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Theory of a 4He parametric-resonance magnetometer based on atomic alignment
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In parametric-resonance magnetometers (PRMs), optically pumped atoms subject to rf fields allow one to
measure the components of a very low magnetic field. Here, instead of using a circularly polarized light for
creating atomic orientation, as in previous works, a linearly polarized light is used for creating atomic alignment.
A dressed-atom formalism introduced by Polonsky and Cohen-Tannoudji is extended and allows one to map this
situation to a simpler Hanle effect on aligned atoms. Analytical expressions for all alignment tensor components
and photodetection signals are obtained for both the Hanle magnetometer and PRMs. A two-rf field alignment
PRM is shown to display several improvements from its orientation counterpart, providing a secular third axis
sensitivity and a lower degradation from the one-axis sensitivity obtained by using a single rf field. These
specificities are shown to result from the apparent depolarization of the pumping light acting on the atom dressed
by two-rf fields. Experimental measurements showing a good agreement with the theoretical predictions are
presented.
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I. INTRODUCTION

In the field of ultrasensitive magnetic measurements opti-
cally pumped magnetometers (OPMs) have reached excellent
levels of accuracy [1–3] and sensitivities surpassing those of
SQUIDs [4,5] without requiring cryogeny. Arrays of OPMs
have been used for medical imaging of biological currents,
which opens new perspectives notably in cardiography, fetal
cardiography, and encephalography [6–8]. OPMs have also
proved to be useful for improving the accuracy of fundamental
measurements [9–11].

Between the various OPM configurations [12], Hanle mag-
netometers are particularly promising for medical imaging
because they deliver real-time vector information on up to two
components of the magnetic field [13]. These magnetometers
operate at ambient fields sufficiently small so that relaxation
rates are larger than Larmor frequencies.

An interesting variant is the so-called parametric-
resonance magnetometer (PRM), which was pioneered by
Dupont-Roc and his ENS Paris colleagues [13–15]. Based on
the very same principles as Hanle magnetometers, but using
a radio-frequency (rf) modulation, PRM avoids sensitivity
to the 1/f noise of the probe beam, and has the advantage
of providing a directional measurement along the rf field
axis. PRM based on two rf allow real-time three-component
measurement of the magnetic field [13,16].

Almost all the works on PRM rely on optical pumping
of the atoms with circularly polarized light towards oriented
states characterized by a non-null spin projection along one
axis. However, using linearly polarized light it is possible to
pump atoms with a spin larger than 1/2 towards aligned states,
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defined by non-null second-order moments, like 3〈Sz〉2 −
〈�S2〉 �= 0.

Pumping with linearly polarized light has several advan-
tages. First, in the case of circular polarization, there may be
vector light shifts, equivalent to a virtual magnetic field, which
cause various issues including field offsets, gradients, and
increased noise [17]. In the case of linear polarization, there
may be tensor light shifts, equivalent to a virtual quadrupole
effect [18]. Secondly, the absence of a macroscopic magnetic
moment of the atomic ensemble which could perturb the sen-
sor environment. Thirdly, the possibility of easily controlling
the pumping direction by rotating the polarization. In the
case of scalar magnetometers this possibility allowed one
to cancel the dead angles with an appropriate polarization-
locking scheme [19,20]. There has been a renewed interest on
alignment-based alkali-metal magnetometers these past years
[21,22].

An interesting alternative to alkali metals is metastable
4He, a spin-one which has been broadly used in scalar mag-
netometers [23,24] and more rarely in orientation-based PRM
[25,26]. Recent medical trials have demonstrated the viability
of a 4He alignment-based PRM both for cardiography [27]
and encephalography [28] with signals of typically 50 pT
and 10 pT, respectively. In these two papers magnetometry
signals have been successfully analyzed through the analytical
expressions obtained in [16] for orientation-based PRM.

This article aims to provide a full description of the sensors
used in these works and to provide an analytical treatment of
alignment PRM in the same way as it was done for orientation
[14–16].

We start (in Sec. II) by introducing the magnetometer
setup. In Sec. III we introduce the formalism used to describe
the atomic alignment with its evolution, and we compute the
analytical expressions for the detection signals in two simple
situations: Hanle effect with alignment and one-rf PRM.
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FIG. 1. (a) Setup of the alignment PRM: in order to measure
�B0, the metastable 4He

∗
atoms are enclosed in a glass cell, optically

pumped by a linearly polarized light beam, with electrical field �E
along �x, and subject to two-rf fields. (b) Simplified spectrum of 4He
showing the three levels relevant for the magnetometer operation
(not to scale); the metastable 2 3S1 level has three Zeeman sublevels
characterized by m = 0, ±1.

Section IV introduces the dressed-atom formalism for aligned
atoms. Section V discusses the application of this formalism
to one- and two-rf PRM, allowing one to find analytical results
under reasonable approximations. In Sec. VI we compare
the theoretical predictions for two-rf PRM with preliminary
experimental results. Finally, we conclude by discussing the
specificities and advantages of alignment PRM.

II. OVERVIEW OF THE ALIGNMENT-BASED 4He
PARAMETRIC-RESONANCE MAGNETOMETER

Although the formalism presented here applies to any
species which can be aligned, i.e., any spin S > 1/2, we will
focus on 4He in order to give a concrete description of an
alignment-based PRM.

The relative position of the main elements of the mag-
netometer is sketched in Fig. 1. The sensitive element is
contained in a glass cell: since 4He ground 1 1S0 state has zero
spin, we use the metastable 2 3S1 spin-one level. This level has
three Zeeman sublevels characterized by their spin projection
along a given direction m = 1, 0, −1. The populations of
these sublevels can be prepared by optical pumping [29] using
the upper 2 3Px levels. For simplicity we will consider only
D0 2 3S1 → 2 3P0 line. Metastable level cannot be optically
populated. Therefore, a high-frequency (HF) discharge is used
for this purpose. The discharge brings atoms from ground to
high-energy states which quickly decay through a radiative
cascade leaving a significant population only on the largest-
lived state, the metastable level. Helium densities in this level
up to 1012 cm−3 have been achieved even in relatively small
cells [20].

PRM works in the low-field regime where the quasistatic
field to be measured, of arbitrary direction, noted �B0 = Bx �x +
By �y + Bz�z, generates dynamics slower than the relaxation of
the measuring atoms, i.e., γB0 � �, where γ is the gyromag-
netic ratio of the sensitive species and � its relaxation rate. For
4He γ = −2π × 28 × 109 rad/(s T) and typical � 	 5 kHz,
yielding a limit of this low-field regime at B0 < 30 nT.

Metastable relaxation on thermal ensembles is dominated
by collisional processes because radiative decay to the ground

state is doubly forbidden [30]. For helium enclosed in Torr-
pressure cells at room-temperature collisional relaxation times
are on the ms range, dominated by wall collisions and depo-
larizing collisions in the gas bulk, mainly three-body, Penning
ionization and stepwise ionization [31–34].

In order to operate the PRM, two-rf fields are applied
along the z and y axis orthogonal to the linear polarization
of the pump, with angular frequencies ω and � larger than
�, and sufficiently different. For instance in recent work [27]
ω/2π = 40 kHz and �/2π = 9 kHz. The photodetection
signal contains harmonics of ω and � as well as their in-
terharmonics. It will be shown that some of these harmonics
display a dispersive dependence with the magnetic-field com-
ponents: the first harmonic of each rf is sensitive to the B0

component parallel to the corresponding rf axis and their first
interharmonic (ω ± �) is sensitive to the third component of
the magnetic field with lower sensitivity. In order to enlarge
the dynamic range, PRM is usually operated in a closed-loop
mode, where these three signals are sent to compensation coils
which cancel the measured field locking to zero the three
components of B0 sensed by the atoms.

The distribution of metastable atoms inside the cell is far
from being homogeneous and varies with the pressure and
power of the discharge [20]. For the relatively low pressures
used for magnetometry in 1 cm cells—typically 20 Torr—this
distribution is very close to the first diffusion mode. This is
in strong contrast with alkali metals in coated cells, where the
walls are weakly depolarizing and the distribution is nearly
homogeneous. In most of the calculations made below we
have neglected this inhomogeneity by working on spatially
averaged quantities. However, this approximation does not
hold for evaluating the broadening of magnetic resonance
lines by a magnetic-field gradient [35]. In this case the usual
Robin contour condition used for weakly depolarizing walls
should be replaced by a Dirichlet one, i.e., a null density of
metastable atoms on the walls [36].

III. MATHEMATICAL DESCRIPTION OF THE SPIN
ENSEMBLE AND ITS EVOLUTION

We analyze the magnetometer dynamics following the
three-step approach [37]: (1) the system state is prepared
by optical pumping, (2) this state evolves under the external
magnetic field and the relaxation, and (3) the state is detected
by optical measurements. Although the three processes are
simultaneous in our system, this approach has been shown to
remain valid in the low laser power limit [38,39], and has been
successfully applied to other optically pumped magnetome-
ters [21,22].

The state of the ensemble of metastable atoms can be
represented by its 3 × 3 density matrix ρ̂. The two first steps
are described by the Liouville equation

dρ̂

dt
= −i[Ĥ (t ), ρ̂(t )] + �[ρ̂ss − ρ̂(t )], (1)

where Ĥ (t ) = −γ
−→
B T (t ) · −̂→

S is the Zeeman Hamiltonian in
angular frequency units, involving

−→
B T (t ) = �xBT x + �yBTy +

�zBT z, the total magnetic field including the static field �B0 and
the rf fields. The second term represents the optical pumping
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and the relaxation, the combined effect of which tends to
bring the system towards its steady state ρ̂ss at a rate �. This
total relaxation rate � is the combination �e + �p, where
�e is the relaxation of metastable atoms due to collisions
and �p is the state relaxation due to the optical pumping.
A detailed analysis of the pumping with linearly polarized
light [40] shows that with quantization axis parallel to pump
polarization the steady-state density matrix ρ̂ss is diagonal
with ρ00 = �e/(3�e + 3�p ) and ρ11 = ρ−1−1 = (1 − ρ00)/2.

In the case of spin one-half atoms the system evolution
can be accurately described as the precession of a vector
on the Bloch sphere. Spin-one atoms need a more complex
description based on decomposition of the density matrix on
the irreducible tensor operators (ITO) basis [41]:

ρ̂ =
2∑

k=0

+k∑
q=−k

m(k)
q T̂ (k)†

q =
2∑

k=0

+k∑
q=−k

m(k)
q (−1)q T̂ (k)

−q , (2)

where m(k)
q = Tr(ρ̂T̂ (k)

q ) are the multipole moments which
describe the spin polarization of the atomic ensemble and
T̂ (k)

q are the 2k + 1 components of the ITO of order k. Order
zero just describes the total state population and plays no role
in magnetic measurement. Order 1 describes the orientation,
with normalized vector components (m(1)

−1, m
(1)
0 , m

(1)
1 ) =

(〈Ŝ−〉/2, 〈Ŝz〉/
√

2,−〈Ŝ+〉/2). Order 2 describes the align-
ment tensor and can be represented as a column matrix M with
elements m

(2)
−2, m

(2)
−1, m

(2)
0 , m

(2)
1 , m

(2)
2 [21,22]. ITOs have the

following commuting relations with spin operators:

[
Ŝz, T̂ (k)

q

] = qT̂ (k)
q ,[

Ŝ±, T̂ (k)
q

] =
√

(k ∓ q )(k ± q + 1)T̂ (k)
q±1. (3)

Therefore, the Zeeman Hamiltonian induces no coupling
between orders, notably between orientation and alignment.
These couplings could appear for high pump powers if the
laser is slightly detuned from the atomic transition: in this
case a so-called tensor lightshift brings a Stark-like term
in the Hamiltonian which induces alignment-to-orientation
conversion [42]. Here, we will consider that the pump power
is sufficiently low to avoid these effects. From Eq. (1) the time
evolution of M takes a rather simple form:

[
d

dt
− H(

−→
B T ) + �

]
M = �Mss. (4)

Steady-state alignment Mss has components Tr(ρ̂ss T̂
(2)
q ). The

only non-null one is parallel to the pump polarization axis,
and is written

m0,ss = 1√
6

�p

�p + �e

. (5)

Thus choosing the quantization axis along �z, a pump linearly
polarized along �x yields a steady-state alignment Mss with
components mp(1, 0,−√

2/3, 0, 1), where we have intro-
duced mp = �p/[4(�p + �e )]. The Zeeman term is given by

the matrix H(
−→
B T ), where

H(
−→
B ) = −iγ

⎛
⎜⎜⎜⎝

−2Bz B− 0 0 0
B+ −Bz

√
3/2B− 0 0

0
√

3/2B+ 0
√

3/2B− 0
0 0

√
3/2B+ Bz B−

0 0 0 B+ 2Bz

⎞
⎟⎟⎟⎠,

(6)
with B± = Bx ± iBy . The matrix column M fully determines
the detection signals. For instance, a probe linearly polarized
along the x axis (which can be the pump beam itself) has an
absorption coefficient which is written [43]

κ ∝ m
(0)
0√
3

+ m
(2)
0√
6

− Re
(
m

(2)
2

)
, (7)

the m(k)
q being expressed with z as quantization axis.

A. Hanle effect with transverse alignment pumping

A simple although interesting configuration to be analyzed
with this formalism is the so-called alignment Hanle effect
[22], corresponding to Fig. 1 without any rf field.

Let us consider first a rigorously null field: choosing the
quantization axis along �z, a pump linearly polarized along
�x would yield Mss with components mp(1, 0,−√

2/3, 0, 1).
Now if the pump light propagates along z and is partially
depolarized, i.e., if its normalized Stokes parameters [44]
are S1 = p < 1, S2 = S3 = 0, p being the degree of polar-
ization, the steady-state alignment Mss components become
mp(p, 0,−√

2/3, 0, p).
Hanle effect manifests itself as a change in the steady state

when a small magnetic field |B0| � �/γ is introduced. Equa-
tion (4) contains a constant Zeeman term dominated by the
relaxation term. Its solution is an exponential decay in a time
scale �−1 towards a steady state described by the analytical
expressions given in Appendix A. These expressions being
less compact than their orientation counterparts ([16, eq. I.4]),
it is instructive to calculate the first-order terms in magnetic
field:

m
(2)
2 /mp ≈ p

(
1 + 2i

ωz

�

)
+ O(ωiωj ),

m
(2)
1 /mp ≈

[ωy

�
(p + 1) + i(p − 1)

ωx

�

]
+ O(ωiωj ),

m
(2)
0 /mp ≈ −

√
2/3 + O(ωiωj ), (8)

with ωi = −γBi (i = x, y, z).
Using Eq. (A1), Fig. 2 shows how the degree of polariza-

tion influences the dependence of m(2)
q on the components of

the magnetic field. When the pump is fully polarized (p = 1,
solid line) the alignment only varies with z and y components
of B0, exactly like the case of orientation-based Hanle effect.
However, when the pump is partially depolarized (0 < p < 1,
dashed lines) information about the three axes is contained in
M . However, it is not easy to find a probing scheme able to
recover it. As we will show below, two-rf PRM provides one
of such schemes.
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FIG. 2. Dependence of m(2)
q on the magnetic-field components

calculated from Eq. (A1). The degree of polarization is represented
by solid lines (p = 1) and dotted lines: p decreasing from 2/3 to
zero by steps of 1/3. (Top) Dependence of Im(m(2)

1 ) on ωx (assuming
ωy = ωz = 0). (Middle) Dependence of Re(m(2)

1 ) on ωy (assuming
ωx = ωz = 0). (Bottom) Dependence of Im(m(2)

2 ) on ωz (assuming
ωx = ωy = 0).

B. Single-rf parametric-resonance magnetometer
with B0 parallel to the rf field

When the magnetic field has an oscillating component, the
system does not evolve anymore towards a steady state. How-
ever, when the dc and oscillating parts of the magnetic field
are parallel, it is possible to find an analytic solution for M .
Indeed the evolution matrix H(

−→
B ) = H(�z[B0 + B1 cos(ωt )])

is diagonal, allowing the decoupling of the five equations
describing the evolution of M . With pump polarization along
x (i.e., setup of Fig. 1 without Brf 2) the components of Mss

are mp(1, 0,−√
2/3, 0, 1) and the only nontrivial equations

read

ṁ
(2)
±2 = ∓iγ 2[B0 + B1 cos(ωt )]m(2)

±2 − �
(
m

(2)
±2 − mp

)
. (9)

These equations are formally equivalent to those given for
orientation in [14, Eq. (15a)]. The solutions are

m
(2)
±2 = �mp

+∞∑
n,p=−∞

Jn,2Jn−p,2

� ± i(2γB0 + nω)
e±ipωt , (10)

with Jn,s = Jn(sγB1/ω) and Jn the Bessel function of the first
kind and order n. When probing with the pump beam itself
Eq. (7) gives the pump absorption. The photodetector signal
has a component at frequency ω, corresponding to n = 0, p =
±1, which is in quadrature with the rf field and is given by

−4�mpJ0,2J1,2
γB0

�2 + 4γ 2B2
0

sin(ωt ). (11)

This expression is very similar to that appearing for orien-
tation PRM [14, Eq. (31)], except for the arguments of Bessel
functions and numerical prefactors, and it can be also used for
measuring the field B0.

IV. DRESSED-ATOM FORMALISM FOR ALIGNMENT

Up to now we have considered simple situations where
analytical results are easy to obtain. More complex cases,
like the introduction of a second rf, strongly benefit from the
introduction of the dressed-atom formalism. In this formalism
the time dependence of the Hamiltonian is avoided with a
quantum treatment of the rf field. This formalism has been
applied to oriented atoms [16,45–47] and was extended to
all tensor orders in [47]. Here, we will develop the case of
aligned atoms with an arbitrarily oriented external field

−→
B 0.

We will show, like it was done for orientation in [16], that it
allows one to map the PRM to a simpler Hanle-effect problem,
unveiling physical effects which otherwise remain hidden in
complicated analytical or numerical solutions.

A. Null-field Hamiltonian and its eigenstates

Let us note |m〉 the metastable 4He Ŝz eigenstates (m =
−1, 0, 1). In the absence of any static magnetic field the
Hamiltonian describing this atom and the rf field �Brf 1 with
linear polarization along z is

Ĥ0 = ωâ†â + λŜz(â† + â), (12)

where the field is described with Fock states |n〉 and creation
and annihilation photon operators â† and â. The coupling
constant is proportional to the amplitude of the rf through
λ = −γB1/(2

√
n̄), where the average photon number is n̄ =

〈â†â〉. The eigenstates of H0 can be found [16,48] to be
|m〉 ⊗ |nm〉 where |nm〉 = D̂(mλ/ω)|n〉, with displacement
operator D̂(α) = exp[α(â − â†)]. An important property of
these eigenstates is 〈nm|n′

m′ 〉 = Jn−n′ [(m − m′)γB1/ω] for
n � 1. In what follows, for shortening the notation, we define

Jp,q = Jp[qγB1/ω]. (13)

B. Evolution of the observables of the dressed atom:
Effect of a static external field

We now add the static magnetic field �B0 of small magni-

tude (γB0 � �, γB1) as a perturbation V̂ = −γ
−→
B 0 ·

−→̂
S =

−γ (BxŜx + ByŜy + BzŜz). In order to analyze the effect of
this term for each rf photon number we introduce the pro-
jection operator P̂n = ∑

m |m, nm〉〈m, nm| and the projected
operators n,n′

X̂ = P̂nX̂P̂n′ . The evolution equation of the pro-
jected operators n,n′

T̂ (2)
q due to Ĥ0 + V̂ is

d

dt

n,n′
T̂ (2)

q = −i
[n,n′

T̂ (2)
q , Ĥ0 + V̂

]
. (14)

The null-field Hamiltonian can be written Ĥ0 = ∑
n nωP̂n

and each n,n′
T̂ (2)

q evolves at an eigenfrequency (n − n
′
)ω. The

perturbation brings [n,n′
T̂ (2)

q , Ŝi] terms which do not satisfy the
usual relations (3). Indeed the matrix elements of the projected
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ITOs are

〈m, nm|n,n′
T̂ (2)

q |m′, n′
m′ 〉

= 〈m|T̂ (2)
q |m − q〉Jn−n′,qδm′,m−q . (15)

Therefore, [Ŝi ,
n,n′

T̂ (2)
q ] contains Bessel terms which de-

pend on n − n′. In order to avoid this dependence, it is
convenient to work with dressed-atom ITO (DITO) n,n′ T̂ (2)

q

operators defined by

n,n′ T̂ (2)
q =

n,n′
T̂ (2)

q

Jn−n′,q
. (16)

These DITO have the usual commuting relations (3) with
dressed spin operators defined in the same way:

n,n′ Ŝ (2)
q =

n,n′
Ŝ (2)

q

Jn−n′,q
. (17)

To suppress also the dependence with n coming from Ĥ0,
DITO can be written in the interaction picture:

n,n′ T̃ (2)
q = n,n′ T̂ (2)

q e−iω(n−n′ )t . (18)

Then, neglecting all the nonsecular terms (l,l
′
V with l′ �= l),

the evolution of n,n′ T̃ (2)
q under the magnetic field is written

simply

d

dt

(1)〈n,n′
T̃ (2)

q

〉 = H(B̄0)
〈n,n′

T̃ (2)
q

〉
, (19)

where H is given by Eq. (6); B̄0 is defined from �B0 by the
affinity

B̄x,y = J0,1Bx,y, B̄z = Bz, (20)

when the rf direction is along �z. In what follows we will
use ω̄i = −γ B̄i (i = x, y, z). Equation (19) shows that in the
dressed-atom picture the Zeeman term is time independent,
strongly simplifying the description of the PRM dynamics.

C. Effect of relaxation and optical pumping on the evolution
of dressed-atom observables

The description of PRM dynamics in the dressed-atom
picture requires two other terms—describing relaxation and
optical pumping, respectively. For 4He, relaxation is domi-
nated by collisional isotropic processes. Thus the relaxation
term is simply written

d

dt

(2)〈n,n′
T̃ (2)

q

〉 = −�
〈n,n′

T̃ (2)
q

〉
. (21)

On other systems, where relaxation involves anisotropic phe-
nomena, three relaxation rates �|q| are needed [49].

The optical pumping term has been calculated in [45] and
is written

d

dt

(3)
〈n,n′

T̂ (2)
q

〉
p(n)

= �p mq,ex ei(n−n′ )ωt e−iqγB1 sin(ωt )/ωJn−n′,q ,

(22)

with p(n) the probability of having n photons in the coherent
rf fields and �p mq,ex = � mq,ss . Introducing the DITO de-
fined by Eq. (16), and applying the Jacobi-Anger expansion

Eq. (B1) to the term depending on B1 on the above expression,
we get

d

dt

(3)
〈n,n′

T̃ (2)
q

〉
p(n)

≈ � J0,q mq,ss , (23)

where we have kept only the secular term, which is static in
the dressed-atom picture and evolves at frequency (n − n′)ω
in the laboratory frame. This result corresponds to a rescaling
of the pumping term Mss to a dressed-pumping M̄ss with
components:

m̄q,ss = J0,q mq,ss . (24)

D. Solution of the evolution equation

Combining the three evolution terms we get for the dressed
atom: [

d

dt
− H(B̄0) + �

]〈
n,n′ T̃ (2)

q

〉
p(n)

= � m̄q,ss . (25)

This equation is formally identical to Eq. (4) relative to
the Hanle effect on the naked atom. Thus the analytical
solutions for m̄(2)

q = 〈n,n′ T̃ (2)
q 〉/p(n) are those given in (A1).

The evolution of the ITO 〈T̂ (2)
q 〉 in the laboratory frame is

obtained from the evolution of the DITO m̄(2)
q by applying

Eq. (16): 〈
T̂ (2)

q

〉 =
∑
n,n′

Jn−n′,qe
i(n−n′ )ωtp(n)m̄(2)

q

≈ m̄(2)
q exp

(
iq

γB1

ω
sin(ωt )

)
, (26)

where we have used the approximation [16]

∑
n,n′

Jn−n′,qe
i(n−n′ )ωtp(n) ≈ exp

(
iq

γB1

ω
sin(ωt )

)
, (27)

which is valid for n̄ � 1 as explained in [45,48].

E. Summary of the dressed-atom formalism applied to PRM

The dressed-atom formalism allows one to map the PRM
problem to the much simpler Hanle effect, the solutions of
which have been found above [Eq. (A1)]. This mapping is
done by (i) rescaling the magnetic field as described by the
affinity (20) and (ii) modifying the pumping term as given by
(24).

Once the solution has been found in this dressed-atom
picture, a rotation by an angle γB1 sin(ωt )/ω around the rf
axis [Eq. (26)] directly yields the solution in the laboratory
frame.

This solution involves only the following two approxima-
tions.

(i) The presence of a sufficiently large number of rf photons
n̄ � 1, which is always true for the classical rf field of PRM.

(ii) The secular approximation ω � γB0, �, which is a
more restrictive condition. The first-order nonsecular correc-
tions can be calculated for alignment in a similar way to that
given for orientation in the appendix of [16]. They will be
published elsewhere.
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V. PARAMETRIC-RESONANCE MAGNETOMETER STUDY
IN THE DRESSED-ATOM FORMALISM

A. Single-rf parametric-resonance magnetometer
with B0 parallel to the rf field

Although we have seen that this situation is analyti-
cally solvable without the dressed-atom formalism, it gives
a first example of application. The pumping steady-state
Msscomponents are mp(J0,2, 0,−√

2/3, 0, J0,2), which cor-
respond to a partially polarized pumping beam with a degree
of polarization p = J0,2. Using (26), (8), and the Jacobi-
Anger expansion [50], we get a constant m

(2)
0 and

m
(2)
2 = m̄

(2)
2 ei2 γB1

ω
sin(ωt )

= mpp

(
1 + 2i

ω̄z

�

) ∞∑
q=−∞

Jq,2e
iqωt . (28)

The absorption coefficient for the pump can be found from
Eq. (7). Since ω̄z = ωz and p = J0,2 it contains a single
component at ω which is written −4mpJ0,2J1,2 sin(ωt )ωz/�,
in agreement with the linear part of Eq. (11).

B. Double-rf parametric-resonance magnetometer

In the case of a double-rf PRM direct analytical solu-
tions are hardly tractable and difficult to be interpreted. The
dressed-atom formalism provides a convenient way to address
this situation. Indeed we can first dress the atom with the faster
rf field, of angular frequency ω, while considering the slower
one as quasistatic, and then dress the atom with the second
slower rf field of angular frequency �. After these two dress-
ings, the rf fields have been traced out and the dynamics of the
atom reduces to a Hanle-effect problem.

From Eq. (24), this double dressing of the pumping yields

m2,ss = −mp

2
(J0,2 + 1)J0,2,

m1,ss = 0, m0,ss = mp√
6

(1 − 3J0,2), (29)

with Jn,q = Jn(qγB1/ω) and Jn,q = Jn(qγ B̄2/�) =
Jn(qγ J0,1B2/�). Thus the double dressing has the following
two effects on the pumping.

(i) An overall reduction of the pumping amplitude mp →
−mp(1 − 3J0,2)/2.

(ii) A variation of m±2,ss as compared to m0,ss , which can
be interpreted as a partial depolarization of the pumping light
by comparison with the undressed pumping term (Mss given
in Sec. II). A pure linear polarization is described by a degree
of polarization p = 1; the dressing reduces it to a value

p = −J0,2(1 + J0,2)/(1 − 3J0,2). (30)

The effective magnetic field acting on the dressed atom is
found using twice the affinity (20):

¯̄Bx = BxJ0,1J0,1,
¯̄By = ByJ0,1,

¯̄Bz = BzJ0,1. (31)

Therefore, the doubly dressed atom has the following
Hanle effect solution, calculated to first order in each
magnetic-field component:

¯̄m2 = −mp

2
J0,2(1 + J0,2)

(
1 + i2

ωy

�
J0,1

)
,

¯̄m1 = −mp

2
J0,1

[ωx

�
J0,1(J0,2 + J0,2J0,2 + 1 − 3J0,2)

+ i
ωz

�
(J0,2 + J0,2J0,2 − 1 + 3J0,2)

]
,

¯̄m0 = mp(1 − 3J0,2)/
√

6. (32)

The signals in the laboratory frame can be obtained from
these dressed-atom picture solutions by using Eq. (26). The
absorption coefficient Eq. (7) is written

κ ∝ ¯̄m0

(
1√
6

−
√

3

2
c2,ω

)
+ 2 Im( ¯̄m1)s2,ωc̄1,�

+ 2 Re( ¯̄m1)s2,ωs̄1,� + Im( ¯̄m2)[c2,ω + 1]s̄2,�

− Re( ¯̄m2)[1 + c2,ω]c̄2,�, (33)

with cp,ω = cos[pγB1 sin(ωt )/ω] and c̄p,� = cos[pγ B̄2

sin(�t )/�] = cos[pγB2J0,1 sin(�t )/�], sp,ω and s̄p,� the
corresponding expressions with sines instead of cosines.
Combining Eqs. (32) and (33), and using the Jacobi-Anger
expansions Eqs. (B1) of cp,ω, sp,ω, c̄p,�, and s̄p,�, first-order
dependence on each magnetic-field component appears at
different frequencies in κ as follows.

(i) Components at frequencies 2nω ± (2m + 1)� with
m, n = 0, 1, . . . arising from the fourth term in Eq. (33) are
proportional to By . The component at frequency � has an
amplitude

mpJ0,2J1,2J0,1(1 + J0,2)2 ωy

�
= sy

ωy

�
(34)

allowing the measurement of the field along the axis of rf2.
(ii) Components at frequencies (2n + 1)ω ± 2m�, arising

from the second term of Eq. (33), are proportional to Bz. The
component at frequency ω has an amplitude

mpJ 2
0,1J1,2[J0,2(1 + J0,2) − 1 + 3J0,2]

ωz

�
= sz

ωz

�
(35)

and allows the measurement of the field along the axis of rf1.
(iii) Components at frequencies (2n + 1)ω ± (2m + 1)�,

arising from the third term of Eq. (33), are proportional to Bx .
The first component is at frequency ω + � with an amplitude

mpJ1,1J1,2J0,1J0,1

×[J0,2(1 + J0,2) + 1 − 3J0,2]ωx/� = sxωx/�, (36)

allowing the measurement of the field along the pump polar-
ization axis. Note that these terms would cancel if p = 1, i.e.,
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FIG. 3. Left column: theoretical sensitivities sx , sy , sz of alignment-based two-rf PRMs defined by Eqs. (34)–(36) as functions of the rf field
amplitudes. Center column: theoretical sensitivities for orientation-based two-rf PRMs as given by [16]. For both columns we set mp = 1/4.
Right column: experimental characterization of the sensitivities of a two-rf 4He PRM pumped with linearly polarized light as a function of
the rf field amplitudes. See the text for a description of the setup. Experimental sensitivities are normalized by the ratio between the observed
highest z-axis sensitivity and its theoretical value.

if the pumping was not partially depolarized by the dressing
[Eq. (30)].

(iv) All other components at frequencies 2nω, 2m�, and
2nω ± 2m� show no first-order dependence on the magnetic
field.

In Eqs. (34)–(36) we have introduced the magnetic-field
sensitivities sx , sy , and sz. These sensitivities are plotted as
a function of B1 and B2 and compared to their orientation-
PRM counterparts [13] on Fig. 3. Note that for orientation-
based PRM the theoretical sensitivity along x axis is null
with the secular approximation. Then, the plot represents
sx obtained from the first-order nonsecular correction for
� = 2�.

Both for orientation and alignment, the optimal sensitivity
of the z and y axes is reached when the rf field of the other

axis is turned off. In this one-rf scheme the optimal values
of γB2/� and γB1/ω for alignment are half of those for
orientation. When the two rf are present, even if there are some
similarities between alignment and orientation, the respective
sensitivities show a very different behavior.

When operating this PRM as a two-axis magnetometer
it is usual to seek the best possible sensitivity for both z

and y axes. This optimum corresponds to the maximum
of s2 = (s2

y + s2
z )1/2, under the condition of keeping similar

sensitivities along both axes. These optima are shown in
Fig. 4 for alignment and orientation. For orientation PRMs the
optimum is at a saddle point. The corresponding sensitivities
sy and sz display a degradation of 37% with respect to their
maximal value for single-rf PRMs. For alignment PRMs s2

reaches a higher value, and this maximum is located on the
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FIG. 4. Two-axis sensitivity s2 =
√

s2
y + s2

z , as a function of the

rf field amplitudes, for alignment (left) and orientation (right) PRMs.
The dashed lines represent isosensitivity (sy = sz). The black disk
represents the maximal isosensitivity.

isosensitivity curve. The corresponding sensitivities sy , sz dis-
play a degradation of only 23% with respect to their maximal
value for single-rf PRMs.

VI. PRELIMINARY EXPERIMENTAL
CHARACTERIZATIONS

In order to probe the above theoretical predictions, we
compared them to the experimental sensitivities measured on
a 4He alignment-based parametric-resonance magnetometer.

The experimental setup consists in a cylindrical pyrex cell
of 1 cm � ×1 cm internal dimensions, filled with 20 Torr
of high purity 4He, and placed at the center of three-axes
square coils of 39 cm side. All these elements are set inside a
five-layer μ-metal magnetic shielding. The helium metastable
level is populated by using an HF discharge through square
copper electrodes glued on the cell wall. A laser beam is sent
through the cell, with its linear polarization parallel to the x

axis coil, a waist of 6 mm, and a power around 50 µW. This
laser is tuned to the absorption line D0 of helium. The laser
beam is photodetected by InGaAs photodiode connected to
a transimpedance amplifier. The two-rf fields are generated
by a two-channel signal generator directly connected to the
coil inputs. Careful calibration of coil impedance and transfer
functions allow one to translate the generator voltages to rf
magnetic field units. The frequencies of the rf fields were
chosen to be �/2π = 7 kHz for y axis and ω/2π = 25 kHz
for z axis.

For measuring the sensitivities of z and y axis a slow ramp
in the field of 2 s is applied and the photodetection signal is
sent to a digital lock-in (Stanford 865A). A LabView program
acquires the signals at lock-in output and fits their slope. We
characterized with an automated procedure the sensitivities of
the three axis for 11680 pairs of rf values. These sensitivities
are presented in Fig. 3.

The measured sensitivities are completely different from
those predicted for orientation (center column of Fig. 3),
and are rather similar to those predicted for alignment (left
column of Fig. 3). The z- and y-axes sensitivities show
a very good agreement with predictions: the position and
shape of the optimal sensitivity region (obtained at γB1/ω

and γB2/� values of 0.541) and most of the other features
are well matched. However, few discrepancies appear: the

features in the γB1/ω > 2 region appear at lower values
than those predicted by the theory. Some other features, like
the variation of sz vs B2 which is predicted to be constant
for γB1/ω ≈ 2 shows a progressive decrease with increasing
B2. The x-axis sensitivity shows a fair agreement with the
predictions although not as good as for the two other axes.
Some disagreements appear for low rf (γB1/ω, γB2/� < 1):
the optimal sensitivity is reached at a B2 value lower than
expected and the negative-sensitivity region starts at B1 values
larger than predicted.

The disagreements in z- and y-axes sensitivities could
arise from coil inhomogeneity which generates significant rf
gradients for large rf field amplitude [51]. We also suspect
that the rf could also induce Eddy currents in the elec-
trodes. In similar experiments [47] such currents are reported
to bring a few percent of circular polarization to the rf
field, which distort the resonances. Overall, we can conclude
that these preliminary experimental characterizations are in
rather good agreement with the theoretical predictions made
above.

VII. CONCLUSION

In this article we have studied a two-rf alignment-based
PRM which is able to provide three-axes measurement of
the ambient magnetic field. We have found analytical expres-
sions for its photodetection signals by using the dressed-atom
formalism. These expressions yield sensitivities which are in
good agreement with preliminary experimental characteriza-
tions.

This analysis highlights some interesting advantages of
alignment-based PRM in addition to the suppression of vector
light shifts. In particular, we have shown that in the case
of two-rf PRM a secular term allows the measurement of
the third component of the magnetic field. Moreover, sy , sz

sensitivities present a lower degradation with respect to the
single-axis sensitivity. We believe that alignment-based PRM
is a promising configuration for implementing vector optically
pumped magnetometers, as suggested by the measurements of
biomagnetic signals [27,28].

By mapping the two-rf PRM to a Hanle effect problem, the
dressed-atom formalism sheds some light on the underlying
mechanisms. In particular, it appears that the third-axis sen-
sitivity results from the apparent depolarization of the pump
light acting on the doubly dressed atom [Eq. (30)]. This is in
strong contrast with the case of orientation-based PRM where
this dressing only reduces the pump amplitude.

Our analysis also suggests that partial depolarization could
be combined with polarization rotation [19,20] to yield inter-
esting magnetometry schemes.
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APPENDIX A: HANLE EFFECT ALIGNMENTS UNDER PARTIALLY LINEARLY POLARIZED TRANSVERSE PUMPING

Starting from Eq. (4), for the steady state, after a matrix inversion, one finds

m
(2)
0

mp

= −
√

2

3

�4+�2
[
(3p+2)ω2

x +(2 − 3p)ω2
y +5ω2

z

]+18�pωxωyωz+
(
ω2

x +ω2
y − 2ω2

z

)[
(3p + 1)ω2

x +(1−3p)ω2
y −2ω2

z

]
�

,

m
(2)
1

mp

= �3[(p+1)ωy +i(p − 1)ωx]+�2ωz[(1 − 3p)ωx +i(1 + 3p)ωy]−2ωz(ωx + iωy )
[
(3p + 1)ω2

x + (1 − 3p)ω2
y − 2ω2

z

]
�

+ �i(p − 1)ω3
x + (7p + 1)ω2

xωy + i(7p − 1)ωxω
2
y − 2(p + 2)ωxω

2
z + (p + 1)ω3

y − 2(p − 2)ωyω
2
z

�
,

m
(2)
2

mp

= p
�4 + 2i�3ωz + �2

(
4ω2

x + 4ω2
y + ω2

z

) + i�ωz

(
5ω2

x + 5ω2
y + 2ω2

z

) + 3
(
ωx + iωy

)2(
ω2

x − ω2
y

)
�

+ (ωx + iωy )2
(
�2 + 3i�ωz + ω2

x + ω2
y − 2ω2

z

)
�

, (A1)

where � = �4 + 5�2(ω2
x + ω2

y + ω2
z ) + 4(ω2

x + ω2
y + ω2

z )2 and p is the degree of polarization.

APPENDIX B: JACOBI-ANGER EXPANSIONS

The Jacobi-Anger expansions used in this article are [50]

exp(iz sin θ ) =
∞∑

n=−∞
Jn(z) exp(inθ ),

sin(z sin θ ) = 2
∞∑

n=0

J2n+1(z) sin(2n + 1)θ,

cos(z sin θ ) = J0(z) + 2
∞∑

n=1

J2n(z) cos 2nθ. (B1)
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