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We study the origin of dichroic effects in elastic scattering of high-energy electrons by hydrogen atoms in the
presence of a two-color bicircular laser field of commensurate frequencies, in the domain of moderate intensities
below 10 TW/cm2. We use a semiperturbative approach in which the interaction of the hydrogen atom with
the laser field is treated in second-order perturbation theory, while the interaction of the projectile electron with
the laser field is described by Gordon-Volkov wave functions. An analytical formula of circular dichroism in the
angular distribution of scattered electrons is derived in the weak-field domain for a two-color laser field that
is a combination of the fundamental and its third harmonic. A comparison between the two-photon differential
cross sections for two-color co- and counter-rotating circularly polarized laser fields is made, and the effect of
the intensity ratio of the monochromatic field components on the circular dichroism is investigated. The dichroic
effect in the angular distribution of scattered electrons for two-photon absorption is analyzed as a function of the
scattering and azimuthal angles. We show that the two-color bicircular laser field can induce a strong circular
dichroism in the angular distribution of scattered electrons at small scattering angles where the atomic dressing
effects are important, as well at larger scattering angles. At small scattering angles we demonstrate that the
dichroic effect for two-photon transitions can be predicted under the following conditions: the scattering process
is treated in fist-order Born approximation, and the dressing of the atomic states by the laser field is carried out
at least in first-order time-dependent perturbation theory.
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I. INTRODUCTION

Dichroism, a well-known concept in classical optics, rep-
resents a property shown by certain materials of having
absorption coefficients which depend on the polarization of
the incident radiation [1]. In quantum mechanics the circular
dichroism (CD) of an atom can be investigated by considering
its interaction with circularly polarized (CP) radiation. The
study of CD in laser-induced or laser-assisted atomic pro-
cesses has attracted an increasing theoretical as well experi-
mental interest in the last 30 years due to the possibility of
investigating the dichroic properties of atomic systems [2–4].
Of particular interest has become the concept of circular
dichroism in angular distribution (CDAD), which refers to
the differences between the fluxes of scattered or ionized
electrons measured at definite spatial directions, caused by
left and right CP laser light [5]. One of the potential interests
in dichroic measurements and calculations on laser-induced
or laser-assisted atomic processes is that we can determine
the relative magnitudes and phases of the various interfering
transition amplitudes by analyzing the differences between
the angular distributions obtained for different polarization
states of the laser field [6,7]. It is interesting to note that
in multiphoton ionization of unpolarized one-electron atoms
by monochromatic CP light, the cross section and the an-
gular distribution of photoelectrons do not depend on the
photon helicity [8], i.e., there is no CD. However, the dichroic
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effect exists for two-photon ionization of atoms [6] or laser-
assisted electron-atom scattering [9,10] with elliptically po-
larized fields. A different situation occurs in two-color pho-
toionization of unpolarized atoms when one XUV laser beam
is CP and the other near-infrared beam is linearly polarized
(LP), and CDAD can exist since the angular distributions
of photoelectrons are slightly different for opposite helicities
of the CP field [7]. Another different situation arises when
two photoelectrons are simultaneously emitted upon one-
photon absorption and the angular and energy distributions
of photoelectrons exhibit a strong dependence on the photon
helicity [11]. Recently, the observation of CD was reported in
two-color above-threshold ionization of He atoms, in both dif-
ferential and integral photoelectron yield [12]. In this type of
experiment the He atoms are ionized by a XUV free-electron
laser radiation in the presence of an intense near-infrared laser
field and the results confirmed the theoretical prediction of CD
in two-color multiphoton ionization of atoms [13].

Similarly to the laser-induced processes, in laser-assisted
electron-atom scattering the differential cross section (DCS)
for CP light and high-energy projectiles depends neither on
the dynamical phase nor on the helicity of the radiation field,
in first-order Born approximation, and therefore the CD is
absent [14]. However, Manakov and co-workers [15] have
shown that CDAD can be predicted in laser-assisted potential
scattering of low-energy electrons, provided the CP laser
has low frequency and low intensity, and if the scattering
amplitude is evaluated to higher orders in the Born series.
In the last two decades theoretical studies of dichroic effects
involving monochromatic electromagnetic fields, with various
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combinations of linear and circular polarizations, were per-
formed for laser-assisted electron-hydrogen scattering by
Cionga and co-workers [16], in which the dressing of atomic
states is taken into account in second order of time-dependent
perturbation theory (TDPT). Very recently, the study of laser-
assisted electron-atom scattering has attracted considerable
attention, especially because of the progress of experimental
techniques [17–20]. Despite the theoretical and experimental
studies, the roles of the initial and final atomic states, the
intermediate resonances, and the laser field parameters are still
subjects of discussion. Detailed reports on the laser-assisted
electron-atom collisions can be found in several review pa-
pers [21,22] and books [23,24], and references therein. A
two-color bicircular electromagnetic field, which has lately
attracted a lot of interest, consists of a superposition of two
CP fields of different photon energies, which rotate in the
same plane, with identical helicities (corotating CP fields)
or opposite helicities (counter-rotating CP fields). The recent
generation of CP high harmonics [25] allowed the direct
generation of CP soft x-ray pulses and has generated an
increasing attention in studying different laser-induced pro-
cesses by bicircular laser fields such as strong-field ionization
[26], nonsequential double ionization [27], or laser-assisted
electron-ion recombination [28,29]. The physical mechanism
occurring in laser-assisted or laser-induced processes involv-
ing a two-color field is the interference among different two-
photon channels leading to the same final state, and obviously,
by using CP fields the different helicities of the photons
play an important role [30]. Obviously, the symmetries of the
bicircular electromagnetic field are reflected in symmetries of
the DCSs [31].

In contrast to past studies [14,16], in the present manuscript
the dichroic effect is now investigated for the case of two-
color bicircular laser fields. The notion of CDAD for two-
color bicircular fields refers to the difference between DCSs of
laser-assisted signals for the bichromatic fields with identical
or opposite helicities [7]. To our knowledge, there are no
other theoretical studies regarding the CD in laser-assisted
electron-atom scattering processes in a two-color bicircular
laser field which include the atomic dressing in second-order
TDPT. In the present contribution we shall demonstrate that
is also possible to find CDAD effects for fast electrons and
small scattering angles if the dressing of the atomic states
by the laser field is taken into account. Our interest is to
investigate the polarization effects at UV photon energies, a
domain that has not been analyzed in detail, where the atomic
dressing effects are larger and, as a result the dichroic effect
will be larger than at lower photon energies. Such an interest
is justified because of the possibility of controlling the atomic
processes by using two-color laser fields and by manipulating
the photon helicity of the monochromatic components of the
fields [30]. In order to avoid any complications that could
mask the dichroic effect, the photon energies are chosen such
that they do not match any one-photon atomic resonance.
Since it is well known that the scattering probability decreases
with increasing photon energy [22], we expect smaller DCSs
than at lower photon energies. Therefore, we consider pho-
ton energies in the UV range (3−9 eV) and moderate laser
intensities (below 10 TW/cm2). The manuscript is organized
as follows. In Sec. II we briefly present the theoretical method

used in laser-assisted elastic electron-hydrogen scattering to
derive the analytical formulas for the transition amplitudes for
a two-color CP laser field with different polarizations [31]. As
described in our previous works [32,33], a semiperturbative
approach is used, in which for the interaction of the incident
and scattered electrons with the laser field we employ Gordon-
Volkov wave functions, while the interaction of the hydrogen
atom with the laser field is treated in second-order TDPT. It
is well known that the analytical studies using TDPT remain
very useful for understanding essential details of the scattering
signal due to the fact that the analytical formulas have the
advantage of giving physical insight into the scattering pro-
cess. The numerical results are discussed in Sec. III, where
the DCSs and CDAD by co- and counter-rotating CP fields
are analyzed as a function of the scattering and azimuthal
angles of the projectile electron at different intensity ratios of
the monochromatic components of the bicircular laser field.
We predict a first intuitive view of the dichroic effect in
the DCS and provide simple analytic formulas, in a closed
form, of DCSs and CDAD for a bicircular field, which is a
combination of a fundamental laser and its third harmonic,
at low intensities or moderate intensities and large scattering
angles. Finally, the summary and conclusions are given in
Sec. IV. Atomic units (a.u.) are employed throughout this
manuscript unless otherwise specified.

II. SEMIPERTURBATIVE THEORY

The laser-assisted elastic scattering of electrons by hy-
drogen atoms in a two-color laser field can be symbolically
represented in the following way:

e−(Ep, p) + H(1s) + N1i γ (ω1, ε1) + Nmi γ (ωm, εm)

→ e−(Ep′ , p′) + H(1s) + N1f γ (ω1, ε1)

+Nmf γ (ωm, εm), (1)

where Ep (Ep′ ) and p (p′) represent the kinetic energy and
the momentum vector of the incident (scattered) projectile
electron. Here γ (ωk, εk ) denotes a photon with the energy
ωk and the unit polarization vector εk , and Nk = Nki − Nkf is
the net number of exchanged photons between the projectile-
atom system and each monochromatic component of the two-
color laser field (k = 1 and m). For commensurate energies,
ωm = mω1, the kinetic energy of the projectile electron before
and after collision obeys the following conservation relation
Ep′ = Ep + Nω1, with N ≡ N1 + Nm ωm/ω1. The two-color
bicircular laser field is treated classically and is described as a
combination of two coplanar CP electric fields,

E(t ) = i

2

∑
k=1,m

E0k εk e−iωkt + c.c., (2)

where E0k represents the amplitude of the monochromatic
components of the electric field and ε1 = (ej + iel )/

√
2 is

the polarization vector of the first laser beam, with ej and el

unit vectors along two orthogonal directions. The second laser
beam has either the same polarization, εm = ε1, for corotating
two-color CP fields, or is circularly polarized in the opposite
direction, εm = ε∗

1, for counter-rotating two-color CP fields.
We use a theoretical approach similar to the one developed
in Ref. [31] and, therefore, in the next sections we briefly

053427-2



CIRCULAR DICHROISM IN ANGULAR DISTRIBUTION OF … PHYSICAL REVIEW A 98, 053427 (2018)

describe the model and approximations used to calculate DCS
and CDAD.

A. Projectile electron and atomic wave functions

We assume moderate laser intensities and high-energy
projectile electrons, which imply that the strength of the laser
field is lower than the Coulomb field strength experienced by
an electron in the first Bohr orbit, and the kinetic energy of
the projectile electron is much larger than the energy of the
bound electron in the first Bohr orbit [22]. We describe the
initial and final states of the projectile electron interacting with
a two-color laser field by Gordon-Volkov wave functions [34],

χp(r, t ) = (2π )−3/2e−iEpt+ip·r−ip·α1(t )−ip·αm(t ), (3)

where r is the position vector and αk (t ), with k = 1 and
m, describes the classical oscillation motion of the projectile
electron in the bicircular electric fields defined by Eq. (2),

αk (t ) = α0k (ej sin ωkt ± el cos ωkt )/
√

2. (4)

Here, the upper sign (+) is used for corotating CP fields,
while the lower sign (−) is used for counter-rotating CP
fields, α0k = √

Ik/ω
2
k is the quiver amplitude, and Ik = E2

0k

is the laser intensity of the monochromatic component of the
two-color field. Since the calculations presented in this paper
are made at moderate laser intensities, the terms proportional
to the ponderomotive energy, Up,k = Ik/4ω2

k , are neglected
in the Gordon-Volkov wave function, Eq. (3). At a laser
intensity of 1 TW/cm2 and a photon energy of 3 eV, the
ponderomotive energy is about 0.016 eV and therefore can be
neglected compared to the photon and projectile energies.

The interaction of the hydrogen atom with a two-color
laser field at moderate field strengths is considered within the
second-order TDPT, and an approximate solution for the wave
function of an electron bound to a Coulomb potential in the
presence of an electric field is expressed as

�1s (R, t ) = e−iE1s t
[
ψ1s (R, t ) + ψ

(1)
1s (R, t ) + ψ

(2)
1s (R, t )

]
,

(5)

where R denotes the position vector of the bound electron, E1s

is the energy of the ground state, ψ1s is the unperturbed wave
function of the ground state, and ψ

(1)
1s and ψ

(2)
1s are the first-

and second-order radiative corrections to the atomic wave
function. The first-order radiative correction ψ

(1)
1s is calculated

using the Coulomb Green’s function, including both bound
and continuum eigenstates, being expressed in terms of the
linear-response vector [35].

Similarly, the second-order radiative correction to the
atomic wave function ψ

(2)
1s is expressed in terms of the

quadratic response tensors [36]. For a two-color laser field,
the explicit forms of the first- and second-order radiative
corrections ψ

(1)
1s and ψ

(2)
1s are given in Ref. [31].

B. The nonlinear scattering matrix and differential
cross section

As mentioned before, we focus our study at moderate laser
intensities (Ik � 10 TW/cm2) and fast projectile electrons
(Ep � 100 eV) such that the interaction between the projec-
tile electron and hydrogen atom is well treated within the first-

order Born approximation in the static scattering potential
V (r, R) = −1/r + 1/|R − r|. We employ a semiperturbative
approach of the scattering process similar to that proposed by
Byron and Joachain [37], in which the exchange scattering can
be safely neglected and the scattering matrix [38] is calculated
at high projectile energies as

Sf i = −i

∫ +∞

−∞
dt〈χp′ (r, t )�1s (R, t )|V (r, R)|

×χp(r, t )�1s (R, t )〉. (6)

χp and χp′ are given by Eq. (3) and represent the initial and
final Gordon-Volkov wave functions of the projectile electron
embedded in the two-color laser field, whereas �1s represents
the wave function of the bound electron interacting with the
two-color laser field and is calculated from Eq. (5). Using
the Jacobi-Anger identity [39], eia sin ωt = ∑

N JN (a)eiNωt ,

we expand the field-dependent part of the Gordon-Volkov
wave functions, χp and χp′ , in the scattering matrix in terms
of the phase-dependent generalized Bessel functions BN [40]
as

exp [−iα1(t ) · q − iαm(t ) · q]

=
+∞∑

N=−∞
BN (R1,Rm; φ1, φm)e−iNω1t+iNφ1 , (7)

where

BN (R1,Rm; φ1, φm) =
+∞∑

l=−∞
JN−ml (R1)Jl (Rm)e−il(mφ1−φm ),

(8)

in which JN−ml (R1) and Jl (Rm) are ordinary Bessel func-
tions of the first kind. The argument of the Bessel func-
tions of the first kind is defined by Rk = α0k|εk · q|,
(k = 1 and m), and φk is the dynamical phase calcu-
lated as eiφk = εk · q/|εk · q|, where q denotes the mo-
mentum transfer vector of projectile during scattering,
i.e., q = p − p′. We note that for a monochromatic CP
field with the polarization unit vector εk = (ej + iel )/

√
2,

we obtain Rk = α0k

√
(ej · q)2 + (el · q)2/

√
2 and φk =

arctan (el · q)/(ej · q) + sπ , where s is an integer. Clearly,
a change of helicity of the CP field, i.e., εk → ε∗

k , leads to
a change of the sign of the dynamical phase, φk → −φk .
By replacing Eqs. (3), (5), and (7) in Eq. (6), we obtain,
after integrating over time and over projectile coordinate, the
scattering matrix for elastic electron-hydrogen collisions in a
two-color laser field,

Sf i = −2πi

+∞∑
N=−∞

Tf i,N δ(Ep′ − Ep − Nω1) , (9)

where in the δ Dirac function the kinetic energy of the pro-
jectile is modified by Nω1. Hence, the energy spectrum of the
scattered electron consists of an elastic line N = 0 (Ep′ = Ep

and Nki = Nkf ), and of a number of sidebands corresponding
to the positive and negative values of N . The total nonlinear
transition amplitude Tf i,N for the elastic scattering process is
expressed as a sum of three terms,

Tf i,N = T
(0)
N + T

(1)
N + T

(2)
N , (10)
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and the nonlinear DCS of the scattered electrons is calculated
as

dσN

d�p′
= (2π )4 p′

p

∣∣T (0)
N + T

(1)
N + T

(2)
N

∣∣2
, (11)

where the final momentum of the projectile is given by p′ =
(p2 + 2Nω1)1/2.

The derivation of the transition amplitudes T
(i)
N , (i =

0, 1, 2), is briefly described in what follows. The first term on
the right-hand side of the total transition amplitude Eq. (10),
T

(0)
N , is the elastic transition amplitude due to projectile elec-

tron contribution in which the atomic dressing is neglected,

T
(0)
N = BN (R1,Rm; φ1, φm)F (q), (12)

where the atomic form factor is given by F (q) =
(2π2q2)−1〈ψ1s |eiq·R − 1|ψ1s〉. After performing the radial in-
tegration in the atomic form factor, we obtain the electronic
transition amplitude

T
(0)
N = − 1

(2π )2
BN (R1,Rm; φ1, φm) f

B1
el (q ), (13)

in which f
B1
el (q ) = 2(q2 + 8)/(q2 + 4)2 is the first-order

Born approximation of the scattering amplitude for the elastic
scattering process in the absence of the laser field. The laser

field dependence is contained in the arguments of the general-
ized Bessel function only BN (R1,Rm; φ1, φm).

The second term on the right-hand side of Eq. (10), T
(1)
N ,

represents the first-order atomic transition amplitude and oc-
curs due to modification of the atomic ground state by the
two-color laser field (atomic dressing), which is described
by the first-order radiative correction, ψ

(1)
1s (R, t ). After some

calculation, the first-order atomic transition amplitude can be
written as

T
(1)
N = −

∑
k=1,m

α0kωk

2

[
BN−k M(1)

at (ωk, q)e−ikφ1

+ BN+k M(1)
at (−ωk, q)eikφ1

]
, (14)

where M(1)
at (ωk, q) denotes specific first-order atomic tran-

sition matrix elements related to one-photon absorption,
whereas the transition matrix elements M(1)

at (−ωk, q) are re-
lated to one-photon emission [31]. Obviously, in Eq. (14) only
one photon is exchanged (emitted or absorbed) between the
two-color laser and the bound electron, while the remaining
N ± 1 photons are exchanged between the two-color laser
and the projectile electron. For the sake of simplicity, the
arguments of the generalized Bessel functions are dropped off
in Eq. (14) and throughout this paper. By performing the radial
integrals in Eq. (14) we find the first-order atomic transition
amplitude T

(1)
N as

T
(1)
N =

∑
k=1,m

α0kωk

4π2q2
[(εk · q̂)BN−kJ101(ωk, q )e−ikφ1 − (ε∗

k · q̂)BN+kJ101(ωk, q )eikφ1 ], (15)

where the radial integral J101(ωk, q ) is analytically calculated as a series of hypergeometric functions [14,32], and q̂ = q/|q|
represents a unit vector that defines the direction of the momentum transfer vector.

The last term on the right-hand side of the transition amplitude Eq. (10), T
(2)
N , represents the second-order atomic transition

amplitude and occurs due to alteration of the atomic ground state by the two-color laser field, which is described by the second-
order radiative correction ψ

(2)
1s (R, t ), calculated in Ref. [31]. After some algebra the second-order atomic transition amplitude

T
(2)
N is expressed as

T
(2)
N =

∑
k=1,m

α2
0kω

2
k

4

{
BN−2kM(2)

at (ωk, q)e−2ikφ1 + BN+2kM(2)
at (−ωk, q)e2ikφ1 + BN

[
M̃(2)

at (E1s , ωk ) + M̃(2)
at (E1s ,−ωk )

]}
+ α01α0mω1ωm

4

∑
l,j=±1

BN−l−jmN (2)
at (lω1, jωm, q)e−i(l+jm)φ1 . (16)

Obviously, in Eq. (16) only two photons are exchanged
(absorbed, emitted, or absorbed and emitted) between the
two-color laser field and the bound electron. The specific
second-order atomic transition matrix elements, M(2)

at , M̃(2)
at ,

and N (2)
at , are connected to two-photon exchange and are

calculated in Refs. [14,41]. The atomic transition matrix
elements M(2)

at (ωk, q) and M(2)
at (−ωk, q) are related to ab-

sorption and emission of two identical photons of energy ωk

and complex polarization εk , respectively. The second type
of atomic transition matrix elements M̃(2)

at (ωk, q) describe the
absorption followed by emission of the same photon, whereas
M̃(2)

at (−ωk, q) describes the emission followed by absorption
of the same photon. The third type of atomic transition matrix
elements N (2)

at (ω1, ωm, q) and N (2)
at (−ω1,−ωm, q) describe

the absorption and emission of two different photons of ener-
gies ω1 and ωm, respectively. Similarly, N (2)

at (−ω1, ωm, q) are
related to emission of one photon of energy ω1 and absorption
of one photon of energy ωm. The analytic expressions of
the second-order atomic transition matrix elements for two
identical photons are given by

M(2)
at (ωk, q) = (εk · q̂)2

2π2q2
Q(ωk, q ) + ε2

k

2π2q2
P (ωk, q ) (17)

and

M̃(2)
at (ωk, q) = |εk · q̂|2

2π2q2
Q̃(ωk, q ) + 1

2π2q2
P̃ (ωk, q ), (18)
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where the specific expressions of the polarization-invariant
atomic radial integrals P and Q for two-photon processes
depend on the photon energies and the amplitude of the
momentum transfer vector of the projectile electron, and are
obtained as series of hypergeometric functions in Ref. [14].
We note that ε2

k = 1 for a LP field, while ε2
k = 0 for a CP

field and therefore, the second term in the right-hand side of
Eq. (17) vanishes.

For the exchange of two different photons, a general form
of the second-order atomic transition matrix elements was
derived [41] as

N (2)
at (ωj , ωl, q) = (εj · q̂)(εl · q̂)

2π2q2
Q′(ωj , ωl, q )

+ εj · εl

2π2q2
P ′(ωj , ωl, q ). (19)

Equation (19) is symmetric and has a structure that explic-
itly contains only the scalar products of polarization and mo-
mentum transfer vectors. The general structure of Eq. (19) is
also similar to other processes, such as the elastic scattering of
photons by hydrogen atoms [42], two-photon bremsstrahlung
[43], elastic x-ray scattering by ground-state atoms [44], two-
photon ionization of hydrogen [7,45], or two-photon double
ionization [46], with the unit vector q̂ replaced by vectors
which are specific to each particular process. The specific
expressions of the polarization-invariant atomic radial inte-
grals for two different photons, P ′ and Q′, depend on the
photon energies ωj and ωl , and the momentum transfer q

[41]. The following the changes are made, ωk → −ωk and
εk → ε∗

k , if the photon k is emitted (k = j and l). Clearly, for
the absorption of two distinct photons with identical circular
polarizations εj = εl (corotating CP fields) the second term
on the right-hand side of Eq. (19) vanishes, while for opposite
polarizations εl = ε∗

j (counter-rotating CP fields) we have
εj · εl = 1.

Finally, the CDAD is defined as the difference between the
laser-assisted DCSs for co- and counter-rotating two-color CP
fields,

�CDAD (θ, ϕ) = dσ++
N

d�p′
(θ, ϕ) − dσ+−

N

d�p′
(θ, ϕ), (20)

where the superscript ++ indicates that both monochromatic
components of the field have identical polarizations (corotat-
ing fields), while superscript +− indicates that the monochro-
matic components have opposite polarizations (counter-
rotating fields). It is interesting to note that the explicit or
implicit presence of the dynamical phase factors eiφ1 and eiφm

in the electronic as well the first- and second-order atomic
transitions amplitudes, Eqs. (13), (15), and (16), can give
different interference terms in the expression of DCS for
corotating in comparison to counter-rotating CP fields.

For practical reasons the circular dichroism in angular
distribution can be better visualized through a relative CDAD,
defined as the ratio between the difference of DCSs for
corotating and counter-rotating fields and the sum of these
DCSs,

R(θ, φ) = �CDAD (θ, ϕ)

[
dσ++

N

d�p′
(θ, ϕ) + dσ+−

N

d�p′
(θ, ϕ)

]−1

.

(21)

Obviously, the relative CDAD defined in the above equa-
tion approaches values of +1 or −1 in those cases where one
of the DCSs, dσ++

N /d�p′ or dσ+−
N /d�p′ , is almost equal to

zero, whereas the relative CDAD approaches the value zero in
those cases where dσ++

N /d�p′ 
 dσ+−
N /d�p′ .

III. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we present numerical results for the scatter-
ing process described by Eq. (1), in which two photons are ab-
sorbed in the electron-hydrogen scattering process embedded
in a two-color CP laser, which is a combination of the fun-
damental and its third harmonic (m = 3). It is worth pointing
out that Eqs. (13), (15), and (16) are applicable for arbitrary
scattering configurations and two-color laser fields with linear
and/or circular polarizations. We focus our discussion on two
different polarizations where the two-color laser beams are
CP in the (x, y) plane with one laser beam propagating in
the z-axis direction, ε1 = ε+ ≡ (ex + iey )/

√
2 (left-handed

CP), while the other laser beam has either the same circular
polarization ε3 = ε+, i.e., the corotating polarization case,
or is CP in the opposite direction, ε3 = ε− ≡ (ex − iey )/

√
2

(right-handed CP), i.e., counter-rotating polarization case. For
example, in the case of equal amplitudes of the monochro-
matic field components (E01 = E03), the bicircular electric
field defined in Eq. (2) reduces to

E+(t ) = E01

√
2 (ex sin ω+t − ey cos ω+t ) cos ω−t, (22)

for identical circular polarizations (ε1 = ε3 = ε+), and

E−(t ) = E01

√
2 (ex cos ω−t − ey sin ω−t ) sin ω+t, (23)

for opposite circular polarizations (ε1 = ε+ and ε3 = ε−),
where the frequencies are defined by ω± = η ω1/2, with η =
2 for corotating CP fields and η = 4 for counter-rotating
CP fields. The bicircular electric field vectors, Eqs. (22) and
(23), are invariant with respect to translation in time by an
integer multiple of T1/η and with respect to rotation in the
polarization plane by an angle α = 2π/η around the z axis,
such that E±(t + T1/η) = R(2π/η) E±(t ), where R(α) is a
2 × 2 rotation matrix with angle α around the z axis and
T1 = 2π/ω1 is the fundamental field optical period.

In Fig. 1 we plot the temporal dependence of the electric
field vectors, given by Eqs. (22) and (23), in the polarization
plane for two-color CP laser fields of equal intensities with
identical polarizations in the right column and opposite po-
larizations in the left column. For counter-rotating polariza-
tions the temporal symmetry of the electric field means that
E−(t + T1/4) = R(π/2) E−(t ), i.e., the translation in time is
one-quarter of the optical cycle, T1/4, and the rotation angle
in the polarization plane is π/2, which implies a fourfold
symmetry of the electric field in Fig. 1(a). By contrast, for
corotating polarizations the translation in time of the electric
field is T1/2 and the rotation angle is π in Fig. 1(b), such
that E+(t + T1/2) = R(π ) E+(t ). We expect the symmetries
of the bicircular field to be preserved in the DCSs of the
scattered electron. The laser intensities we consider in Fig. 1
are I1 = I3 = 1 TW/cm2, and the fundamental and harmonic
photon energies are ω1 = 3 eV and ω3 = 9 eV.
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FIG. 1. Parametric plots showing the Cartesian components of
the electric field vector in the (x, y )-polarization plane, Ex (t ) and
Ey (t ), plotted for 0 � t � T1, for two-color left- and right-handed
CP fields with ε1 = ε+ = (ex + iey )/

√
2 and ε3 = ε− in panel (a),

and two-color left-handed CP fields with ε1 = ε3 = ε+ in panel (b).
The laser field intensities are I1 = I3 = 1 TW/cm2, the fundamental
photon energy is ω1 = 3 eV, while the energy of the harmonic
photon is ω3 = 3ω1. The two-color bicircular electric field satisfies
a T1/2 and T1/4 rotational symmetry for co- and counter-rotating
polarizations, respectively.

A. Two-photon circular dichroism in a weak
bicircular laser field

In this section we derive simple analytical formulas of
nonlinear DCSs and CDAD for two-photon absorption in
the weak-laser-field regime, which provide more physical
insight into the dichroic effect in the electron-hydrogen scat-
tering process in a two-color bicircular laser field. The total
transition amplitude that includes the first- and second-order
atomic dressing can be written in a closed form that allows
us to analyze the dependence on the polarization vectors. In
what follows we consider the scattering geometry depicted
in Fig. 2 in which the momentum vector of the incident
electron p is parallel to the z axis, θ is the scattering angle
between the momentum vectors of the incident and scattered

e z
e y

p

ex

z

x

yϕ  

θ  

p

’q

RHCP

LHCP

FIG. 2. The specific scattering geometry with p ‖ ez, where p
and p′ are the momentum vectors of the incident and scattered elec-
tron, θ is the angle between them, ϕ is the azimuthal angle, and q is
the momentum transfer vector. We assume that both laser beams are
collinear and propagate along the Oz axis. The laser beams are CP in
the (x, y ) plane, with the polarization vectors ε+ = (ex + iey )/

√
2

left-handed CP (LHCP) or ε− = (ex − iey )/
√

2 right-handed CP
(RHCP).

ω1

ω1

ω1

pE

p= E  + p’E 2ω   1

ω3 ω3

ω1

(b)(a)

FIG. 3. Energy diagrams schematically showing the photon
channels leading to the final energy of the projectile electron Ep′ =
Ep + 2ω1. Channel (a) corresponds to absorption of two photons
of energy ω1, while channel (b) corresponds to absorption of one
third-harmonic photon ω3 = 3ω1 and emission of one photon ω1.

electrons p and p′, and ϕ is the azimuthal angle of the
scattered electron. In this scattering geometry the Carte-
sian components of the momentum transfer vector q are
given by (−p′ sin θ cos ϕ,−p′ sin θ sin ϕ, p − p′ cos θ ), with
an amplitude q =

√
p′2 + p2 − 2p′p cos θ which varies in

the interval |p′ − p| � q � p′ + p, for forward (θ = 0◦) and
backward (θ = 180◦) scattering, where p′ =

√
p2 + 2Nω1.

Whenever the arguments of the Bessel function of the first
kind are small, i.e., R1  1 and R3  1, a condition that is
satisfied either at low laser intensities or at small scattering an-
gles with moderate laser intensities, the approximate expres-
sions of the generalized Bessel functions can be used [31,39].
Hence, in the limit R1(3)  1 the total transition amplitude for
two-photon absorption is calculated by keeping the second-
order contributions in the fields and neglecting the higher
powers of the fields in Eqs. (13), (15), and (16) as a sum of the
two-photon transition amplitudes for the channels depicted in
Fig. 3,

T2 
 α2
01|ε1 · q|2 C1 + α01α03|ε∗

1 · q||ε3 · q| C2 e−i(3φ1−φ3 )

+α01α03(ε∗
1 · ε3) C3 e−2iφ1 . (24)

The first term on the right-hand side describes absorption
of two identical photons of energy ω1, while the rest of the
terms describe absorption of one photon of energy ω3 and
emission of another photon of energy ω1, as schematically
presented in Figs. 3(a) and 3(b). The polarization-invariant
amplitudes C1, C2, and C3 depend on the momentum transfer
and photon energies being defined as

C1 = 1

8π2

[
−f

B1
el

4
+ ω1

q3
J101(ω1, q )

]
, (25)
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C2 = 1

8π2

[
f

B1
el

2
− ω3

q3
J101(ω3, q ) + ω1ω3

q4
Q′(−ω1, ω3, q )

]
,

(26)

C3 = ω1ω3

8π2q2
P ′(−ω1, ω3, q ). (27)

In the scattering geometry shown in Fig. 2, the scalar prod-
uct in the argument Rk of the generalized Bessel functions
is given by ε± · q = −p′ sin θ e±iϕ/

√
2 and the dynamical

phases of the corotating laser fields are φ1 = φ3 = π + ϕ,
whereas for counter-rotating laser fields only the dynamical
phase of the harmonic field changes as φ3 = π − ϕ. Obvi-
ously, a change of the photon helicity in the arguments of the
generalized Bessel functions implies a change in the sign of
the azimuthal angle ϕ. Therefore, in the weak-field limit of
a two-color bicircular laser, with ε3 = ε+ for the corotating
case and ε3 = ε− for the counter-rotating case, we obtain the
following two-photon transition amplitude:

T2 
 α2
01|ε1 · q|2

(
C1 + α03

α01
C2 e−iηϕ

)
+ δ2η α01α03 C3 e−2iϕ,

(28)

where the parameter η is either 2 for two-color corotating CP
fields (equal photon helicities) or 4 for two-color counter-
rotating CP fields (opposite photon helicities), respectively.
After substituting the scalar product |ε1 · q| in the above equa-
tion the corresponding two-photon DCSs in a weak bicircular
laser field for co- and counter-rotating polarizations take the
following simple forms:

dσ++
2

d�p′
(θ, ϕ) 
 |a1 sin2 θ + (a2 sin2 θ + a3)e−2iϕ|2, (29)

dσ+−
2

d�p′
(θ, ϕ) 
 |a1 + a2e

−4iϕ |2 sin4 θ, (30)

with a1 = 2π2α2
01C1

√
p′3/p, a2 = 2π2α01α03 C2

√
p′3/p, and

a3 = 4π2α01α03 C3
√

p′/p. Clearly, the co- and counter-
rotating DCSs, dσ++

2 /d�p′ and dσ+−
2 /d�p′ , are different for

opposite helicities of the CP harmonic laser field.
Finally, the two-photon CDAD defined by Eq. (20) is

simply calculated in the weak bicircular laser field limit as
the difference between the DCSs given by Eqs. (29) and (30),

�CDAD (θ, ϕ) 
 |a3|2 + 2Re [a2a
∗
3 sin2 θ + a∗

1 sin2 θ (a2 sin2 θ

+ a3)e−2iϕ − a∗
1a2 sin4 θe−4iϕ]. (31)

Furthermore, as long as the harmonic photon energy is
below the ionization threshold, ω1 < |E1s |/3, the one- and
two-photon atomic transition matrix elements M(1)

at ,M(2)
at ,

and N (2)
at are real quantities. Therefore, CDAD can be for-

mally expressed from Eq. (31) as a function of the scattering
and azimuthal angles θ and ϕ,

�CDAD (θ, ϕ) 
 a3(a3 + 2a2 sin2 θ ) + 2a1 sin2 θ (a2 sin2 θ

+ a3) cos(2ϕ) − 2a1a2 sin4 θ cos(4ϕ).
(32)

Excepting the forward and backward scattering where CDAD
is ϕ independent, the last two terms in the right-hand side
depend on cos(2ϕ) and cos(4ϕ). CDAD is invariant to the fol-
lowing transformations: (i) π − ϕ → π + ϕ, which is equiv-
alent to a reflection with respect to the (x, z) plane, and
(ii) π/2 − ϕ → π/2 + ϕ, which is equivalent to a reflection
with respect to the (y, z) plane. According to Eq. (32) the
dichroic effect can be encountered even for rather small
scattering angles where the atomic dressing is important, not
only around the scattering angle θ = 90◦ as in the case of
x-ray scattering by unoriented systems [44], or the case of
two-color two-photon photoionization when the polarization
state of one of the fields is reversed [7]. Obviously, as was
previously mentioned, in first-order Born approximation the
dichroic effect in DCS cannot be encountered in a scattering
configuration involving only a one-color (ω1) CP laser field
[14,15], because the two-photon transition amplitude given
by Eq. (24) does not depend on the helicity of the radiation
field. However, a dichroic effect in two-photon transitions
can be predicted for a superposition of one-color LP and CP
fields under the following conditions: the scattering of the
high-energy electrons is treated in the first-order Born approx-
imation, the atomic dressing effect by the laser field is carried
out in second-order TDPT, and the transitions between the
atomic bound and continuum states are energetically allowed
[16]. In contrast to the findings of Ref. [16], our Eq. (32)
shows a different regime were the dichroic effect in DCS
is encountered for a two-color bicircular laser field even if
the atomic dressing is neglected or the photon energies are
below the ionization threshold, such that ω1 + ω3 < |E1s |. In
addition, if the atomic dressing is small in Eqs. (25), (26), and
(27), i.e., at large scattering angles with nonresonant photon
energies or in the limit of low-photon energies, i.e., Ep �
ω1, by keeping the first-order dressing in fields J101(ω, q ) 

αd ω q [14], P 
 0, and Q 
 0, we obtain

a1 = α2
01

4

√
p′3

p

(
αd

ω2
1

q2
− f

B1
el

4

)
, (33)

a2 = α01α03

4

√
p′3

p

(
f

B1
el

2
− αd

ω2
3

q2

)
, (34)

a3 = 0, (35)

where αd is the dynamic dipole polarizability of the hydro-
gen atom in its ground state. For high projectile energies
and low photon energies, p′ 
 p, the projectile momentum
transfer has a simple dependence on the scattering angle θ and
the following approximation formula holds for momentum
transfer: q 
 p sin(θ/2). Therefore, the CDAD is then simply
expressed as

�CDAD (θ, ϕ) 
 4a1a2 sin4 θ sin(ϕ) sin(3ϕ), (36)

and the relative CDAD is formally calculated as

RCDAD (θ, ϕ) 
 2a1a2 sin(ϕ) sin(3ϕ)

a2
1 + a2

2 + 2a1a2 cos(ϕ) cos(3ϕ)
. (37)

Both �CDAD and RCDAD vanish at azimuthal angles that
are multiples of π/3. Their absolute maxima occur at az-
imuthal angles π/2 and 3π/2, while their minima occur
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at sπ ± arccos(0.25)/2, where s is an integer. The maxi-
mum of the dichroic effect in the weak-laser-field domain
is found from Eqs. (36) and (37) for an optimal laser inten-
sity ratio I3/I1 
 20.2, where a1 
 a2 and RCDAD (θ, ϕ) 

sin(ϕ) sin(3ϕ)/[1 + cos(ϕ) cos(3ϕ)]. Therefore, the advan-
tage of analyzing the relative difference between the angular
distributions obtained for two-color co- and counter-rotating
CP fields, Eq. (37), is that we can determine the relative
magnitude, a1/a2, of the interfering transition amplitudes.

B. Two-photon circular dichroism at moderate laser intensity

Now we apply the semiperturbative formulas derived in
Sec. II, Eqs. (12), (14), and (16), to evaluate numerically
the nonlinear DCSs and CDAD for two-photon absorption
(N = 2) in elastic electron scattering by a hydrogen atom
in the presence of two-color co- and counter-rotating CP
laser fields. We have chosen moderate laser intensities below
10 TW/cm2, a high energy of the projectile electron Ep =
100 eV, and photon energies in the UV range ω1 = 3 eV
and ω3 = 9 eV, such that neither the projectile electron nor
the photon can separately excite an upper atomic state. The
polarization vectors of the two-color bicircular laser field are
given by ε1 = (ex + iey )/

√
2 and ε3 = ε1 for the corotating

case, and ε1 = (ex + iey )/
√

2 and ε3 = (ex − iey )/
√

2 for
the counter-rotating case.

To start with a simple case, we present in Fig. 4
our numerical results for the three-dimensional DCSs,
projected in the polarization plane, as a function of the
normalized projectile momentum p′

x/p
′ and p′

y/p
′ for

(a) two-color left-handed CP field (corotating) in the
right column and (b) left- and right-handed CP fields
(counter-rotating) in the left column. The intensities of
the fundamental and third-harmonic laser are considered
equal, as I1 = I3 = 1 TW/cm2, which result in a quiver
motion amplitude α01 
 0.44 a.u. and an argument of the
Bessel function R1 
 0.44|ε1 · q| for the fundamental
field, while for the harmonic field the corresponding
parameters α03 and R3 are 9 times smaller. At laser
intensities higher than 10 TW/cm2 the multiphoton ionization
becomes a competing process and should be taken into
account. The total DCS, the projectile contribution to DCS
calculated as (2π )4(p′/p)|T (0)

2 |2, Eq. (12), and the first-
and second-order atomic dressing contributions calculated
as (2π )4(p′/p)|T (1)

2 |2 and (2π )4(p′/p)|T (2)
2 |2, Eqs. (14)

and (16), are shown from top to bottom in Fig. 4. The
first- and second-order atomic contributions to DCSs, i.e.,
the last two rows in Fig. 4, give significant contributions at
relatively small scattering angles θ < 30◦, while the projectile
electron contribution, i.e., the second row in Fig. 4, gives
important contributions at larger scattering angles. It is clear
that at small scattering angles the differences between the
co- and counter-rotating DCSs originate from the different
first- and second-order atomic dressing, whereas at large
scattering angles the differences come from the different
projectile electron contributions to DCSs. Our numerical
results in Fig. 4 show a strong dependence of the DCSs on
the scattering and azimuthal angles, as well on the photon
helicities of the two bicircular fields. For counter-rotating CP
fields DCS is invariant to rotation around the z axis by an

FIG. 4. Contour plots representing DCSs (N = 2), given by
Eq. (11), for two-color left-handed CP fields in the right column and
two-color left- and right-handed CP fields in the left column, as a
function of the normalized Cartesian components of the projectile
momentum vector in the polarization plane, p′

x/p
′ and p′

y/p
′. The

plots from top to bottom represent the total DCS, the projectile
electron contribution calculated as (2π )4(p′/p)|T (0)

2 |2, the first-order
atomic dressing contribution, (2π )4(p′/p)|T (1)

2 |2, and the second-
order atomic dressing contribution (2π )4(p′/p)|T (2)

2 |2. The projec-
tile electron energy is Ep = 100 eV, p ‖ ez, the laser field intensities
are I1 = I3 = 1 TW/cm2, and the photon energies are ω1 = 3 eV
and ω3 = 3ω1. The DCSs in a.u. are multiplied by a 104 factor and
their magnitudes are indicated by the color scales in each row.

ϕ = π/2 azimuthal angle, whereas for corotating CP fields
the corresponding azimuthal angle is ϕ = π . Both DCSs
for co- and counter-rotating polarizations are symmetric
with respect to reflection in the (x, z) and (y, z) planes,
such that dσ2(θ, π − ϕ)/d�p′ = dσ2(θ, π + ϕ)/d�p′

and dσ2(θ, π/2 − ϕ)/d�p′ = dσ2(θ, π/2 + ϕ)/d�p′ ,
respectively. Recently, similar rotational and reflection
symmetries were obtained in the differential ionization rate in
above-threshold ionization of krypton atoms by a two-color
bicircular laser field of ω and 3ω frequencies [47].

For a better understanding of the contour plots presented in
Fig. 4, we show in Fig. 5 the DCSs as a function of the scat-
tering angle θ for two-color left-handed CP fields (corotating
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FIG. 5. The total two-photon DCSs (full lines) by two-color left-
and right-handed-CP laser fields in panels (a) and (c) and two-color
left-handed-CP laser fields in panels (b) and (d) as a function of the
scattering angle θ . The azimuthal angles are ϕ = 90◦ in panels (a)
and (b), ϕ = 45◦ in panels (c) and (d), and the rest of the parameters
are the same as in Fig. 4. The dashed lines represent the projectile
electron contribution calculated as (2π )4(p′/p)|T (0)

2 |2, while the dot-
dashed and dotted lines represent the first- and second-order atomic
dressing contributions, (2π )4(p′/p)|T (1)

2 |2 and (2π )4(p′/p)|T (2)
2 |2,

respectively.

case) in the right column and for left- and right-handed CP
fields (counter-rotating case) in the left column. The DCSs are
plotted at two azimuthal angles ϕ = 90◦ in Figs. 5(a) and 5(b),
and ϕ = 45◦ in Figs. 5(c) and 5(d), while the other parameters
concerning the scattering geometry, the field intensities, and
the projectile and photon energies are the same as in Fig. 4.
The dashed lines represent the projectile electron contribu-
tion to DCS calculated as (2π )4(p′/p)|T (0)

2 |2, while the dot-
dashed and dotted lines represent the first- and second-order
atomic dressing contributions given by (2π )4(p′/p)|T (1)

2 |2
and (2π )4(p′/p)|T (2)

2 |2, respectively. As expected from our
theoretical calculations, the first-order laser-atom interaction
is quite important at small scattering angles θ < 20◦. By
contrast, at larger scattering angles (θ > 20◦) the projectile
electron contribution to DCS is dominant due to nuclear
scattering and determines the angular distribution of the two-
photon DCS, as is shown by the dashed lines in Fig. 5. The
projectile electron is scattered with the highest probability at
scattering angles θ 
 50◦ in Figs. 5(a) and 5(c), and θ 
 52◦
in Figs. 5(b) and 5(d).

In order clarify the importance of the atomic dressing
effect on the scattering signal presented in Fig. 4, we illus-
trate in Fig. 6(a) the two-photon DCSs in polar plots for
counter-rotating (solid lines) and corotating (dashed lines)
CP fields as a function of the azimuthal angle ϕ at the
scattering angle θ = 5◦, while the rest of the parameters are
the same as in Fig. 4. The projectile contribution to DCS,
(2π )4(p′/p)|T (0)

2 |2, is plotted in Fig. 6(b), while the first-
and second-order atomic dressing contributions, calculated as
(2π )4(p′/p)|T (1)

2 |2 and (2π )4(p′/p)|T (2)
2 |2, are depicted in

Figs. 6(c) and 6(d), respectively. Because of the strong first-
and second-order atomic dressing effects at small scattering
angles, the atomic contribution is about 2 orders of magnitude

(a)

(c)

(b)

(d)

FIG. 6. Two-photon DCSs by two-color left- and right-handed-
CP (full lines) laser fields and two-color left-handed-CP (dashed
lines) laser fields are shown in panel (a) as a function of the
azimuthal angle ϕ. The projectile electron contribution calculated
as (2π )4(p′/p)|T (0)

2 |2 is plotted in panel (b), the first-order atomic
dressing contribution (2π )4(p′/p)|T (1)

2 |2 is in panel (c), and the
second-order atomic dressing contribution (2π )4(p′/p)|T (2)

2 |2 is in
panel (d). The scattering angle is fixed at θ = 5◦, and the rest of the
parameters are the same as in Fig. 4.

larger compared to the projectile electron contribution. More-
over, at small scattering angles there is a clear enhancement
of DCSs for corotating compared to counter-rotating CP
fields and, obviously, the differences in magnitude between
the DCSs for co- and counter-rotating polarizations originate
from the different second-order atomic dressing terms, as is
shown in the last row of Fig. 4 and Fig. 6(d). The two-photon
DCS for corotating CP fields has a pattern profile predicted
in the weak-laser-field regime by the e−2iϕ term in Eq. (29),
and the projectile electron is scattered with a high probability
in the azimuthal angle directions ϕ = π/2 and 3π/2. By
contrast, the two-photon DCS for counter-rotating CP fields,
as well as the electronic, first- and second-order atomic con-
tributions to DCS, have a specific “four-leaf clover” pattern,
as is analytically predicted in the weak-laser-field regime
by the e−4iϕ term in Eq. (30), and the projectile electron is
scattered with a high probability in the azimuthal directions
ϕ = π/4, 3π/4, 5π/4, and 7π/4, as presented in Fig. 4. The
two-photon DCS is invariant to rotation around the z axis by
an azimuthal angle ϕ = π for corotating CP fields and ϕ =
π/2 for counter-rotating CP fields, and DCSs are symmetric
with respect to reflection in the (x, z) and (y, z) planes for
both co- and counter-rotating CP fields.

Finally, we present the DCSs for two-photon absorption
in Figs. 7(a)–7(d) for co- and counter-rotating polarizations
and the absolute values of the relative CDAD |R(ϕ)|, given
by Eq. (21) in Figs. 7(e)–7(h), as a function of the azimuthal
angle of the scattered electron. The scattering angle is fixed at
the value θ = 5◦ and the intensity of the third-harmonic laser
is I3 = f I1, with the laser intensity ratios f = 10, 1, 10−2,
and 10−3 from top to bottom in Fig. 7, while the rest of the pa-
rameters are the same as in Fig. 4. For the harmonic field these
laser parameters correspond to a quiver motion amplitude
α03 = α01

√
f /9 and an argument of the Bessel function
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FIG. 7. The total two-photon DCSs in the left column and the
absolute value of the relative CDAD, |R(ϕ)|, in the right column
by two-color left- and right-handed-CP (full lines) laser fields and
two-color left-handed-CP (dashed lines) laser fields as a function of
the azimuthal angle ϕ. The scattering angle is fixed at θ = 5◦, and
intensities of the harmonic field I3 are equal to 10I1 in panels (a) and
(e), I1 in panels (b) and (f), 10−2I1 in panels (c) and (g), and 10−3I1

in panels (d) and (h). The rest of the parameters are the same as in
Fig. 4.

R3 = R1
√

f /9. At small scattering angles and relatively low
intensities of the harmonic field, Figs. 7(b)–7(d), there is a
strong dependence of DCSs on the azimuthal angle due to
the first- and second-order atomic dressing terms for both co-
and counter-rotating CP lasers, while at a higher intensity,
I3 = 10I1 plotted in Figs. 7(a) and 7(e), there is a weaker
dependence of DCSs on the azimuthal angle because of the
dominance of the two different photon processes shown in
Fig. 3(b). The absolute values of relative CDAD, |R(ϕ)|, are
larger at the azimuthal angles ϕ = π/2 and 3π/2 due to the
different two- and fourfold symmetries of DCSs for co- and
counter-rotating CP fields, as shown in Figs. 7(a)–7(d) and
Figs. 7(e)–7(h). Therefore, at small scattering angles, because
of the strong first- and second-order atomic dressing effects,
there is a clear enhancement of DCSs for corotating compared
to counter-rotating CP fields, as shown in Figs. 4 and 6, as well
as an important dichroic effect.

We emphasize that the dichroic effect in DCS for two-
photon absorption is not, however, a one-photon resonance
effect, and it strongly depends on the atomic dressing by the

FIG. 8. Relative CDAD, R(θ, ϕ), as a function of the scattering
and azimuthal angles for photon energies ω1 = 1.5 eV in panel (a)
and ω1 = 3 eV in panel (b). The rest of the parameters are the same
as in Fig. 4.

bicircular laser field. We demonstrate this by comparing in
Figs. 8(a) and 8(b) the three-dimensional numerical data for
the relative values of the CDAD, R(θ, ϕ), calculated from
Eq. (21) as a function of the scattering and azimuthal angles
at two nonresonant photon energies, ω1 = 1.5 eV and ω1 =
3 eV. The other parameters are the same as in Fig. 4, namely,
Ep = 100 eV and I1 = I3 = 1 TW/cm2. For a clear view of
the positive and negative values of relative CDAD, the same
results of Figs. 8(a) and 8(b) are plotted as contour plots in
Figs. 9(a) and 9(b). At ω1 = 1.5 eV the dichroic effect in DCS
is as well very important but at relatively small scattering an-
gles only, i.e., θ < 10◦, where the atomic dressing dominates.
By contrast, at ω1 = 3 eV there is a stronger dependence of
the relative CDAD on both scattering and azimuthal angles
because of the atomic dressing effects that occur at larger
photon energies [41]. The dichroic effect is quite important at
relatively small scattering angles θ < 25◦ and is not negligible
even at larger scattering angles. At small scattering angles,
since the DCSs take very small values frequently due to the
destructive interference between the projectile and atomic
contributions, as depicted by the blue areas in the first row
of Fig. 4, the relative CDAD oscillates quite rapidly between
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FIG. 9. Contour plots presenting the same results as in Fig. 8, namely, relative CDAD, R(θ, φ), as a function of the scattering and azimuthal
angles, θ and ϕ, for ω1 = 1.5 eV in panel (a) and ω1 = 3 eV in panel (b).

−1 and +1 in Figs. 8 and 9. Furthermore, as predicted from
the closed formulas of DCSs for co- and counter-rotating CP
fields, dσ++

N /d�p′ or dσ+−
N /d�p′ given by Eqs. (29) and

(30), and Eqs. (33)–(35), at moderate laser intensities below
1 TW/cm2 and larger scattering angles where the atomic
dressing becomes negligibly small, namely, θ > 15◦ for ω1 =
1.5 eV and θ > 40◦ for ω1 = 3 eV, the dependence of the
relative dichroism on the scattering and azimuthal angles in
Figs. 8 and 9 is well described by Eq. (37).

IV. SUMMARY AND CONCLUSIONS

Using a semiperturbative method, we have theoretically
studied the dichroic effect in electron-hydrogen scattering by a
two-color bicircular laser fields of commensurate frequencies
and moderate intensities. We have investigated a different
regime of CD where the monochromatic components of the
two-color CP field rotate in the same plane with the same or
opposite helicities. We predict the existence of a nonlinear
dichroic effect in DCS at high scattering projectile energies,
which is sensitive to the photon energies and laser field
intensities. We have derived useful analytical formulas for
two-photon CDAD that give more physical insight into the
scattering process and valuable information for experimental
investigations. We stress that the analytical formulas obtained
for co- and counter-rotating polarizations in the weak-laser-

field limit, Eqs. (29) and (30), indicate that the two-photon
DCSs are related to the interference of different quantum
paths involving two photons with identical or different po-
larizations. By varying the intensity ratio of the co- and
counter-rotating two-color CP laser field components we can
manipulate the angular distribution of the scattered electrons.
We have established that at UV photon energies and small
scattering angles there is a clear enhancement of the DCS for
corotating compared to counter-rotating laser fields because of
the strong second-order atomic dressing effects. The dichroic
effect in the angular distribution of scattered electrons orig-
inates from the nonzero atomic dressing at small scattering
angles, whereas at large scattering angles the dichroic effect
comes from the projectile contribution to the scattering signal.

In conclusion, the investigation of CDAD in the scattering
signal is an effective method of studying the polarization
effects in laser-assisted electron-atom collisions, and we hope
that the dichroic effect discussed in the present paper will be
useful in future theoretical and experimental studies.
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