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High-energy direct photoelectron spectroscopy in strong-field ionization
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Recently, in the tunneling regime of strong-field ionization an unexpected Coulomb field effect has been
identified by numerical solution of the time-dependent Schrödinger equation [Phys. Rev. Lett. 117, 243003
(2016)] in photoelectron spectra in the upper energy range of the direct electrons. We investigate the mechanism
of the Coulomb effect employing a classical theory with Monte Carlo simulations of trajectories, and a quantum
theory based on the generalized eikonal approximation for the continuum electron. The effect is shown to have
a classical nature and is due to momentum space bunching of photoelectrons released not far from the peak of
the laser field. Moreover, our analysis reveals specific features of the angular distribution of high-energy direct
electrons, which can be employed for molecular imaging. For the H2

+ molecule as an example we show the
signatures of the molecule orientation and the molecular structure in the investigated angular distribution.
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I. INTRODUCTION

The Coulomb field of the atomic core plays a significant
role for strong-field ionization. For a long time it has been
known that it lowers the tunneling barrier and increases
the tunneling probability [1–4]. Significant Coulomb effects
arise at recollisions [5]. While hard recollisions induce well-
known processes of above-threshold ionization [6], high-order
harmonic generation [7], and nonsequential double ioniza-
tion [8], the soft recollisions bring about Coulomb focusing
[9–11] and defocusing [12] effects. The Coulomb focusing
is responsible for the lately discovered, so-called, low-energy
structures (LESs) [13–29].

Recently, another surprising Coulomb field effect has
been identified by ab initio numerical solution of time-
dependent Schrödinger equation (TDSE) [30]. When com-
paring the numerical solution for the photoelectron spectra
with calculations of the first-order Coulomb-free strong-field
approximation (SFA) [31–33], several orders enhancement of
photoelectron spectra at 2Up, i.e., twice the electron pondero-
motive energy, has been observed, see also Ref. [34] and a
recent experiment in Ref. [35]. In Ref. [30] the effect was an-
alyzed invoking the Coulomb-corrected action along quantum
orbits in the complex-time plane. Due to the Coulomb field,
the quantum orbit maintains a large imaginary part up to the
recollision, which hinted a conclusion that the enhancement is
a specific quantum effect, and that separation into sub-barrier
motion up to the tunnel exit and subsequent classical motion is
an invalid concept. Although the high-energy enhancement in
Ref. [30] is connected to the Coulomb field effect, an intuitive
understanding remained missing.

The aim of this paper is to clarify the mechanism of
the Coulomb effect (CE) in the photoelectron spectrum for
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high-energy direct electrons. We carry out classical as well
as quantum mechanical analysis. The classical analysis em-
ploys the classical trajectory Monte Carlo (CTMC) sim-
ulations with nonadiabatic initial conditions for the elec-
trons. For the quantum mechanical analysis we put forward
a version of Coulomb-corrected strong-field approximation
(CCSFA). In the existing CCSFA, such as the trajectory-based
CCSFA [36,37], or analytical R-matrix theory [38–40], the
Coulomb field of the atomic core is accounted for using
the eikonal wave function for the continuum electron. In
the latter Wentzel-Kramers-Brillouin (WKB) approximation
is applied, with a perturbative treatment of the Coulomb
potential in the phase of the wave function. Unfortunately,
the eikonal CCSFA has a singularity for the forward rescatter-
ing amplitude, which renders the treatment of the discussed
Coulomb effect ambiguous cf. [30]. We go beyond the WKB
description of the continuum electron, incorporating into the
SFA formalism the electron wave function in the, so-called,
generalized eikonal approximation (GEA) [41–45]. In GEA
the second-order derivatives of the Schrödinger equation are
not neglected, in contrast to WKB approximation, which takes
into account quantum recoil effects at recollisions with a small
impact parameter and removes the Coulomb singularity of the
eikonal CCSFA at recollisions. The accuracy of our analytical
results are examined in comparison with numerical solutions
of TDSE.

First, we show that already CTMC simulations with nona-
diabatic initial conditions reproduce qualitatively the CE. We
analyze the trajectories yielding high energies and trace the
source of the enhancement. It is due to electrons released not
far from the peak of the laser field, though with bunching
at high energies because of a large, nonuniform Coulomb
momentum transfer, which depends on the ionization phase,
i.e., the laser phase at the ionization. In contrast to LES, here
we deal mostly with Coulomb defocusing, and the enhance-
ment is not due to Coulomb focusing. Although CE is mainly
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determined by the parameter ζ ≡ Zω/E0 > 1, pointed out
already in Ref. [30], with the frequency ω and the amplitude
E0 of the laser field, and the ion charge Z, we find a sig-
nificant dependence on the ionization potential Ip. The CE
is enhanced and has a peak at an intermediate Ip, which is
found to be related to restructuring of the topological struc-
ture of the initial phase space of the ionized electrons when
approaching the regime of over-the-barrier ionization (OTBI).
Second, the applied quantum approach with GEA allows us
to remove the Coulomb singularity of the eikonal CCSFA at
recollisions, and to obtain a reliable quantum description for
the photoelectron spectra near the upper energy limit of the
direct electrons. The quantum description induces merely a
uniform enhancement of the photoelectron spectra compared
to the classical result, indicating that the considered CE has a
classical nature. Third, we investigate the angular distribution
of high-energy direct electrons and show that it has specific
features with apparent side lobes. For the H2

+ molecule, the
side lobes are shown to carry signatures of the molecular
orientation and the interatomic separation.

II. QUALITATIVE DISCUSSION

Before going to rigorous calculations, we illustrate the
mechanism of the CE with the following qualitative discus-
sion. We begin with the first-order SFA amplitude describing
the tunnel ionized direct electrons, neglecting the Coulomb
effect of the atomic core:

Mp ∼
∑

s

exp

(
−i

∫
ts

dt (p + A(t ))2/2 + iIpts

)
, (1)

where p is the final momentum, A(t ) = ex (E0/ω) sin(ωt ) the
vector potential of the linearly polarized laser field, and ts the
time-saddle point of the relevant trajectory. Then, we derive
the Coulomb corrected photoelectron momentum distribution
by means of nonuniform (depending on the ionization phase)
momentum shifting of the first-order momentum distribution:

MC
p = Mp−pC

, (2)

where pC = −Z
∫ ∞
te

dt rL(t )/r3
L(t ) is the Coulomb momen-

tum transfer to the electron along the laser-driven trajectory
rL(t ), rL(t ) = |rL(t )|, and te = Re{ts} the ionization time. For
the short trajectory pxC is opposite to the final longitudinal
momentum px , while for the long trajectory they have the
same sign. Accordingly, the Coulomb momentum shift in-
creases the probability |MC

p |2 for the long trajectory, because
the electron with a certain final momentum is ionized closer
to the laser peak than in the Coulomb free case, and vice
verse for the short trajectories. The photoelectron energy dis-
tribution via |MC

p |2 for recolliding long trajectories is shown
in Fig. 1(a). The photoelectron spectrum demonstrates a
plateaulike behavior up to 2Up energy, similar to the result of
Ref. [30], and indicates that CE arises due to the nonuniform
Coulomb momentum transfer to the continuum electron along
real trajectories. In this case the electrons with final energy
around 2Up are tunneled from the atom not near the zero
crossing of the laser field, as in the Coulomb free case, but
at the laser phases close to the peak of the field with enhanced
probabilities.
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FIG. 1. (a) Photoelectron momentum distribution at a fixed emis-
sion angle θ = π/100: (red solid) via |MC

p |2 corresponding to the
long trajectory; (blue dashed) via eikonal CCSFA as in Ref. [30];
(orange dot-dashed) the Coulomb-free first-order SFA. The shifts of
the momentum distribution due to the initial Coulomb momentum
transfer (ICMT) are shown by green arrows, and CE is indicated by
a black arrow. (b) Coulomb momentum transfer along the laser field
pCx (t )/(E0/ω) vs the interaction time, at p = 0.69 and θ = π/100:
(blue solid) numerical evaluation, (orange dot-dashed) estimation,
see the text; (green dashed) the electron trajectory x(t )/(E0/ω

2). The
parameters are E0 = 0.0045 a.u., ω = 0.0065 a.u., Ip = 0.14 a.u.,
and Z = 1.

We can estimate the scaling for CE enhancement analyzing
the relevant trajectories. The long trajectory at the 2Up cutoff
is launched near zero crossing of the field and the electron
is initially almost standing still, further driven by the laser,
see a trajectory in Fig. 1(b) (green line), which admits a
simple estimate for the Coulomb momentum transfer and the
corresponding Coulomb enhancement via

E ≡ ∣∣MC
p

∣∣2/|Mp|2∣∣
E0/ω

∼ exp(4ζ ), (3)

with the enhancement factor

ζ ≈ Zω

E0

1

γ 1/3
, (4)

where γ = ω
√

2Ip/E0 is the Keldysh parameter, see the
derivation in Appendix.

The ratio R of ionization probabilities at 2Up to Up can be
regarded as a signature of CE to be proved in an experiment
(Up is used as a reference point to avoid the spikes in the
spectrum due to LES), which is also determined by the
parameters ζ , see Appendix.
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FIG. 2. (a) Photoelectron spectra: (black solid) numerical solution of TDSE, (red dashed) CTMC, (blue dot-dashed) Coulomb-free CTMC.
The laser and atom parameters are as in Fig. 1. The ratio R of ionization probabilities at 2Up to Up: (b) vs Ip at E0 = 0.0045, ω = 0.0065 a.u.
and Z = 1, employing a (black solid) CTMC nonadiabatic, (red dashed) CTMC adiabatic, (cycles) TDSE, (dot-dashed) scaled estimation for
R, see the text; (c) vs Ip/Ia for different wavelengths at Zω/E0 = 1.44, Ia = √

4ZE0. The electron initial and final phase space for the points
indicated by blue cycles are shown in Fig. 4.

III. CLASSICAL DESCRIPTION

To corroborate the classical nature of CE, we have carried
out CTMC simulations with nonadiabatic initial conditions
[46]. The latter are favorable for the enhanced Coulomb effect,
because the tunnel exit in this case is closer to the core and an
initial longitudinal momentum appears, which increases the
time the electron spent near the tunnel exit. One can deduce
from Fig. 2(a) that the classical simulation shows already the
enhancement stemming from the Coulomb field effect and fits
qualitatively to the numerical solution of TDSE.

Further, we analyze the dependence of the enhancement
on the laser and atom parameters, see Figs. 2(b), 2(c). As
a characteristic of the enhancement we use the ratio R of
the probability at energy 2Up to that at the energy Up.
While the parameter ζ qualitatively describes the decreasing
behavior of CE with moving Ip far from the peak. However,
we find that the enhancement additionally depends on the
laser wavelength, and crucially on the ionization potential.
The CE is peaked at around Ip ≈ Ia = √

4ZE0 a.u., when
the transition to OTBI takes place [47] and the enhancement
character qualitatively changes.

For intuitive understanding of the enhancement mechanism
we investigate the initial momentum space (p⊥i , φi) of the
trajectories that contribute to CE within the final energy
interval of (1.9Up, 2.1Up ), see Fig. 4. In the Coulomb-free
case the contribution to the 2Up energy is not large because
either the initial transverse momentum p⊥i is large, or the
ionization phase is far from the peak value φi = 0, see the red
ellipse in the second row of Fig. 4. In contrast to that, when the
Coulomb field is accounted for, the electrons contributing to
the final 2Up energy range are ionized with smaller p⊥i and φi

(i.e., closer to the peak of the field) with enhanced ionization
probabilities.

The typical parameter regime of CE corresponds to
Figs. 4(b), 4(e). The dominating CE contribution comes from
trajectories B [a typical trajectory is shown in Fig. 1(b)].
Moving along the initial phase structure of B from small
values of φi and p⊥i to the larger ones, corresponds to
transition from the wings of the final 2Up energy ring to the
central spot at p⊥ = 0 in Fig. 4(e). For the former, the final
large energy is achieved due to a large transverse Coulomb
momentum transfer at a recollision, while for the latter due to
an initial Coulomb momentum transfer at the tunnel exit. In
this parameter regime the density of the initial phase space for
A and C is small.

Thus, when increasing Ip the Coulomb momentum transfer
diminishes, pC ∝ I

−5/3
p [see Eq. (A12)], and the initial phase

space of trajectories B moves far from φi = 0, cf. Figs. 4(b)
and 4(c), which decreases CE. The maximum of the enhance-
ment is achieved when the left edge of φi of the initial phase
space for B reaches φi = 0. At the further decrease of Ip,
see Fig. 4(a), the contributing part of the initial phase space
crosses the peak, the topological structure of the initial phase
space is modified, and the phase space of trajectories A, B,
and C are merged. This results in the increase of p⊥i , which
again suppresses CE. The change of the structure of the initial
phase space at decreasing the ionization potential is related to
the transition of ionization from the tunneling to the over-the-
barrier ionization.

While in LES the enhancement is due to Coulomb focus-
ing, in CE this plays a minor role. We classify the trajectories
as Coulomb focused if |p⊥i | > |p⊥f |, otherwise Coulomb de-
focused. In the first case the asymptotic transverse momentum
space of the ionized electron is shrunk with respect to that
at the tunnel exit, which leads to an additional enhancement
and vice versa in the case of defocusing. When classifying
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FIG. 3. Weight of defocused trajectories in the case of E0 =
0.0045, ω = 0.0065.

trajectories as focused and defocused we observe that Type B
trajectories mostly responsible for CE. These are defocusing
trajectories when initial transverse velocity is small. Type C
trajectories are Coulomb defocused. Type A trajectories are
weakly chaotic and contain both focusing and defocusing
electrons. The weight of defocused trajectories in CE is large,
see Fig. 3.

IV. MOLECULAR IMAGING

From Figs. 4(g)–4(i) one can see that the angular distribu-
tion of photoelectrons at 2Up energies has specific features
with wings, especially pronounced at the maximum of the
enhancement at Ip ≈ Ia , when well-defined lobes develop on
the wings. The latter feature has a potential to be applied
for molecular imaging. We investigate using CTMC simula-
tions, the structure of the angular distribution of CE for a
H2

+ molecule at different orientations of the molecule and
at different interatomic separations. The results presented in

Fig. 5 show that the relative intensity of the lobes can be
a measure of the orientation of the molecule. Moreover, the
intensity of the wing tail of the angular distribution (at angles
larger than the lobe) carries the signature of the interatom
separation in the molecule. This is an example of high-energy
direct electron spectroscopy applied to molecular imaging.
The latter also hints on a possible experimental demonstration
of the considered CE. One may apply a pump-probe scheme,
where the first pulse induces the molecule dissociation, while
the second one probes the increasing nuclear distance with a
variable time delay, using the angular distribution feature of
Fig. 5(b).

V. POSSIBILITY OF THE COULOMB ENHANCEMENT
OBSERVATION IN A TWO-COLOR LASER FIELD

There are several ways for experimental observation of the
discussed CE, when the photoelectron momentum distribution
show an enhancement near 2Up energy with respect to the
Coulomb free calculations. Two of them are discussed in the
paper: first, via the ratio R of the photoelectron number at
2Up energy to that at Up, see Figs. 2(b), 2(c) of the paper,
and second, via mapping of the molecular orientation into the
intensity of the angular distribution lobes, see Fig. 4(a) of the
paper. There is a third way for the observation via the use of a
two-color orthogonal laser field:

Ex = E1 cos(ωt ) (5)

Ey = E2 cos(2ωt + φ). (6)

We employ E1/E2 = 4 with a variable phase difference φ.
The angular distribution of the electrons at 2Up energies
depends on the phase difference between the fields, see Fig. 6,
due to which the energy distribution of photoelectron along

FIG. 4. The electron initial phase space (p⊥i , φi), which finally contributes to the photoelectron energy interval (1.9Up, 2.1Up) (first row),
with color-coded probabilities (second row): (left column) Ip = 0.42Ia [before the CE peak, indicated in Fig. 2(c) by blue cycle]; (middle
column) Ip = 0.79Ia [near the CE peak, indicated in Fig. 2(c) by blue cycle]; (right column) Ip = 1.35Ia [after the CE peak, indicated in
Fig. 2(c) by blue cycle]. Asymptotic momentum distribution (third row) for the corresponding Ip values. The phase space of the trajectories A,
B, and C type are indicated in the panel (b). The parameters are E0 = 0.0315 a.u., ω = 0.0456 a.u. and Z = 1.
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FIG. 5. Photoelectron distribution integrated over the azimuthal angle vs the polar angle θe with respect to the laser field direction: (a) in
the case of different molecular orientations θm of the H2

+ molecule. The inset shows the ratio of the wing intensity (at the indicated point) to
that of the peak. (b) in the case of different inter-atomic separations. The parameters are E0 = 0.0315 a.u. and ω = 0.0456 a.u..

the polarization direction of the strong field E1 becomes phase
dependent, see Fig. 7. The latter can serve as an indicator of
the discussed CE. Note that the angle-integrated spectra has
no significant phase dependence.

VI. QUANTUM DESCRIPTION. GENERALIZED
EIKONAL APPROACH

For the description of CE a nonperturbative treatment of
the Coulomb effect is necessary because the perturbative
second-order SFA yields uniformly enhanced photoelectron
spectra, while at CE the enhancement is large at high en-
ergies around 2Up. In Ref. [30] CCSFA is applied, which
employs eikonal approximation for the electron continuum
wave function. The deficiency of this approach is that the

ionization amplitude diverges at photoelectron rescattering to
small angles, which induces an artificial large contribution
to the photoelectron spectra enhancement at high energies,
see Fig. 8. We remedy the divergence problem at recollisions
using the generalized eikonal wave function in the CCSFA
approach, which includes quantum corrections.

The eikonal approximation can be generalized by going
beyond the quasiclassical WKB approximation. In GEA the
second-order derivatives of the Schrödinger equation are not
neglected, in contrast to WKB approximation. The photo-
electron momentum distribution in GEA is calculated via the
matrix element:

Mp = −i

∫
dtd3r ψGEA∗(r, t ) r · E(t ) φ(r, t ), (7)

FIG. 6. (a)–(c) The electron initial phase space (p⊥i , φi), which finally contributes to the photoelectron energy interval (1.9Up, 2.1Up) in a
two-color orthogonal laser field. (d)–(f) Asymptotic momentum distribution. The phase differences between the fields are: (a), (d) φ = 0; (b),
(e) π/3; and (c), (f) 2π/3. The parameters are E1 = 0.0315 a.u., E1/E2 = 4, ω = 0.0456 a.u., and Ip = 0.3 a.u.
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where φ(r, t ) is the bound state wave function, and the
electron wave function in the continuum ψGEA(r, t ) accounts
the effect of the laser and Coulomb field of the atomic core in
GEA [44]:

ψGEA(r, t ) = exp[iS0(r, t ) + iSGEA(r, t )], (8)

with the Volkov action

S0 =
∫

t

dt ′(p + A(t ′))2/2 + [p + A(t )] · r, (9)

and the generalized eikonal

SGEA(r, t ) ≈ SGEA
1 (r, t ) + SGEA

2 (r, t ). (10)

We calculate the generalized eikonal up to the second order in
the scattering potential V (r). The first-order correction to the

Volkov action is calculated in Ref. [44]:

SGEA
1 (r, t ) =

∫
t

dsV (rL(s))erf

⎡
⎣

√
irL(s)2

2(s − t )

⎤
⎦. (11)

The second-order terms are defined by the following dif-
ferential equation

−∂tS
GEA
2 = (∇SGEA

1

)2/
2 + ∇SGEA

0 ∇SGEA
2 − i�SGEA

2

/
2

(12)

≈ (∇SGEA
1

)2/
2 + ∇SGEA

0 ∇SGEA
2 . (13)

The second equation can be solved by the method of charac-
teristics, which yields the solution

SGEA
2 ≈

∫
t

ds
∇SGEA

1 (s)2

2
, (14)
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FIG. 8. Photoelectron spectra in logarithmic scale angle integrated within ±60 along the laser polarization direction: (black solid) via
numerical TDSE; (red solid) via GEA; (black thick-dashed) via eikonal CCSFA as in Ref. [30]; (red thin-dashed) via Coulomb free SFA. The
laser and atom parameters are the same as in Fig. 2.
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FIG. 9. The estimation of the GEA enhancement vs the final
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which finally leads to the second-order GEA correction to the
eikonal:

SGEA
2 (r, t ) = 1

2

∫
t

ds

⎛
⎝∫

s

ds ′∇V (rL(s ′))erf

⎡
⎣

√
irL(s ′)2

2(s ′−t )

⎤
⎦

⎞
⎠

2

.

(15)

The generalized eikonals of Eqs. (14)–(15) are free from
Coulomb singularities and branch points, see also Ref. [48].
We solve the integrals in the amplitude of Eq. (7) with the
saddle-point method and expanding the saddle points up to
first order in the atomic potential.

The photoelectron spectrum along the laser polarization
in GEA is presented in Fig. 8 and shows enhancement with
respect to the Coulomb-free case, and the same slope for the
spectrum as for the TDSE result. The difference between the
quasiclassical eikonal approximation and the GEA occurs at
2Up energies where the quasiclassical approximation is not
valid and singular at the forward scattering of the zero angle.
The GEA includes quantum corrections, which yields to some
enhancement with respect to the eikonal approximation case
at energies around Up. The quantum corrections of GEA are
overestimated, which induce not realistic large enhancement
of the LES. Below we give qualitative estimation of the GEA
enhancement at low energies.

The first-order action term due to the GEA can be estimated
at the recollision tr ∼ 1/ω. Assuming that the electron has an
impact parameter y ∼ pyr/ω and a longitudinal recollision
momentum pxr the error function in the action becomes
relevant when y2/tr � 1. Then it can be expanded based
on the following relationship for small x: erf (x) ∼ 2x/

√
π ,

yielding

SGEA
1 ≈ −Z

∫
t

ds

√
2i

π (s − t )
. (16)

Since the typical time interval when this is true can be
estimated by pxrds � √

s for vanishing y, the action term
is of the order of Z/pxr . In Fig. 9 the GEA enhance-
ment parameter exp(iSGEA

1 ) is plotted against the recollision

momentum, displaying the estimate for the GEA enhancement
at low energies.

In more intuitive terms, within the ionization time t

and the recollision time s, the electron has an energy un-
certainty �ε ∼ 1/(s − t ), i.e., the momentum uncertainty
�p ∼ 1/

√
s − t , and the recollision impact parameter is ρ ∼

�p(s − t ) ∼ √
s − t . The recollision time can be estimated

�s ∼ ρ/pxr , and the GEA phase ∼Z�s/
√

s − t ∼ Z/pxr .
The latter indicates that GEA overestimates quantum en-
hancement at slow recollisions when pxr ≈ 0.

Continuity of the integrand of the eikonal in GEA

The integrand of the eikonal in GEA has the form IGEA =
erf

√
x/

√
x. This function is continuous for all complex x,

since the error function can be expanded in the whole complex
space via

erf
√

x√
x

= 2√
π

∞∑
n=0

(−1)nxn

n!(2n + 1)
, (17)

which consists only of continuous polynomial functions. In-
stead the integrand in the eikonal expansion has the simpler
form of IEA = 1/

√
x, but has branch cuts, see the three-

dimensional plot of the imaginary part of this function in
Fig. 10.

One can straightforwardly show how discontinuity in
the GEA integrand disappears: Im{IGEA} = Re{erf (

√
x)}

Im{1/
√

x} + Im{erf (
√

x)}Re{1/
√

x}. The imaginary parts of
1/

√
x and erf (

√
x) are discontinuous, see Fig. 10, but at the

same time they are multiplied by Re{erf
√

x} and Re{1/
√

x},
respectively, which tends to 0 at the discontinuity of the imag-
inary parts, see Fig. 10, making the overall function smooth.

Therefore, in contrast to the eikonal approximation, in the
GEA it is not necessary to shift the time integration contour
in complex plane at recollisions, but can be carried out, for
example, along the real time axis.

VII. CONCLUSION

We have demonstrated that the enhancement of the tunnel
ionized photoelectron spectra at the upper energy limit of the
direct electrons in the strong Coulomb field regime is of a
classical origin. We found that the nonuniform Coulomb mo-
mentum transfer with respect to the ionization phase allows
for the electrons tunneled not far from the peak of the laser
field to accumulate at high energies. The enhancement not
only depends on the main parameter of the strong Coulomb
field regime Zω/E0, but also crucially on the ionization
potential. We locate a peak of the enhancement with respect
to the ionization potential and relate this to the structure of the
initial phase space of the contributing electrons. At the peak
of the enhancement with respect to the ionization potential
the angular distribution shows well distinguishable side lobes,
which can be employed to develop a spectroscopy method for
molecular imaging. In contrast to LES, the Coulomb focusing
plays no role for this enhancement effect.

In an experiment the Coulomb enhancement can be most
straightforwardly observed via the ratio of the photoelectron
number at 2Up energy to that at Up. One may use also a
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FIG. 10. The continuity of the integrand of the GEA eikonal IGEA = erf
√

x/
√

x: (a) The function Im{1/
√

x} in the complex plane
is discontinuous. (b) The function Re{erf (

√
x )} in the complex plane is continuous. (c) The function Re{1/

√
x} in the complex plane is

continuous. (d) The function Im{erf (
√

x )} in the complex plane is discontinuous. (e) However, the function Im{erf (
√

x )/
√

x} in the complex
plane is continuous.

two-color orthogonal laser field, where the Coulomb enhance-
ment is exhibited in the dependence of the photoelectron
spectra on the phase difference of the color fields.

For the accurate quantum description of the Coulomb ef-
fects at fast recollisions, we put forward a Coulomb-corrected
version of SFA based on the generalized eikonal approxima-
tion, which is free from Coulomb singularities at recollisions.
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APPENDIX: ESTIMATION OF THE COULOMB
MOMENTUM TRANSFER AND THE COULOMB

ENHANCEMENT FACTOR

We use the laser field

Ex (t ) = −E0 cos ωt, (A1)

with the vector potential:

Ax (t ) = (E0/ω) sin ωt. (A2)

The electron dynamics can be derived from the canonical
momentum conservation:

px (t ) − Ax (t ) = −Ax (te ), (A3)

with the ionization time te, assuming vanishing longitudinal
momentum at the tunnel exit in the Simpleman model [in the
applied SFA te = Re(ts ) and there is a nonadiabatic longitudi-
nal momentum at the tunnel exit, which is, however, small at
γ < 1]. The electron momentum is:

px (t ) = E0

ω
(sin ωt − sin ωte ), (A4)

and the electron trajectory is:

x(t ) = −E0

ω2
[ω(t − te ) sin ωte + cos ωt − cos ωte] + xe,

(A5)
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with the tunnel exit xe ≈ Ip/E0. We consider ω(t − te ) � 1
and the electron is assumed to appear in the continuum at the
laser phase φe ≡ ωte close to π/2 (0 < φe < π/2). Then,

cos ωt − cos ωte ≈ −ω(t − te ) sin ωte − cos ωte
ω2(t − te )2

2

+ sin ωte
ω3(t − te )3

6
. (A6)

Therefore, the trajectory at ωte ≈ π/2 − ε (ε � 1) can be
approximated as

x(t ) ≈ −E0

ω2

[
− sin ε

ω2(t − te )2

2
+ ω3(t − te )3

6

]
+ xe

≈ −E0ω(t − te )3

6
+ xe, (A7)

where we used ε ∼ ω(t − te ) � 1. The Coulomb momentum
transfer can be estimated

pC ∼ FCδt, (A8)

with the Coulomb force FC ∼ Z/x2
e , and the effective inter-

action time δt . The latter is estimated from the condition

|x(te + δt ) − xe| ∼ |xe|, (A9)

which reads

E0ωδt3

6
∼ Ip

E0
, (A10)

i.e.,

δt ∼
(

6Ip

E2
0ω

)1/3

, (A11)

and the Coulomb momentum transfer is derived:

pC ∼ Z

(
6E4

0

ωI 5
p

)1/3

= 4Z

(
3

γ

)1/3
E0

Ea

, (A12)

with the atomic field Ea = (2Ip )3/2 and the Keldysh parame-
ter γ = ω

√
2Ip/E0.

The 2Up-enhancement factor can be estimated as

E ≡
∣∣MC

p

∣∣2

|Mp|2
∣∣∣∣∣
p=E0/ω

, (A13)

with the first-order SFA longitudinal momentum distribution

|Mp|2 ∼ exp(−p2/�2
‖), (A14)

with �‖ = √
3E0/EaE0/ω, and the Coulomb-corrected ion-

ization amplitude

MC
p = Mp−pC

. (A15)

The Coulomb enhancement factor is

E = exp

(
2p pC

�2
‖

− p2
C

�2
‖

)
. (A16)

The ratio can be estimated

pC

p

∣∣∣∣
p=E0/ω

≈ 4
Zω

E0

E0

Ea

(
3

γ

)1/3

. (A17)

At chosen parameters E0 =0.0045, ω=0.0065, and Ip =0.14,
one has pC/p0 ≈ 0.35 and p0 ≡ E0/ω ≈ 0.69. Then, the
exponent in Eq. (A16) is mostly determined by the first
term:

2p pC

�2
‖

∣∣∣∣∣
p=E0/ω

≈ 4
Zω

E0

(
1

γ

)1/3

. (A18)

Thus, the enhancement factor is

E ∼ exp(4ζ ), (A19)

ζ ≈ Zω

E0

1

γ 1/3
. (A20)

The ratio R of ionization probabilities at 2Up to Up can be
regarded as a signature of CE to be proved in an experiment
(Up is used as a reference point to avoid the spikes in the
spectrum due to LES), which can be estimated in a same way:

R ≡
∣∣MC

E0/ω

∣∣2

∣∣MC

E0/
√

2ω

∣∣2 . (A21)

It is also determined by the parameters ζ (along with E/Ea

and γ )

R ≈ exp

{
(p1 − pC1)2 − (p0 − pC )2

�2
‖

)
(A22)

with p0=E0/ω, p1=E0/(
√

2ω), pC=4Z(E0/Ea )(3/γ )1/3,
and pC1 = πE0/Ea .

Due to Coulomb momentum transfer, the photoelectron
with a final energy around the 2Up energy are originated not
at φi = π/2, as in the Coulomb-free case, but at phases closer
to the peak of the field: φi = π/2 − δφi . We can estimate the
phase of the laser field, which mostly contributes as follows:

pxf = −Ax (π/2 − δφi ) + pC
x ∼ E0

ω
. (A23)

From the latter we derive, using δφi � 1 and Eq. (A12):

δφi ∼
√

2ωpC
x

E0
∼ 2

√
2

√
Z√
2Ip

(
E0

Ea

)1/3(
ω

Ip

)2/3

∼ Z1/2E
1/6
0 ω1/3

I
5/6
p

. (A24)
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