
PHYSICAL REVIEW A 98, 053434 (2018)

Three-dimensional alignment of asymmetric-top molecules induced by polarization-shaped
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Optimal control simulation is applied to numerically design nonresonant laser pulses that maximize the
degrees of three-dimensional (3D) alignment of SO2 using the lowest-order induced-dipole interaction. In our
trials, combinations of more than two mutually orthogonal, linearly polarized subpulses are always obtained as
the optimal solutions. Each subpulse in the optimal pulses impulsively excites the rotational wave packet. The
optimal pulses effectively cooperate with the rotational dynamics up to only a few partial revival timings owing to
the rotational dephasing that determines the effective control periods. The control mechanisms are interpreted in
terms of the time derivatives of the expectation values of the squares of the direction cosines, that of the rotational
energy, and the interplay between them. We find a special and important role of the last subpulses as they align
the molecular axes using the interaction through the two smallest polarizability components, while the other
subpulses excite the rotational wave packet mainly through the largest polarizability component. The control
pulses composed of the specified number of subpulses are also numerically optimized by actively utilizing the in-
stantaneous penalty to systematically show the superiority of the use of more than two subpulses over that of two
subpulses, the latter of which leads to the saturation of the degree of 3D alignment as a function of total fluence.
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I. INTRODUCTION

Molecular alignment is a fundamental technique that en-
ables us to observe and manipulate molecular wave functions
in a molecule-fixed frame [1,2]. A short nonresonant laser
pulse, the temporal width of which is much shorter than a
typical rotational period, is often used to align molecules
because the nonresonant pulse can impose a controlled strong
electric field, i.e., a torque on the molecules at the right timing
through induced-dipole interaction [3]. The rotational wave
packet reaches highly aligned states (revivals [4]) after the
excitation, i.e., in the field-free condition [5–7].

Some studies have proposed control schemes to three-
dimensionally align asymmetric-top molecules in the field-
free condition [8–16]. For example, a combination of two
mutually orthogonal, linearly polarized laser pulses was nu-
merically studied [8], the effectiveness of which was exper-
imentally demonstrated by using SO2 at the rotational tem-
perature of ∼ 10 K [9]. In the so-called hold-and-spin scheme
[10,11], a combination of linearly polarized laser pulses is also
used in which the first laser with a long temporal width holds
the most polarizable molecular axis instead of impulsively
exciting it. The modified version, called a truncated hold-
and-spin scheme, turns off the first pulse rapidly, realizing
field-free three-dimensional (3D) alignment [11]. A numerical
study that used a pair of orthogonal Gaussian pulses with
six optimized pulse parameters indicated that the pulse has
a general form consisting of overlapping pulses with slightly
displaced temporal positions [12]. The numerical study would
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confirm the effectiveness of the hold-and-spin scheme. A long
elliptically polarized laser pulse with rapid truncation [13] and
a single short elliptically polarized laser pulse with “optimal”
ellipticity [14] were also studied. In another numerical study
[15] that used multiple elliptically polarized laser pulses with
the same ellipticity, significant improvement of the degree of
3D alignment of SO2 was not observed. On the other hand, a
recent study reported the effectiveness of multiple elliptically
polarized laser pulses with different ellipticities as well as a
linearly polarized laser pulse in combination with a sequence
of elliptically polarized laser pulses [16].

As explained above, uncertainty remains regarding how
to best align asymmetric molecules three dimensionally. In
particular, the superiority of using the control pulse that is
composed of more than two subpulses [16] has not been fully
understood. This situation justifies the present optimal control
study in which we fully optimize a laser pulse including its
time-dependent polarization vectors to best achieve the 3D
alignment [7,17,18]. Here, we consider a rigid-body model
of SO2 as it is often used to evaluate the effectiveness of
control schemes [9,15]. The present simulation will demon-
strate the advantage of the combination of more than two
linearly polarized subpulses. We briefly summarize the nu-
merical procedures in Sec. II. The results and the optimal
control mechanisms are discussed in Sec. III. In Sec. IV, we
summarize the present study.

II. THEORY: OPTIMAL CONTROL SIMULATION

We consider an asymmetric-top molecule that interacts
with a nonresonant laser pulse, E(t ), through the lowest-order

2469-9926/2018/98(5)/053434(8) 053434-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.053434&domain=pdf&date_stamp=2018-11-26
https://doi.org/10.1103/PhysRevA.98.053434


YOSHIDA, TAKEMOTO, AND OHTSUKI PHYSICAL REVIEW A 98, 053434 (2018)

FIG. 1. Molecule-fixed a, b, and c axes of SO2 and space-fixed
X, Y, and Z axes. Three of the angles between the molecule-fixed axes
and the space-fixed axes are shown.

induced dipole, i.e., the polarizability,
↔
α. As shown in Fig. 1,

we introduce a space-fixed frame and a molecule-fixed frame,
which are defined by sets of unit vectors, {eX, eY , eZ} and
{ea, eb, ec}, respectively. The Hamiltonian is given by

H (t ) = H0 + V (t ) = AJ 2
a + BJ 2

b + CJ 2
c − 1

2

↔
αE(t )E(t ),

(1)
where A (Ja), B (Jb), and C (Jc) are rotational constants
(components of the angular momentum operator, J) as-
sociated with the molecule-fixed frame. The eigenstate of
H0 is expressed as the linear combination of the eigen-
states of a symmetric top, {|JKM〉}, such that |JτM〉 =∑

K aJ
τK |JKM〉, where J , K , and M are the quantum num-

bers of J2, Jc, and JZ (the space-fixed Z component of J),
respectively [1]. Because of the C2v symmetry of SO2 and the
nuclear spin statistics, only even-numbered K’s are allowed.
We assume that the laser pulse is expressed as the sum of the
X and Y components:

E(t ) = EX(t )eX + EY (t )eY . (2)

The optimized X and Y components, EX(t ) and EY (t ), au-
tomatically lead to the optimized time-dependent polarization
condition. The time evolution of the density operator, ρ(t ), is
described by the Liouville equation,

ih̄
∂

∂t
ρ(t ) = [H (t ), ρ(t )], (3)

where the initial condition is given by the Boltzmann distribu-
tion. Here, we neglect decoherence effects by assuming low
gas pressure.

In optimal control simulation, we specify our control ob-
jective by using the target Hermitian operator, W [19]. Here,
we summarize the procedure without explicitly specifying W .
We numerically design an optimal pulse that maximizes the
objective functional, F= Tr{Wρ(tf )}, i.e., the target expecta-
tion value at the specified final time, tf [20]. Although a pulse
with quite high intensity may lead to a large target expectation
value, it may also induce undesirable side effects. To avoid
this, we replace

↔
α with

↔
αγ ≡ ↔

α[1 + iγ (t )], where the positive

function, γ (t ), will be referred to as an instantaneous penalty
function [21,22]. Because the γ (t )-dependent non-Hermitian
part, which is proportional to the pulse intensity, introduces
the penalty due to the reduction in the norm, a suitable
choice of the function γ (t ) can lead to an optimal pulse with
reasonably high intensity. Note that after obtaining the optimal
pulses, we recalculate all the physical properties using the
original equation of motion without γ (t ), i.e., Eq. (3).

By applying calculus of variations to the objective func-
tional, we derive the coupled pulse-design equations, which
are composed of

ImTr{ξγ (t )
↔
αγ E(t )ργ (t )} = 0, (4)

ih̄
∂

∂t
ργ (t ) = [Hγ (t ), ργ (t )], (5)

and

ih̄
∂

∂t
ξγ (t ) = [H †

γ (t ), ξγ (t )], (6)

where ξγ (t ) is the Lagrange multiplier that represents the
constraint due to Eq. (5). In Eqs. (4)–(6), the suffix γ is
introduced to explicitly indicate that we have introduced the
instantaneous penalty function. As shown above, the den-
sity operator formalism is convenient to formally derive the
pulse-design equations. In numerical simulation, however, we
expand the density operator and the Lagrange multiplier in
terms of a set of wave functions and iteratively solve the
pulse-design equations in the wave-function form to reduce
computational costs.

Finally, we summarize the parameters used in the sim-
ulation in Sec. III. We adopt the rotational constants,
A = 2.03 cm−1, B = 0.344 cm−1, and C = 0.294 cm−1, and
the polarizability components, αaa = 31.3 Å

3
, αbb = 20.8 Å

3
,

and αcc = 18.7 Å
3
, which are taken from Refs. [23,24], re-

spectively. Temperature is set to 1.0 K. All times are measured
in units of “rotational period”, Trot = 1/2(B + C) = 26.2 ps.
We numerically integrate the equations by using the fifth-
order Runge-Kutta method with the temporal grid, 10−5

(units of Trot), and iteratively solve the coupled pulse-design
equations by using the monotonically convergent algorithm
[17,18,21]. We assume a circularly polarized laser pulse as
the initial guess field, that is,

E
(0)
X (t ) = ε(0)(t ) cos ωt and E

(0)
Y (t ) = ε(0)(t ) sin ωt, (7)

where the wavelength of the optical frequency is set to
1600 nm for convenience. We use the initial envelope function
with a rather flat structure, ε(0)(t ), given by

ε(0)(t ) =

⎧⎪⎨
⎪⎩

ε0 sin
(

t
2τL

π
)

0 � t < τL

ε0 τL � t � tf − τL

ε0 sin
(

tf −t
2τL

π
)

tf − τL < t � tf

, (8)

with τL = 0.1 Trot. The value of ε0, which is empirically
determined, is on the order of 0.1 GV/m.
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FIG. 2. Results of optimization control simulation with the final
time, tf = 4.0, in units of Trot when the a and b axes are chosen as
the target axes. Optimized (a) X and (b) Y components of the laser
field. Dot-dashed lines indicate fluence as a function of time. (c)
Expectation value of the free rotational Hamiltonian, H0. (d) Red
(gray) solid, black solid, and blue dashed lines represent the time
evolution of the degrees of alignment, 〈cos2θaX〉(t ), 〈cos2θbY 〉(t ), and
〈cos2θcZ〉(t ), respectively.

III. RESULTS AND DISCUSSION

We first optimize the laser pulses by assuming a slightly
long final time, tf = 4.0. This is because we do not know
how much the optimized laser pulses can cooperate with
the imperfect alignment revivals in the presence of strong
rotational dephasing due to the lack of a regular energy-level
structure. To specify the target operator, we choose two of
the three molecular axes to be aligned along the polarization
vectors of the laser pulse. For example, when the a and b

molecular axes are chosen as the target axes, we adopt the
target operator,

W = 1
3 [(ea · eX )2 + (eb · eY )2 + (ec · eZ )2]

= 1
3 (cos2θaX + cos2θbY + cos2θcZ ). (9)

This is the sum of the square of the direction cosines,
the expectation value of which will be referred to as the
averaged degree of alignment. The results of the optimal
control simulation are shown in Fig. 2. We see from Figs. 2(a)
and 2(b) that the optimal laser pulse is composed of mutually

FIG. 3. Results of optimization control simulation with the final
time, tf = 2.0, in units of Trot when the a and b axes are chosen as
the target axes. Optimized (a) X and (b) Y components of the laser
field. Dot-dashed lines indicate fluence as a function of time. (b)
Expectation value of the free rotational Hamiltonian, H0. (c) Red
(gray) solid, black solid, and blue dashed lines represent the time
evolution of the degrees of alignment, 〈cos2θaX〉(t ), 〈cos2θbY 〉(t ),
and 〈cos2θcZ〉(t ), respectively. Inset shows a magnified view of the
degrees of alignment around the final time indicated by a solid
vertical line. The red (gray) color-coded bar shows the temporal
region in which the absolute value of the amplitude of the X (Y)
subpulse is greater than 1 GV/m.

orthogonal, linearly polarized subpulses. The pulse fluence as
a function of time indicates that the subpulses appearing in the
second half could dominate the control. This suggests that a
shorter control time, e.g., tf = 2.0, would be sufficient for the
optimal pulse to achieve a high degree of 3D alignment (see
Fig. 3). Figure 2(c) shows that each subpulse in the optimal
pulse monotonically increases the rotational energy although
the last Y subpulse introduces a small dip. This monotonic in-
crease in rotational energy is quite reasonable because higher
rotational excitation is necessary to achieve a higher degree of
3D alignment. In fact, this point will provide one of the bases
to discuss the control mechanisms later. Figure 2(d) shows
the time-dependent expectation values of the direction cosines
in Eq. (9). Their oscillation amplitudes gradually increase
and reach maximum values immediately after the significant
enhancement by the last X and Y subpulses.
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TABLE I. Optimized degrees of alignment for three sets of the target molecular axes. The target axes, (a, b), for example, mean that the
a and b molecular axes should be aligned along the polarization vectors of the laser pulse. The angle θa denotes the angle between the a axis
and one of the space-fixed axes along which the a axis mostly aligns. The space-fixed axes are denoted in the parentheses. The angles θb and
θc are defined similarly.

Target axes (a, b) (b, c) (c, a) (a, b, c)a

Averaged degree of alignment 0.75 0.71 0.73 0.77
〈cos2θa〉 0.78 (X) 0.72 (Z) 0.79 (X) 0.79 (X)
〈cos2θb〉 0.75 (Y) 0.71 (X) 0.71 (Z) 0.77 (Y)
〈cos2θc〉 0.73 (Z) 0.72 (Y) 0.70 (Y) 0.77 (Z)
Pulse fluence (J cm−2) 1.3 1.5 1.0 1.4

aFor reference, we show the optimized degrees of alignment when the nonresonant laser pulse is assumed to be composed of linearly polarized,
X, Y, and Z components.

The degrees of alignment realized by the optimal pulses are
summarized in Table I, in which all three cases of the target
molecular axes are considered. We see from Table I that rea-
sonably high degrees of alignment are achieved independently
of the choice of the target axes. Although we do not show
the numerical results except for those in Fig. 2, the optimal
pulses are always composed of mutually orthogonal, linearly
polarized subpulses. We have not found elliptically polarized
subpulses in the optimal pulses in our trials. For reference, we
also optimize the elliptically polarized laser pulse with a fixed
ellipticity of 0.55, and that with 0.78 (not shown). They lead
to the averaged degrees of alignment of 0.62 and 0.63, respec-
tively, when the a axis (c axis) is aligned along the X axis
(Y axis). As these values are considerably smaller than those
given in Table I, the combination of elliptically polarized
subpulses with a fixed ellipticity cannot be an optimal control
approach, consistent with the conclusion in Ref. [15]. In
addition, we also optimize a combination of linearly polarized
X, Y, and Z pulses simultaneously. As expected, the excitation
from the three mutually orthogonal directions leads to the
largest degree of alignment, as shown in Table I. However, we
will not further discuss this control scheme because it would
require much more complex experimental arrangements than
the combination of X and Y pulses.

In Fig. 3, we optimize the laser pulse by assuming a control
time that is half that in Fig. 2; i.e., tf = 2.0. We choose the a

and b axes as the target axes because this combination led to
the optimal pulse with the simplest temporal structure. The
optimized X and Y pulses in Figs. 3(a) and 3(b) have quite
similar structures to those in the second half in Figs. 2(a) and
2(b), respectively. The averaged degree of alignment, 0.75, in
Fig. 3 is the same as that in Fig. 2 to two significant figures
although the value of each component is slightly different.
We see a total of five subpulses in Fig. 3, which almost
monotonically increase the rotational energy, as shown in
Fig. 3(c). Figure 3(d) shows the expectation values of the
squares of the direction cosines as a function of time, from
which we see that their amplitudes are significantly enhanced
around the final time. The inset offers a magnified view of the
region framed by a rectangle in Fig. 3(d).

As our control objective is specified by the expectation
value of the target operator [Eq. (9)] at the final time, 〈W 〉(tf ),
we rewrite it as

〈W 〉(tf ) =
∫ tf

0
dt

d

dt
〈W 〉(t ) + 〈W 〉(0). (10)

We thus focus on the time-dependent behavior of the
time derivatives of the expectation values of the squares of
the direction cosines to examine the role of each subpulse
during the control period. We first discuss the role of the last
Y subpulse, which contributes to 64% of the total fluence.
We see from the inset in Fig. 3 that the last Y subpulse
significantly increases 〈cos2θbY 〉(t ) and 〈cos2θcZ〉(t ) almost
by the same amount. This behavior predicted by the optimal
control simulation means that their time derivatives should be
almost the same at that timing; i.e.,

d

dt
〈cos2θbY 〉(t ) � d

dt
〈cos2θcZ〉(t ). (11)

We now try to find the conditions for deriving Eq. (11). If
we assume that the last Y subpulse appears when 〈cos2θaY 〉(t )
and 〈cos2θcX〉(t ) take extreme values, i.e., d〈cos2θaY 〉(t )/dt =
0 and d〈cos2θcX〉(t )/dt = 0, it will be easy to see that Eq. (11)
can be derived by using the normalization conditions, eY ·
eY = ec · ec = 1. From the inset in Fig. 3, we also see only a
slight decrease in 〈cos2θaX〉(t ), indicating d〈cos2θaX〉(t )/dt �
0 at the timing of the last Y subpulse. In the end, the last Y
subpulse can be characterized by the three extreme conditions,

d

dt
〈cos2θaX〉(t ) = 0,

d

dt
〈cos2θaY 〉(t ) = 0, and

d

dt
〈cos2θcX〉(t ) = 0. (12)

The first two extreme conditions mean that the undesirable
torque imposed on the a axis by the last Y subpulse should
be minimized because the a axis should be aligned along
the X axis at the final time, i.e., immediately after the last
Y subpulse. The minimization of the undesirable torque is
realized not only by maximizing 〈cos2θaX〉(t ) but also by
actively minimizing 〈cos2θaY 〉(t ). The latter condition is quite
reasonable because the actual maximum value of 〈cos2θaX〉(t )
is usually much smaller than the ideal value of 1. We would
like to emphasize that the minimization of 〈cos2θaY 〉(t ) can be
realized only when the alignment control pulse is composed
of more than two subpulses [8]. The remaining extreme con-
dition, d〈cos2θcX〉(t )/dt = 0, which means the minimization
of 〈cos2θcX〉(t ), requires that the c axis be on the YZ plane as
much as possible. All the three extreme conditions in Eq. (12)
cooperate to simultaneously align the b and c axes, as shown
in Eq. (11).
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To directly connect the above-mentioned alignment control
to the rotational excitation, we consider the time derivative of
the expectation value of H0 and obtain the relation [25]

d

dt
〈H0〉(t ) = [EX(t )]2

2

{
(αaa − αcc )

d

dt
〈cos2θaX〉(t )

+ (αbb − αcc )
d

dt
〈cos2θbX〉(t )

}

+ [EY (t )]2

2

{
(αaa − αcc )

d

dt
〈cos2θaY 〉(t )

+ (αbb − αcc )
d

dt
〈cos2θbY 〉(t )

}
. (13)

If we substitute one of the extreme conditions in Eq. (12)
into Eq. (13), we have

d

dt
〈H0〉(t ) � [EY (t )]2

2
(αbb − αcc )

d

dt
〈cos2θbY 〉(t ). (14)

In fact, we see from the inset in Fig. 3 that the time
derivative, d〈cos2θbY 〉(t )/dt , has a large positive value during
the excitation by the last Y subpulse. Because of the rather
small value of αbb − αcc in Eq. (14), the last Y subpulse must
supply a large amount of energy to induce the large rotational
excitation to highly align the b and c axes along the Y and Z
axes, respectively. This explains the large fluence of the last Y
subpulse.

We next discuss the role of the last X subpulse, which
appears immediately before the last Y subpulse. During the
period of X subpulse irradiation, Eq. (13) is reduced to

d

dt
〈H0〉(t ) = [EX(t )]2

2

{
(αaa − αcc )

d

dt
〈cos2θaX〉(t )

+ (αbb − αcc )
d

dt
〈cos2θbX〉(t )

}
. (15)

Because αaa − αcc � αbb − αcc and d〈cos2θaX〉(t )/dt has
a large positive value during this period (see the inset in
Fig. 3), we may say from Eq. (15) that the last X subpulse
appears when it can efficiently excite the rotational states.
Similarly, we can attribute the timings of the other X and Y
subpulses to the favorable timings for the rotational excitation.

We may thus summarize the control mechanism in Fig. 3 as
follows. Starting from the initial excitation by the Y subpulse,
the timing of which would be inversely determined by the
specified final time, the rotational wave packet is gradually
and effectively excited by the X and Y subpulses. They coop-
erate with the motion of the rotational wave packet through
the large polarizability differences, αaa − αbb and αaa − αcc

[Eq. (13)]. The excitation and the free propagation adjust
the shape of the rotational wave packet to approximately
satisfy the three extreme conditions in Eq. (12) immediately
before the final time. At this timing, because of these extreme
conditions [Eq. (12)], the last Y subpulse with a large fluence
effectively aligns the b and c axes along the Y and Z axes,
respectively, while leaving the a axis almost unchanged so that
the a axis keeps aligning along the X axis.

In the above discussion, we have not assumed a specific
temporal structure for each subpulse. As confirmed later in
Fig. 5, we can replace the subpulses in the optimal pulse with

simple Gaussian subpulses without reducing the degree of
3D alignment, provided that the Gaussian subpulses induce
impulsive excitation. In addition, we have emphasized the
important and special role of the last Y subpulse. All the other
subpulses are expected to efficiently excite the rotational wave
packet by utilizing the largest polarizability component, αaa ,
to help the last Y subpulse align the two minor b and c axes.
It would, thus, be natural to ask how many subpulses we can
remove while keeping high degrees of alignment. The answer
to this question will illustrate the effectiveness of the use of
more than two subpulses in the 3D alignment control.

We consider a minimal control pulse to achieve the 3D
alignment, which consists of a pair of linearly polarized X
and Y subpulses. The control scheme that utilizes the minimal
control pulse will be referred to as a double-pulse control
scheme [8]. We assume a pair of Gaussian X and Y subpulses
with specified total pulse fluence and calculate the degrees
of alignment as a function of delay time and fluence ratio.
Here, we consider the delay time between the two subpulses
in the range of [0, 2.0], and the fluence ratio, in the range
of [0, 1.0]. The values of the ratio, 0 and 1, correspond to the
single-pulse excitation. All the Gaussian subpulses considered
in the following are assumed to have a fixed temporal width
[full width at half maximum (FWHM)], σ = 100 fs, which
is estimated from the last Y subpulse in Fig. 3(b). Note that
we have numerically checked that the results are robust to the
value of σ as long as the so-called impulsive-excitation condi-
tion is satisfied. As we consider all possible combinations of
the target molecular axes with respect to the space-fixed axes,
we assume that the X subpulse appears before the Y subpulse.
For a given set of delay time and fluence ratio, we search the
largest value of the averaged degree of alignment until 4.0
after the second (Y) subpulse.

Figure 4(a) shows a contour plot that summarizes the
results when the total pulse fluence is set to 1.3 J/cm2. When
the largest averaged degree of alignment has a reasonably
large value for the given set of the time delay and fluence
ratio, we always see that the a and b axes are aligned along
the polarization vectors. The optimal point, i.e., the point
associated with the maximum value in Fig. 4(a), is localized
at the delay time of 0.98 and the fluence ratio of 0.20, the
latter of which means that the second subpulse has a much
larger fluence than the first subpulse. This trend is the same
as what we saw in the optimal control simulations (Figs. 2
and 3). However, the maximum value of 0.67 in Fig. 4(a) is
considerably smaller than 0.75 given in Fig. 3 even though the
total fluence of 1.3 J/cm2 in Fig. 4(a) is slightly larger than
1.1 J/cm2 in Fig. 3. We obtain the same figures as those in
Fig. 4(a) but with the other total fluence to find the maximum
averaged degrees of alignment under the given total fluence
(not shown here). Figure 4(b) shows the maximum averaged
degrees of alignment as a function of total fluence. We see
from Fig. 4(b) that saturation starts around 1.0 J/cm2. This
clearly demonstrates the limitation of the double-pulse control
scheme [8] and, therefore, justifies the introduction of more
than two subpulses to better achieve the 3D alignment.

We now consider an excitation scheme that utilizes more
than two subpulses. Figure 5(a) shows five Gaussian subpulses
that mimic the subpulses in the optimal pulse in Fig. 3. Each
Gaussian subpulse has the same fluence as its counterpart. The
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FIG. 4. (a) Contour plot of the largest averaged degrees of alignment achieved by mutually orthogonal, linearly polarized Gaussian
subpulses (see text) as a function of delay time (horizontal axis) and fluence ratio (vertical axis). As we consider all possible combinations
of the target molecular axes with respect to the space-fixed axes, the X subpulse is assumed to appear before the Y subpulse. Fluence ratio is
defined by the X-subpulse fluence divided by the total fluence. (b) Maximum averaged degree of alignment as a function of total fluence. The
values when the total fluence is 1.1 and 1.3 J/cm2 are specified by black and red (gray) open squares, respectively. Red solid and black dashed
lines in the inset, respectively, show a magnified view of the time evolution of the averaged degrees of alignment when the total fluence is 1.1
and 1.3 J/cm2. Each time when each averaged degree of alignment becomes a maximum is set to zero for illustrative purposes.

inset in Fig. 5(a) is a magnified view of the averaged degree
of alignment around the final time. The inset shows that the
set of five Gaussian subpulses, which will be referred to as
the quintuple-pulse control scheme, reproduces the optimal
value of 0.75 in Fig. 3. This confirms that each subpulse in the
optimal pulse can be replaced with a simple subpulse, which
impulsively excites the rotational wave packet.

Here, we briefly discuss the temperature effects on the
effectiveness of the multipulse control scheme through a
case study. We consider the optimal pulses in Fig. 4(b)
(the double-pulse control, 1.3 J/cm2) and Fig. 5(a) (the
quintuple-pulse control, 1.1 J/cm2). For the sake of semi-
quantitative evaluation, we introduce the degree of su-
periority at temperature T, which is defined by s(T ) =
[〈W (T )〉(5)

max − 1/3]/[〈W (T )〉(2)
max − 1/3]. Here, 〈W (T )〉(5)

max
[〈W (T )〉(2)

max] is the maximum averaged degree of alignment
achieved by the quintuple-pulse control (double-pulse control)
at T within the duration of 4.0 after the last subpulse as
with Fig. 4(a). For example, we obtain 〈W (T )〉(5)

max = 0.64,
0.58, 0.53, 0.50, and 0.47 at T = 2, 3, 5, 7, and 10 K,
respectively, which lead to s(T = 2, 3, 5, 7 K) = 1.20 and
s(T = 10 K) = 1.19. These values of s(T ) suggest the ad-
vantage of the use of the control pulse composed of more
than two subpulses over that of the double pulse at least in
the low-temperature region.

To reduce the number of subpulses, we first evaluate the
contribution of each subpulse in Fig. 3. We find that the first Y
subpulse makes the least contribution to the 3D alignment.
We thus remove the subpulse and impose a large penalty
on that temporal region through the function γ (t ), which
prevents the optimization algorithm from reproducing the
removed Y subpulse. We then reoptimize the remaining X, Y,
X, and Y subpulses to adjust their fluence and temporal peak
positions. Note that the reoptimization does not generate any
extra subpulses. After the reoptimization, we replace the four
subpulses in the new optimal pulse with the four Gaussian

subpulses in the same manner as that in Fig. 5(a). The result
is shown in Fig. 5(b) and will be referred to as a quadruple-
pulse control scheme. We see from the inset in Fig. 5(b)
that the quadruple-pulse control scheme leads to the averaged
degree of alignment of 0.72, which is near the value achieved
by the quintuple-pulse control scheme. Similarly, we can
derive the triple-pulse control scheme as shown in Fig. 5(c),
in which the new control pulse consists of the X, X, and Y
subpulses. Note that the control pulses in Figs. 3 and 5(a)–5(c)
have the same total fluence of 1.1 J/cm2 within two significant
digits, which is smaller than that used in the double-pulse
control (1.3 J/cm2) in Fig. 4(a).

We see from the insets in Fig. 5 that the maximum values
of the averaged degrees of alignment monotonically increase
as the number of subpulses is increased. Even the triple-pulse
control with the total fluence of 1.1 J/cm2 leads to better
3D alignment than the double-pulse control with the total
fluence of 1.3 J/cm2. Although the extent of the increase is not
significant, the triple-pulse control can keep the highly aligned
state for 236 fs, as indicated by the horizontal dashed line
in the inset. (The dashed line shows 0.67, i.e., the maximum
averaged degree of alignment achieved by the double-pulse
control.) That period will be sufficiently long to induce,
e.g., electronic dynamics in the molecule-fixed frame. The
introduction of more subpulses leads to a longer period, such
as 707 fs [Fig. 5(a)] and 419 fs [Fig. 5(b)], during which the
highly aligned state is maintained. As the control pulse is com-
posed of simple subpulses, which is experimentally feasible,
we confirm the superiority of the control pulse composed of
more than two linearly polarized subpulses to achieve high
degrees of 3D alignment.

IV. SUMMARY

We have applied nonlinear optimal control simulation
to the 3D alignment of SO2, in which the time-dependent
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FIG. 5. Optimally designed Gaussian subpulses in the (a)
quintuple-pulse control, (b) quadruple-pulse control, and (c) triple-
pulse control schemes. Each inset shows a magnified view of the
time evolution of the averaged degree of alignment in which the
maximum value is given. The horizontal dashed lines specify 0.67,
which is the maximum averaged degree of alignment achieved by
a pair of optimal double Gaussian subpulses with the total fluence
of 1.3 J/cm2. The period (units of Trot) during which the averaged
degree of alignment is larger than 0.67 is also shown in each inset.

polarization vectors of a nonresonant laser pulse are also fully
optimized. In Fig. 2, we optimized nonresonant laser pulses
to find the optimal polarization conditions, the suitable set of
target axes, the suitable final time tf , etc. The optimized pulses

are always composed of combinations of mutually orthogonal,
linearly polarized subpulses. We also found that the target
axes associated with the two largest polarizability compo-
nents, i.e., the a and b axes, lead to the largest averaged degree
of alignment and the optimal pulse with the simplest structure
although the differences in value among the optimized degrees
of alignment are small. In Fig. 3, choosing the a and b axes
as the target, we optimized the nonresonant laser pulse with
final time tf = 2.0 (in units of rotational period) to discuss the
control mechanisms in detail. Our discussion is based on the
time derivatives of the expectation values of the squares of the
direction cosines and that of the free rotation Hamiltonian, H0,
which are connected to each other through Eq. (13). We have
emphasized the important and special role of the last subpulse
that accounts for more than 60% of the total fluence. The last
subpulse simultaneously aligns the b and c axes, which are
associated with the two smallest polarizability components,
while minimizing undesirable torque on the a axis. The other
subpulses appear at the right timings predicted by Eq. (13) to
effectively induce the rotational excitation through the largest
polarizability component. We have also shown that all the
subpulses in the optimal pulse can be replaced with simple
subpulses, such as Gaussian subpulses, provided that they
impulsively excite the rotational wave packet. Because the
double-pulse control leads to the saturation of the degrees
of alignment as a function of total fluence [Fig. 4(b)], we
conclude the superiority of the use of more than two linearly
polarized subpulses to achieve high degrees of 3D alignment
(Fig. 5).
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