
j]

I1/2 = 0.2

(c)

Re[ξmj]

Im
[ ξ

m
j]

FIG. 1. Trajectories of the Thouless parameters (Re[ξma],
Im[ξma]) (thick lines) and (Re[ξmb], Im[ξmb]) (thin lines) for Na6.
Dashed (red) line and solid (blue) line represent the case of m=0
and 1, respectively. Panels (a)–(c) show the cases of I 1/2 = 0.05,

0.1, and 0.2, respectively. Due to the symmetry, the trajectory for
m = −1 is the same as m = 1.

and ±1 are assigned as the s mode. These trajectories show
that all of ξma (m = 0,±1) exhibit oscillatory motion with the
same phase, indicating that spin orbitals σ0α, σ+1α, . . . are
hybridized synchronously with π0α, π+1α, . . ., respectively.
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FIG. 2. Trajectories of the Thouless parameters (Re[ξma],
Re[ξmb]) for Na6. Values of m are indicated in the figure. Panels
(a)–(c) show the cases of I 1/2 = 0.05, 0.1, and 0.2, respectively. Due
to the symmetry, the trajectory for m = −1 is the same as m = 1.

This can be interpreted as the collective excitation reported
in paper I.

The case of Na10, i.e., n = 2, is shown in Fig. 3. In the case
of weak light, i.e., I 1/2 = 0.03, the trajectories of m = 0,±1
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FIG. 3. Trajectories of the Thouless parameters (Re[ξma],
Re[ξmb]) for Na10. Values of m are indicated in the figure. Panels
(a)–(c) show the cases of I 1/2 = 0.03, 0.05, and 0.07, respectively.

and ±2 in the configuration space are all assigned to be the a

mode. With increasing intensity of light, the trajectory of each
index m exhibits transition to the s mode. When I 1/2 = 0.07,
all the trajectories show the s mode oscillation with the same
phase, which is typical of the plasmonic excitation.

The size dependence of the trajectory with fixed intensity
is shown in Fig. 4. With increasing number of atoms, the
amplitudes of the oscillation become larger. In addition, the
trajectories come to run closer to the horizontal axis, and the
amplitudes for different m become approximately equal with
each other. These observations can be interpreted as growth of
the collective excitation.

B. Collective behavior of the Thouless parameters

Ideal plasmonic-excitation occurs when the CI coefficients
CS

m (m = −n, . . . , n) of the plasmonic state are all equal with
each other. It can be shown that the trajectories come to exhibit
collective motion in this ideal case if the intensity of light is
sufficiently strong as follows: In the limit of strong intensity,
one obtains |γm| � 1, and Eqs. (9) and (10) are reduced to

ξma (t ) = 2
√

−(2n + 1)CD
m γme−iωt + o

(
γ −1

m

)
=

√
2(2n + 1)μnI

1/2CS
meiδe−iωt + o

(
γ −1

m

)
=

√
2(2n + 1)μnI

1/2eiδe−iωt + o
(
γ −1

m

)
(12)

and ξmb(t ) = o(γ −1
m ), respectively. In this ideal case, the

trajectory in the (4n + 2)-dimensional space, X = (Re[ξ−na],
Re[ξ−nb], . . . , Re[ξna], Re[ξnb]), runs on the straight line
passing through the origin and parallel with the vector a0 =
(1, 0, 1, 0, . . .). It is useful to consider the cylindrical coordi-
nate (Z, ρ) with the axis along a0. The coordinate (Z(t ), ρ(t ))
of the trajectory X(t ) is given by

Z(t ) = X(t ) · a0

|a0| (13)

and

ρ(t ) =
{
|X(t )|2 −

(
X(t ) · a0

|a0|
)2}1/2

. (14)

The trajectory of (Z(t ), ρ(t )) in the case of Na22 is shown in
Fig. 5. In the cases of weaker intensity, I 1/2 = 0.01 and 0.02,
the Thouless parameters of some of the index m exhibiting
motion of the a mode, the trajectory on the (Z, ρ) plane does
not run along the Z axis. In the cases of I 1/2 = 0.03 and 0.05,
all the Thouless parameters exhibiting the s-mode motion,
the trajectory runs almost along the Z axis indicating that the
collective excitation takes place. With increasing intensity,
the trajectory comes to run closer to the Z axis.

Figure 6 shows the trajectory (Z(t ), ρ(t )) in the cases of
increasing n with the intensity fixed as I 1/2 = 0.05. In the
case of n = 1 and 2, some of the Thouless parameters exhibit
motion of the a mode, and consequently, collective behavior
is not seen. With increasing n, the trajectory comes closer to
the Z axis, and the amplitude becomes larger, indicating the
growth of the collectivity.

V. DISCUSSION

A. Relation between the collectivity and the statistical
property of the CI coefficients

As stated in the preceding section, the trajectory running
along the Z axis on the (Z, ρ) plane indicates the occurrence
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FIG. 4. Trajectories of the Thouless parameters (Re[ξma],
Re[ξmb]) for Na4n+2 (n = 3, 4, 5) with the fixed intensity I 1/2 =
0.05. Panels (a)–(c) show the cases of n = 3, 4, and 5, respectively.
Values of m are indicated in the figure. All the trajectories run almost
on the horizontal axis and overlap with each other.

of the plasmonic excitation with high collectivity. Therefore,
the ratio Z/ρ can be regarded as a measure of the collectivity.
By using the expression of ξma (t ) for |γm| � 1 in the second

- 8 - 4 4 8
Z

2

4

6

8
ρ

0

I1/2 = 0.01

0.02

0.03
0.05

FIG. 5. Trajectories (Z(t ), ρ(t )) in the case of Na22. Values of
I 1/2 are indicated in the figure.

line of Eq. (12), we obtain

Z =
√

2(2n + 1)μnI
1/2 cos(ωt − δ)

1√
2n + 1

∑
m

CS
m

=
√

2(2n + 1)3μnI
1/2 E

[
CS

m

]
cos(ωt − δ) (15)

and

ρ =
√

2(2n + 1)μnI
1/2 cos(ωt − δ)

×
⎧⎨
⎩

∑
m

|CS
m|2 − 1

2n + 1

(∑
m

CS
m

)2
⎫⎬
⎭

1/2

=
√

2(2n + 1)3μnI
1/2

√
Var

[
CS

m

]
cos(ωt − δ), (16)

where E[CS
m] and Var[CS

m] are the expectation value and the
variance of {CS

m|m = 0,±1, . . . ,±n}, i.e., the CI coefficients
of the singly excited configurations. The measure of the
collectivity, Z/ρ, is expressed as

Z

ρ
= E

[
CS

m

]
√

Var
[
CS

m

] , (17)

- 8 - 4 0 4 8
Z

2

4

6

8
ρ

n = 1

n = 2

n = 3

n = 4

n = 5

FIG. 6. Trajectories (Z(t ), ρ(t )) in the case of Na4n+2 (n =
1, 2, . . . , 5) with the fixed intensity I 1/2 = 0.05. Values of n are
indicated in the figure.
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i.e., the inverse of the standard deviation relative to the expec-
tation value. As discussed qualitatively in Sec. II, the equal
CI coefficients of the singly excited configurations lead to
constructive interference inducing the plasmonic excitation.
Conversely speaking, variations in the CI coefficients hinder
the collective excitation. The measure of the collectivity Z/ρ

derived from the behavior of trajectories of the Thouless
parameter is exactly consistent with that discussion, and indi-
cates that the statistical property of the CI coefficients governs
the collectivity of the plasmonic excitation.

B. Intensity of light inducing collective excitation

In this subsection, the combination of intensity and fre-
quency of light needed to induce the collective excitation
is discussed. Despite that an approximate formula based on
the first-order perturbation is adopted in Eq. (4), the present
model is basically a two-level Floquet problem and solvable.
The exact formula is obtained by substituting the coefficient
eiδμnI

1/2 in front of |�P 〉 in Eq. (1) by

CP = − tan

[
1

2
tan−1

{
2ω10/ω

ω10 − ω
μn

√
π

c
IL

}]
. (18)

By applying the same substitution to the expression of γm in
Eq. (11), the condition for the transition between the a mode
and s mode, |γm| = 1, can be expressed as

κm

∣∣∣∣ tan

[
1

2
tan−1

{
2ω10/ω

ω10 − ω
μn

√
π

c
IL

}]∣∣∣∣ = 1, (19)

where

κm =
(

2n + 1

2

)1/2
∣∣CS

m

∣∣√−CD
m

. (20)

The threshold intensity for the a−s–mode transition is
given by

I
(m)
L = c

4π

[
1

μn

ω(ω10 − ω)

ω10
tan

(
2 tan−1 1

κm

)]2

. (21)

It can be seen that a larger value of κm makes the threshold
intensity I

(m)
L weaker. The smallest and largest ones among

{I (m)
L |m = 0,±1, . . . ± n} are denoted as Imin

L and Imax
L ,

respectively. When IL < Imin
L , the trajectory of (ξma, ξmb )

belongs to the a mode for all the index m. When the intensity
IL exceeds the threshold Imin

L , transition to the s mode takes
place for one of the index m. When IL > Imax

L , the transition to
the s mode is completed for all the index m, and the collective
excitation occurs.

In Fig. 7, two kinds of threshold intensity, Imin
L and Imax

L ,
for the case of Na22 are plotted as a function of ω. As can be
seen from Eq. (21), both of Imin

L and Imax
L have an extremum

at ω = ω10/2 and vanish at ω = ω10. At the latter condition,
i.e., at the frequency on resonance, the Floquet state in Eq. (1)
becomes 1:1 linear combination of the ground state and the
plasmonic state, i.e., |CP | = 1. In this case, the condition for
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FIG. 7. Two kinds of threshold intensity, Imin
L and Imax

L , plot-
ted as a function of ω. The intensity of 1 a.u. is converted to
6.4×1015 W cm−2.

the collective excitation becomes simply κm > 1, which is
found to be satisfied in all of Na4n+2 (n = 1, 2, . . . , 5).

At near resonance, the behavior of the threshold as a
function of ω can be expressed as

I
(m)
L = c

4πμ2
n

(�ω)2 tan2

(
2 tan−1 1

κm

)
+ o(�ω3), (22)

where �ω = ω − ω10. Two kinds of threshold intensity, Imin
L

and Imax
L , for a small detuning �ω = 1 × 10−4 a.u. (=

21.95 cm−1) are plotted as a function of the cluster size 4n + 2
in Fig. 8. The calculation of the graphs is based on the exact
formula in Eq. (21). It can be seen that both of Imin

L and
Imax
L rapidly decrease with the cluster size. This decrease is

ascribable to the increase of both of the transition moment μn

and parameters κm with increasing cluster size.

C. Energy landscape as a function of the Thouless parameters

In paper I [27], the plasmonic excitation is treated on
the basis of the random-phase approximation (RPA) analysis.
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FIG. 8. Semi-logarithmic plot of Imin
L and Imax

L as a function of
the cluster size 4n + 2. The value of the detuning is set to be �ω =
1×10−4 a.u. (=21.95 cm−1).
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The RPA can be interpreted as harmonic oscillation around
the minimum of the energy landscape in the space of the
Thouless parameters. In the ordinary RPA, the minimum point
corresponds to the Hartree-Fock solution.

In the present study, nonlinearity is included in the motion
of the Thouless parameters by considering the configura-
tion mixing of the doubly excited configurations of the type
(σm)−2(πm)2. Due to the electron correlation in the ground
state, the minimum point is no longer the Hartree-Fock solu-
tion corresponding to the origin of the parameter space. The
a-mode trajectories observed in Sec. IV A indicate oscillation
around a new minimum created by the electron correlation.
However, with increasing intensity of incident light, the shape
of the trajectory changes to the collective motion of the s

mode, i.e., the symmetric stretch mode in the RPA analysis.
In other words, large amplitude oscillation of the s mode
induced by intense light resembles the harmonic motion of
the RPA. This is a somewhat paradoxical phenomenon where
the effect of nonlinearity seems to be reduced in large ampli-
tude motion. In order to understand such a phenomenon, the
energy landscape as a function of the Thouless parameters is
examined.

We consider the case of an ideal plasmonic excitation,
and the Thouless parameters are set to be independent
of the index m, i.e., ξ−na = ξ(−n+1)a = · · · = ξna ≡ ξa and
ξ−nb = ξ(−n+1)b = · · · = ξnb ≡ ξb. The energy landscape on
the (ξa, ξb ) plane is examined. The diagonal matrix element

of the Hamiltonian operator is given by

〈1�|H |1�〉 = N2〈�0|H |�0〉

+ 1

2
|ξa + ξb|2

n∑
m=−n

n∑
m′=−n

〈
�S

m

∣∣H ∣∣�S
m′

〉

+ |ξaξb|2
n∑

m=−n

n∑
m′=−n

〈
�D

m

∣∣H ∣∣�D
m′

〉

+N (ξaξb + ξ ∗
a ξ ∗

b )
n∑

m=−n

〈
�0

∣∣H ∣∣�D
m

〉
, (23)

where N = 2n + 1, |�S
m〉 = |1�[(σm)−1(πm)1]〉, and |�D

m〉 =
|(σm)−2(πm)2〉. The external force is not included in this anal-
ysis. We used the vanishment, 〈�S

m|H |�0〉 = 0, originating
from Brillouin’s theorem. The summations in the second and
fourth lines of Eq. (23) can be rewritten by using new symbols
v1 and v2 as ∑

m�=m′

∑
m′

〈
�S

m

∣∣H ∣∣�S
m′

〉 = N (N − 1)v1 (24)

and
n∑

m=−n

〈
�0

∣∣H ∣∣�D
m

〉 = Nv2, (25)

respectively. We adopt an approximation neglecting the matrix
element 〈�D

m |H |�D
m′ 〉 for m �= m′. Eventually, we obtain

〈1�|H |1�〉 = N2〈�0|H |�0〉 + 1

2
|ξa + ξb|2

{
n∑

m=−n

〈
�S

m

∣∣H ∣∣�S
m

〉 + N (N − 1)v1

}

+ |ξaξb|2
n∑

m=−n

〈
�D

m

∣∣H ∣∣�D
m

〉 + N2(ξaξb + ξ ∗
a ξ ∗

b )v2. (26)

On the other hand, the normalization factor is given by

〈1�|1�〉 = N2 + N

2
|ξa + ξb|2 + N |ξaξb|2. (27)

The energy expectation value is obtained as

H (ξa, ξb ) = 〈1�|H |1�〉
〈1�|1�〉 = 〈�0|H |�0〉 +

{
ES

ex + (N − 1)v1
}|ξa + ξb|2 + 4Nv2Re[ξaξb] + 2ED

ex|ξaξb|2
2N + |ξa + ξb|2 + 2|ξaξb|2 , (28)

where ES
ex and ED

ex are the average excitation energies of
�S

m and �D
m , respectively. From Eq. (28), it can be seen that

the shifted and scaled energy, {H (ξa, ξb ) − 〈�0|H |�0〉}/ES
ex,

is determined by four parameters, N, v1/E
S
ex, v2/E

S
ex, and

ED
ex/E

S
ex. In other words, the landscape of H (ξa, ξb ) can be

described by these four parameters. According to paper I, we
adopt the fixed parameter value v1/E

S
ex = 0.075. The param-

eter v2/E
S
ex is adjusted so that the positions of the minimum

of H (ξa, ξb ) are consistent with the a-mode trajectory shown
in Sec. IV A. The resultant value is v2/E

S
ex = 0.023. The pa-

rameter value ED
ex/E

S
ex = 2 is adopted as a rough estimation.

Since the range of the variables Re[ξa] and Re[ξb] is
(−∞,∞), it is useful to carry out the variable transfor-
mation ξa = tan(θa/2) and ξb = tan(θb/2) when we ex-

amine the energy landscape over the entire domain of
(Re[ξa], Re[ξb]). The contour map of H (θa, θb ) with real θa

and θb is shown in Fig. 9. Four saddle points (θa, θb ) =
(π, 0), (−π, 0), (0, π ), and (0,−π ) are physically equiva-
lent and correspond to the singly excited state. The height of
these saddle points is governed by v1 and ES

ex. Four maxima
(θa, θb ) = (π, π ), (π,−π ), (−π, π ), and (−π,−π ) corre-
spond to the doubly excited state. The height of these maxima
is largely governed by ED

ex.
In order to examine the landscape around the minima

corresponding to the ground state, it is more convenient to
use the original variable (Re[ξa], Re[ξb]). The contour map of
H (ξa, ξb ) with real (ξa, ξb ) is shown in Fig. 10. Two lateral
and two vertical valleys are connected with the central basin.
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FIG. 9. Contour map of H (θa, θb ) with real θa and θb for N = 11.

The basin has the shape of a double well. Each minimum is
connected with one lateral and one vertical valley. The origin
is a saddle point corresponding to the Hartree-Fock solution.
The minima of the double well correspond to the ground
state obtained by the configuration mixing given in Eq. (2).
The position and depth of the minima are governed by the
parameter v2.

The trajectories shown in Sec. IV A are understood as
running along the valleys. In the case of the a mode, the
trajectory, for example, runs along the right lateral valley
leftwards, arrives at the lower right minimum, and turns down-
wards into the lower vertical valley. On the other hand, the
s-mode trajectory runs along the right lateral valley leftward,
arrives at the lower right minimum, turns upwards to the upper
left minimum, and turns leftwards into the left lateral valley.
Accordingly, both the a-mode and the s-mode trajectories can
be understood as motion along the valleys of the energy land-
scape. When the external force brought by light is weak, the
trajectory cannot go over the barrier of the saddle point at the
origin, and stays in the lower right region. When the external
force becomes sufficiently strong, the trajectory passes over
the barrier at the origin, and goes to and fro in accordance with
the oscillation of the light field. Exactly speaking, this type of
motion differs from the harmonic oscillation around the origin
considered in the RPA analysis. However, the s-mode motion
along the two lateral valleys mimics the harmonic oscillation
despite the fact that these two valleys are slightly staggered
with each other.

In short, plasmonic excitation occurs if the external force
brought by light overwhelms the effect of the electron correla-
tion in the ground state. The RPA analysis, which ignores the
electron correlation, predicts the occurrence of the plasmonic
excitation in the case of sufficiently strong intensity.

D. Extension to general cases

In the present method, the Thouless parameters are ob-
tained from the CI coefficients of the Floquet state. It requires
that the number of the Thouless parameters matches the

- 1 - 0.5 0 0.5 1
- 1

- 0.5

0

0.5

1

Re[ξa]

R
e[

ξ b
] (b)

- 4 - 2 0 2 4
- 4
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0
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4

Re[ξa]

R
e[

ξ b
] (a)

FIG. 10. (a) Contour map of H (ξa, ξb ) with real ξa and ξb for
N = 11. (b) Magnification of the central part of (a).

number of the CI coefficients, as stated in paper II. The wave
function in Eq. (6) is designed so as to meet this condition.

The wave function in Eq. (6) can be generalized to the form

|1�〉 = NoNv|�0〉 +
No∑
j=1

Nv∑
k=1

[
1√
2

(ξjka + ξjkb )

× ∣∣1
�

[(
φo

j

)−1(
φv

k

)1]〉+ ξjkaξjkb

∣∣(φo
j

)−2(
φv

k

)2〉]
, (29)

where {φo
1 , φ

o
2 , . . . , φ

o
No

} and {φv
1 , φv

2 , . . . , φv
Nv

} are the occu-
pied and virtual MO’s, respectively.

The Thouless parameters, ξjka and ξjkb, can be determined
from the coefficients CD

jk and CS
jk of the CI expansions

∣∣�CM
0

〉 = |�0〉 +
No∑
j=1

Nv∑
k=1

CD
jk

∣∣(φo
j

)−2(
φv

k

)2〉
(30)
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and

|�P 〉 =
No∑
j=1

Nv∑
k=1

CS
jk

∣∣1
�

[(
φo

j

)−1(
φv

k

)1]〉
. (31)

One can derive a closed-form formula for ξjka and ξjkb

analogous to Eqs. (9)–(11). The ring-shaped Na4n+2 (n =
1, 2, 3, . . .) clusters correspond to the special case in which
only the terms with j = k are retained. As regards more
general cases, e.g., clusters with three-dimensional structure,
the plasmonic state is also expected to be well described by
a superposition of singly excited configurations. In short, the
analysis based on the wave function in Eq. (29) is applicable
to more general cases, as far as the CI expansions in Eqs. (30)
and (31) give rise to a good physical picture.

VI. CONCLUSION

In this article, the collectivity of the plasmonic excitation
studied in paper I [27] is more closely analyzed by focusing
the attention on the dynamics of electrons. The method of
paper II [28] discussing the dynamics of the electrons in
the He atom is extended in order to treat the plasmonic-
excited state expressed as a linear combination of the Thouless
representations. Our main results are in that (1) the dynamics
of electrons in the plasmonic excitation is analyzed by the
trajectory of the Thouless parameters, and (2) the analysis
is not focused on the plasmonic-excited state itself but on
the Floquet state, i.e., a time-dependent linear combination
of the plasmonic state and the ground state produced by
irradiation of stationary light. In other words, the motion of
electrons shaken by the light field is viewed as trajectories of
the Thouless parameters.

Motion of the electron pair in each MO is found to be
the same as the case of the He atom discussed in paper II.
When the intensity of light is weak, two electrons in each
MO are shaken in a manner that keeps two electrons on the
opposite side of the nucleus with each other. This type of
motion, the a mode, can be interpreted to occur when the
Coulomb repulsion between the electron pair overwhelms the
external force brought by light. When the intensity of light
is strong, one electron runs to and fro around the nucleus in

accordance with the oscillation of the light field, while the
other electron stays in the vicinity of the nucleus. This type
of motion, the s mode, is in line with the intuitive picture of
single electron excitation by absorption of light. In the case of
the ring-shaped Na4n+2 clusters, it is found that the electrons
in all the occupied valence MO’s exhibit oscillation of the
s-mode motion in the same phase, in other words, collectively,
if the intensity of light exceeds a threshold. This phenomenon
corresponds to the collective excitation found in the RPA
analysis reported in paper I. The threshold intensity for the
collective excitation is found to decrease with the cluster size.

The connection between the collective behavior and the
CI coefficients of the plasmonic-excited state is clarified. The
statistical property of the CI coefficients, i.e., the standard
deviation relative to the expectation value, is found to serve as
a measure of the collectivity. In other words, the fluctuation of
the CI coefficients hinders the collectivity. This is in line with
the observation in paper I that almost all of the particle-hole
and hole-particle excitation in the RPA participate with nearly
equal weight in the plasmonic excitation.

The energy landscape in the space of the Thouless param-
eters is found to help intuitive understanding of the dynamics
of electrons. There is a basin having a double well caused
by the electron correlation in the ground state. Each well is
connected with two valleys running toward the point corre-
sponding to the singly excited state. The trajectories of the
Thouless parameters can be understood as motion along the
valleys. The switch to the collective excitation is interpreted
as a change in the choice of the valleys in which the trajectory
runs.

In summary, the present study clarified time-dependent
dynamics of the plasmonic excitation in the ring-shaped small
Na clusters. Such a time-dependent picture is believed to be
useful to understand the nature of the plasmonic excitation in
nanoparticles and to explore new aspects of nano-optics.
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