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Non-Markovian quantum evolution of the electronic subsystem in a laser-driven molecule is characterized
through the appearance of negative decoherence rates in the canonical form of the electronic master equation.
For a driven molecular system described in a bipartite Hilbert space H = Hel

⊗
Hvib of dimension 2 × Nv ,

we derive the canonical form of the electronic master equation, deducing the canonical measures of non-
Markovianity and the Bloch volume of accessible states. We find that one of the decoherence rates is always
negative, accounting for the inherent non-Markovian character of the electronic evolution in the vibrational
environment. Enhanced non-Markovian behavior, characterized by two negative decoherence rates, appears if
there is a coupling between the electronic states g, e, such that the evolution of the electronic populations obeys
d (PgPe )/dt > 0. Non-Markovianity of the electronic evolution is analyzed in relation to temporal behaviors
of the electronic-vibrational entanglement and electronic coherence, showing that enhanced non-Markovian
behavior accompanies entanglement increase. Taking as an example the coupling of two electronic states by
a laser pulse in the Cs2 molecule, we analyze non-Markovian dynamics under laser pulses of various strengths,
finding that the weaker pulse stimulates the bigger amount of non-Markovianity. Our results show that increase
of the electronic-vibrational entanglement over a time interval is correlated to the growth of the total amount of
non-Markovianity calculated over the same interval using canonical measures and connected with the increase
of the Bloch volume. After the pulse, non-Markovian behavior is correlated to electronic coherence, such that
vibrational motion in the electronic potentials which diminishes the nuclear overlap, implicitly increasing the
linear entropy of entanglement, brings a memory character to dynamics.
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I. INTRODUCTION

Memory effects in the dynamics of open quantum sys-
tems [1] have been extensively studied over the past decade,
through new concepts proposed to tackle quantum non-
Markovianity and examination of non-Markovian behavior
in various scenarios involving open quantum systems [2–5].
The classical definition of a Markovian process, implying a
memoryless time evolution in a classic stochastic process,
cannot be simply extended to the quantum regime, where the
corresponding quantum probabilities have to be associated
with measurement schemes. Definition of quantum Marko-
vianity constitutes a recent research area [3,4] and is still a
debated subject [6–8].

We have to note the multiplicity of approaches to quan-
tum non-Markovianity [3–5,8]: as deviation from semigroup
dynamics [9], based on the backflow of information from
the environment to the open system [10], as deviation from
completely positive divisibility [11], based on the quantum
Fisher information flow [12], using entanglement-based mea-
sures [11,13] or quantum mutual-information-based measures
[14], related to the dynamical behavior of the volume of
accessible states [15], and based on quantifiers of the neg-
ative rates in the canonical form of the time-local master
equation [16]. Recent proposals use the spectral properties

*mihaela_vatasescu@yahoo.com

of dynamical maps [17], and the process tensor framework
[6,18] to characterize non-Markovian behavior. These alter-
native approaches imply different non-Markovianity concepts
and propose various measures or witnesses of quantum non-
Markovianity. Comparative studies [19–21] show them as
offering different perspectives on the complex manifestation
of quantum memory effects.

Non-Markovian quantum dynamics typically occurs when
open quantum systems are coupled to structured or fi-
nite reservoirs, due to strong system-environment inter-
actions, large initial system-environment correlations, or
low-temperature environments. In contrast to Markovian
(memoryless) evolution of an open quantum system weakly
coupled to a noisy environment, characterized by decoher-
ence and dissipation, non-Markovian dynamics of an open
system can lead to revivals of its characteristic quantum
properties, such as quantum coherence and entanglement
[4,22,23]. Recent developments in experimental techniques
allowing control and modification of the dynamical prop-
erties of various environments through quantum reservoir
engineering [24] bring forward non-Markovian open quantum
systems interacting with controllable environments [25–27].
These experimental advances are motivating investigations
on the role of non-Markovianity as a resource for quantum
information processing [28,29] or quantum metrology [30].
Understanding memory effects in various quantum scenarios,
such as non-Markovianity studies in driven open quantum
systems [31], contributes to the recent attempts to design
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non-Markovian systems which could be useful as resources
in quantum technologies [22,23,25].

Molecular physics has a long tradition in treating system-
bath interactions, including non-Markovian influences of the
environment [32]. Non-Markovian effects operate in various
molecular processes, such as electron transfer in complex
molecular systems [33], environment-assisted quantum trans-
port [34] in molecular junctions [35], or excitonic energy
transfer in photosynthetic complexes [36]. Possible appli-
cations of non-Markovianity include, for example, the use
of certain molecular systems as quantum probes to reveal
characteristic features of their environments [4,5] or utiliza-
tion of memory effects in the design of functional artificial
biomaterials [37].

Current efforts trying to exploit non-Markovianity as a
resource for quantum control [38] rely on the understanding of
memory effects as related to a backflow of information from
the environment to the system, capable of restoring system
coherence. In this sense, recent investigations of strategies
for quantum control of memory effects in molecular open-
quantum systems seek to protect the central system from
dissipation and decoherence by increasing non-Markovian
bath response [39]. Non-Markovianity enhancement leading
to longer decoherence times of the central system could be
exploited to increase the robustness of molecular alignment
orientation [39] or to preserve coherence of molecular qubits.

Electronic coherences play an essential role in chemical
and biological processes, and their function is currently being
investigated in new domains like attochemistry or quantum
biology. Recent works on electron dynamics in molecules ex-
plore the mechanisms influencing electronic decoherence and
the role played by nuclear motion in this process, especially
in the presence of strong nonadiabatic couplings [40]. On the
other hand, understanding quantum coherence contributions
to electronic energy transport in molecular aggregates and
biological systems is a major goal in quantum biology [41].
Energy transport is examined using open quantum system
approaches to treat electronic-vibrational dynamics in large
molecules, in which an open “system” containing relevant
molecular electronic states is coupled to a bath of harmonic vi-
brational modes [42]. Studies of non-Markovianity in photo-
synthetic complexes have shown a significant non-Markovian
information flow between electronic and phononic degrees of
freedom, which could play an important role in energy trans-
fer, as well as correlations between non-Markovian behavior
and long-lived quantum coherence [43].

Approaches to quantum non-Markovianity using quan-
tum information concepts have been recently developed
in the theory of open quantum systems, bringing new
frameworks for molecular processes with memory. Non-
Markovianity is recognized as a highly context-dependent
concept, whose understanding should not be based solely
on the evolution of the system density operator; in fact,
system-environment correlations are of direct relevance to
grasp non-Markovianity more broadly [8]. This is also
our approach here: We will characterize non-Markovianity
of the electronic subsystem in a diatomic molecule us-
ing canonical measures, and subsequently we proceed
to understand the dynamic meaning of non-Markovian
behavior by relating it to quantum correlations in the

molecular system, namely entanglement with the vibrational
environment1 and electronic coherence.

We consider a diatomic molecule described in a bipartite
Hilbert space H = Hel

⊗
Hvib of the electronic and vibra-

tional degrees of freedom, driven by a laser pulse which
couples the electronic states inducing transfer of population
and influencing the vibrational dynamics. We shall analyze
the electronic subsystem as a driven open quantum system in
the vibrational environment. Non-Markovianity of the elec-
tronic dynamics will be characterized using the approach
introduced by Hall et al. in Ref. [16], which employs the
canonical form of the time-local master equation describ-
ing the open system dynamics to define non-Markovianity
quantifiers based on the occurrence of negative decoherence
rates. We derive the canonical measures of non-Markovianity
for a two-dimensional electronic subsystem of a laser-driven
molecule and connect non-Markovian behavior with temporal
behaviors of electronic-vibrational entanglement (quantified
using linear entropy and von Neumann entropy) and electronic
coherence (measured with l1 norm and Wigner-Yanase skew
information).

The canonical measures [16] provide a complete descrip-
tion of non-Markovianity in terms of canonical decoherence
rates. Additionally, we shall also refer to the Bloch volume of
accessible states as a non-Markovianity witness [15,16]. Un-
like the canonical measures, the Bloch volume is only a pos-
sible witness and does not always detect non-Markovian be-
havior [3,16]. Nevertheless, examination of non-Markovianity
using different measures, besides being interesting in itself,
will help to distinguish non-Markovianity regimes in the dy-
namical evolution, highlighting an enhanced non-Markovian
behavior which is detected by both measures.

The paper is structured as follows. Section II introduces
the non-Markovianity approach used in this paper, based
on the occurrence of negative decoherence rates in the
time-local master equation. The definitions of the canonical
measures of non-Markovianity [16] and the Bloch volume
characterization of non-Markovianity [15,16] are presented.
Section III describes our model, allowing us to characterize
non-Markovian dynamics of the electronic subsystem of a
laser-driven molecule. We derive the canonical form of the
master equation for a two-dimensional electronic subsystem
of a laser-driven molecule and deduce the canonical non-
Markovianity measures and the Bloch volume. Section IV
contains a theoretical analysis of the relations between en-
hancement of non-Markovianity and dynamical behaviors of
the electronic-vibrational entanglement and electronic coher-
ence. Section V shows that enhanced non-Markovian behavior
in the electronic evolution increases the uncertainty on the
electronic energy. Section VI examines non-Markovian be-
havior of the electronic subsystem and its connections with
electronic-vibrational entanglement and electronic coherence,
taking as example the coupling of two electronic states in
the Cs2 molecule by laser pulses of several strengths. The

1We emphasize that here we are referring to entanglement between
the electronic system and its vibrational environment, and not to
entanglement with an ancilla, proposed in Ref. [11] as a non-
Markovianity measure.
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time evolutions during the pulse and after pulse are simu-
lated numerically, being analyzed using the non-Markovianity
measures, the entropies of entanglement and the measures
of electronic coherence. Our conclusions are exposed in
Sec. VII. The paper includes an appendix which discusses
the conditions determining the increase of distinguishability
between two electronic states.

II. CANONICAL FORM FOR A LOCAL-IN-TIME MASTER
EQUATION AND NEGATIVE DECOHERENCE RATES

The concept of quantum Markovianity implicitly used here
is related to the concept of divisibility of dynamical maps
[3,4,44]. We briefly recall the notion of divisibility, which
is central to the definition of quantum (non)Markovianity
in models using time-local master equations. Considering a
dynamical map �(t, 0) which describes the evolution ρ(t ) =
�(t, 0)ρ(0) of an open system state ρ(t ), �(t, 0) is a t-
parametrized family of completely positive and trace preserv-
ing (CPTP) maps. �(t, 0) is defined to be divisible if it can
be written as a composition of two trace-preserving maps,
�(t, 0) = �(t, t ′)�(t ′, 0), for all times t � t ′ � 0, meaning
that the two-parameter family �(t, t ′) has to exist for all t, t ′.
The positivity (P) or complete positivity (CP) of �(t, t ′) lead
to the notions of a P-divisible or CP-divisible family of dy-
namical maps. P divisibility and CP divisibility of a quantum
process were both used to define the quantum dynamics of
a process as being Markovian and to build connections be-
tween the quantum and the classical concepts of Markovianity
[3,4,45]. Moreover, the notion of k divisibility of a dynamical
map (with 1 � k � n an integer, n the dimension of the open
system, one-divisibility corresponding to P divisibility, and
n-divisibility corresponding to CP divisibility) was introduced
to define a degree of non-Markovianity of a quantum evolu-
tion [20], as well as the notions of weak non-Markovianity
(for processes which are only P divisible) and essential non-
Markovianity (for processes which are not even P divisible).

A variety of theoretical and numerical methods are used to
treat the dynamics of open quantum systems and to reveal the
presence of memory effects [1–5], such as Nakajima-Zwanzig
projection operator techniques [46], the time-convolutionless
(TCL) projection operator technique [47], or stochastic wave-
function techniques [48–50].

Quantum memory effects attached to an open system
dynamics can be studied either using a nonlocal mas-
ter equation with a memory kernel (obtained through the
Nakajima-Zwanzig projection operator technique), or, equiv-
alently, using the local in time equation given by the time-
convolutionless (TCL) projection operator technique. Both
approaches support an investigation of non-Markovian effects
[1,51]. In the second approach, TCL provides a local-in-
time first-order differential equation ρ̇(t ) = L(t )ρ(t ) for the
reduced density ρ(t ) characterizing the open system, on the
condition that a certain operator inverse exists [2,4]. For a
time-local equation which does not involve a memory kernel
and an integration over the past history of the system, the
non-Markovian character of the dynamics appears in the
explicit time dependence of the generator L(t ), which keeps
the memory about the starting point [50,51]. The time-local
generator L(t ) obtained with TCL method is defined by a per-

turbation expansion with respect to the strength of the system-
environment coupling, which does not guarantee the complete
positivity of the resulting map �(t, 0) describing the evolution
of the open system state between 0 and t : ρ(t ) = �(t, 0)ρ(0)
[1,2].

If the requirements for preservation of the Hermiticity
and the trace of ρ(t ) are imposed on the generator L(t ) of
the time-local master equation ρ̇(t ) = L(t )ρ(t ), one obtains
a general structure of the master equation [Eq. (7)], which
is a generalization of the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) form for a memoryless master equation
[2–4,50]. Moreover, the diagonalization procedure leading to
this GKSL-like structure provides a unique and then canonical
form of the master equation, which can be used to characterize
non-Markovianity of the time evolution [16].

The derivation of the canonical form for a general time-
local master equation ρ̇(t ) = L(t )ρ(t ) comes as a straight-
forward extension of the GKSL approach [52,53]. We shall
briefly sketch the main steps, referring to Refs. [1–3,16] for a
detailed demonstration.

Let us consider an open system described in a Hilbert
space of finite dimension d. A complete set of N := d2 basis
operators {Gn}N−1

n=0 is introduced, having the properties

G0 = Î /
√

d ; Gn = G+
n ; Tr[GmGn] = δmn, (1)

with Î being the identity operator. Gn are orthonormal trace-
less operators (excepting G0, for which Tr[G0] = 1). A gen-
eral master equation ρ̇(t ) = L(t )ρ(t ) can be written in the
following form [1,16]:

dρ

dt
= − i

h̄
[H (t ), ρ(t )] +

N−1∑
i,j=1

Dij (t )

[
Giρ(t )Gj

− 1

2
{GjGi, ρ(t )}

]
, (2)

with the operator H (t ) being Hermitian and Dij (t ) being
the time-dependent elements of the Hermitian decoherence
matrix D. The Hermiticity property of the decoherence matrix
leads to the existence of a unique canonical form of the master
equation, which follows using the diagonal form of D [16],

Dij (t ) =
N−1∑
k=1

Uik (t )γk (t )U ∗
jk (t ), (3)

where γk (t ) are the real eigenvalues of the decoherence matrix
D and Uik (t ) are the elements of the unitary matrix formed by
the eigenvectors of D, such that

∑N−1
k=1 UikU

∗
jk = δij . Let us

note that the trace of the decoherence matrix D equals the sum
of the decoherence rates γk (t ):

Tr[D] =
∑

k

γk. (4)

If one defines the time-dependent decoherence operators
Lk (t ) (k = 1, .., N − 1),

Lk (t ) :=
N−1∑
i=1

Uik (t )Gi, (5)
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which form an orthonormal basis set of traceless operators

Tr[L+
j (t )Lk (t )] = δjk; Tr[Lk (t )] = 0, (6)

Eq. (2) can be written in the canonical form [16]:

dρ

dt
= − i

h̄
[H (t ), ρ] +

N−1∑
k=1

γk (t )

[
Lk (t )ρL+

k (t )

− 1

2
{L+

k (t )Lk (t ), ρ}
]
. (7)

The canonical form (7) is similar to the Lindblad form of a
memoryless master equation, but the Hamiltonian H (t ), the
decoherence operators Lk (t ), and the decoherence rates γk (t )
are time dependent. Moreover, the decoherence operators
Lk (t ) correspond to a set of orthogonal decoherence channels,
and the time-dependent decoherence rates γk (t ) obtained as
eigenvalues of the decoherence matrix are uniquely deter-
mined and can be negative [16].

Formulation of necessary and sufficient conditions under
which the dynamics described in Eq. (7) is completely positive
remains an open problem [2,4]. If the rates are positive for all
times, γk (t ) � 0, the dynamics is completely positive, being
in Lindblad form for each fixed t [2]. However, there are
cases where the rates γk (t ) may become temporarily negative
without violating complete positivity [3,4].

For a master equation in the GKSL form (7) with time-
dependent coefficients, it can be shown that the corresponding
dynamical map satisfies CP divisibility if and only if γk (t ) �
0 [3,4]. The processes with a time-local master equation in the
form (7) and with γk (t ) � 0 were also named time-dependent
Markovian [9,10] or time-inhomogeneous Markovian [11].
To summarize, it is accepted that generalized Markovian
dynamics appears for a master equation in the quasi-GKSL
form (7) with decay rates γk (t ) � 0 and a completely positive
divisible dynamical map [3,54].

Non-Markovianity is related to the appearance of negative
rates γk (t ) < 0 in master equations of structure (7), which
leads to a violation of the divisibility property, and which
was interpreted for specific systems in terms of a flow of
information from the environment back to the open system
[10,20].

It is interesting to remember the signification given to the
occurrence of negative rates in models using stochastic unrav-
eling of time-local non-Markovian master equations [48–50].
These models appeared as generalizations of the stochastic
wave-function method previously applied to Markovian mas-
ter equations, in order to simulate quantum master equations
with negative transition rates [55]. In the non-Markovian
quantum jumps unraveling [56], the open system dynamics is
described in terms of an ensemble of state vectors whose non-
Hermitian deterministic evolution is interrupted by random
quantum jumps [19]. The time-dependent rates of the master
equation are connected to the quantum jumps statistics. The
method provides an interpretation of the negative decay rates
occurring in non-Markovian dynamics in terms of reverse
quantum jumps that restore previously lost quantum superpo-
sitions [56]. The negative rates reflected in reverse quantum
jumps are seen as a sign of non-Markovian memory indicating

the exchange of information back and forth between the
system and the reservoir [56].

Hall et al. [16] have shown that for a finite-dimensional
system, the criterion for non-Markovianity based on the
violation of CP divisibility, proposed by Rivas et al. [11],
is equivalent to the criterion based on the negativity of the
decoherence rates appearing in the canonical form of the
master equation.

We employ the canonical measures [16] to detect and
quantify non-Markovianity. Because of their sensitivity to
individual canonical decoherence rates, they are able to com-
pletely detect non-Markovian behavior when several decoher-
ence channels are present. Additionally, the Bloch volume of
accessible states is also used as a non-Markovianity witness
[3]. The two following sections expose the definitions of the
canonical measures and Bloch volume, respectively.

A. Negative decoherence rates and canonical
measures of non-Markovianity

Since the appearance of negative decoherence rates in the
canonical form (7) of the master equation is a feature of
non-Markovianity, Hall et al. [16] define several measures
of non-Markovianity as functions of the negative canonical
decoherence rates γk (t ). These definitions are introduced in
the following and will be employed in our analysis.

For an individual channel k with decoherence rate γk (t ),
non-Markovianity can be described using the function [16]

fk (t ) := max[0,−γk (t )] = 1
2 [|γk (t )| − γk (t )], (8)

which is 0 if the decoherence rate γk (t ) is positive and |γk (t )|
if the decoherence rate is negative.

The canonical measure of non-Markovianity at time t is
defined as the sum of the individual channels measures:

f (t ) =
∑

k

fk (t ). (9)

Hall et al. [16] have shown that their canonical measure f (t )
coincides, up to a multiplicative factor 2/d depending on the
dimension d of the system, with the trace-norm measure of
non-Markovianity g(t ) proposed by Rivas et al. [11]: g(t ) =
2d−1f (t ).

One can also define a total amount of non-Markovianity in
a channel k over the time interval [t, t ′] [16] as the integral

Fk (t, t ′) =
∫ t ′

t

fk (s)ds, (10)

and a total amount of non-Markovianity over the time interval
[t, t ′] by

F (t, t ′) =
∑

k

Fk (t, t ′) =
∫ t ′

t

f (s)ds. (11)

Reference [16] also defines a non-Markov index n(t ) as the
number of strictly negative decoherence rates:

n(t ) := #{k : γk (t ) < 0}. (12)

The orthogonality of the decoherence channels allows the
interpretation of the non-Markov index n(t ) as the dimension
of the space of non-Markovian evolution, orthogonal to the
Markovian region [16].
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B. Bloch volume characterization of non-Markovianity

Lorenzo et al. [15] proposed a geometrical characterization
of non-Markovianity based on the increase of the volume
of states dynamically accessible to the system. The proposal
originates in the observation that for a dynamical map cor-
responding to a Markovian quantum evolution the volume of
physical states decreases monotonically in time, as there is no
recovery of information, energy, or coherence by the system.
On the contrary, a time evolution leading to a growth in the
volume of accessible states reveals physical effects associated
with non-Markovianity.

Reference [16] shows that, for a d-dimensional quantum
system which can be represented by a generalized Bloch
vector of dimension d2 − 1, the Bloch volume V (t ) at time
t is only sensitive to the sum of the canonical decoherence
rates,

∑
k γk (t ), as follows:

V (t ) = V0 exp

[
−d

∫ t

0
ds

∑
k

γk (s)

]
, (13)

with V0 being the initial volume at the time t = 0. Conse-
quently, the Bloch volume can increase at time t , becoming
a witness of non-Markovianity, if and only if the sum of the
canonical decoherence rates is negative:

∑
k γk (t ) < 0 [16].

Being only sensitive to the sum of the decoherence rates,
there are cases when the Bloch volume cannot witness non-
Markovianity [3,16], as it will also appear in this paper.

III. NON-MARKOVIANITY IN THE REDUCED TIME
EVOLUTION OF THE ELECTRONIC SUBSYSTEM OF A

LASER-DRIVEN MOLECULE

We will now consider the time evolution of the electronic
subsystem of a molecule driven by a laser pulse which creates
entanglement between electronic and vibrational degrees of
freedom. We treat the electronic subsystem as an open quan-
tum system in the vibrational environment. A non-Markovian
character of the electronic system dynamics is expected,
since the vibrational environment is a dynamical one, be-
ing structured by the vibrational motion in the electronic
molecular potentials coupled by the laser pulse. Therefore,
the non-Markovian effects in the electronic evolution will be
determined by the traits of the vibrational dynamics and of
the driving field. This section exposes our model, allowing
us to characterize non-Markovianity of the electronic evolu-
tion using the measures introduced in the precedent section.
We begin by describing the theoretical model of a diatomic
molecule driven by a coupling between electronic states,
such that several electronic states could be populated. The
intramolecular dynamics of such a molecule is characterized
by electronic-vibrational entanglement and electronic coher-
ence [57,58]. Subsequently, we will deduce the canonical
form of the master equation for a two-dimensional electronic
subsystem, building the non-Markovianity measures from the
canonical decoherence rates.

We consider a diatomic molecule described in the Born-
Oppenheimer (BO) approximation [59], neglecting the ro-
tational degree of freedom, such that the molecular system
is described by states |�el,vib(t )〉 of the Hilbert space H =
Hel

⊗
Hvib.

We assume the molecule driven by the total Hamiltonian

Ĥ = Ĥmol + Ŵ (t ), (14)

where the molecular Hamiltonian Ĥmol = Ĥel + T̂R is the sum
of the electronic Hamiltonian Ĥel and the nuclear kinetic-
energy T̂R . Ŵ (t ) describes a time-dependent coupling of
the electronic states of the molecule2. The dynamics of the
molecular system is obtained from the von Neumann equation

ih̄
dρ̂el,vib(t )

dt
= [Ĥ, ρ̂el,vib(t )], (15)

where ρ̂el,vib(t ) = |�el,vib(t )〉〈�el,vib(t )| is a pure state of the
bipartite system (el

⊗
vib).

A detailed description of the molecular model can be
found in previous papers [57,58], where we have analyzed
entanglement and coherence of pure states |�el,vib(t )〉 created
by laser pulses. The molecular state |�el,vib(t )〉 has the form

|�el,vib(t )〉 =
Nel∑
α=1

|α〉
⊗

|ψ
α
(t )〉, (16)

the summation being over the populated electronic chan-
nels α = 1, Nel . We recall that the molecular wave function
�el,vib(�ri, R, t ) depends on the electronic coordinates { �ri}
(expressed in the molecule-fixed coordinate system), the inter-
nuclear distance R, and the time t . The electronic states |α〉 =
φel

α (�ri ; R) (depending parametrically on R) are orthonormal
eigenstates of the electronic Hamiltonian Ĥel satisfying the
clamped nuclei electronic Schrödinger equation Ĥel|α〉 =
V

α
(R)|α〉, which gives the adiabatic potential-energy surfaces

V
α
(R) as eigenvalues of Ĥel [59]. |ψ

α
(t )〉 designates the vibra-

tional wave packet ψ
α
(R, t ) corresponding to the electronic

state |α〉.

A. The electronic subsystem as an open quantum system
entangled with the vibrational environment

We will follow the electronic subsystem dynamics in re-
lation to dynamical behaviors of the electronic-vibrational
entanglement and electronic coherence. The reduced time
evolution of the electronic subsystem is derived from the uni-
tary dynamics [Eq. (15)] of the molecular system described by
the molecular density operator ρ̂el,vib = |�el,vib(t )〉〈�el,vib(t )|,
obtained with Eq. (16) as

ρ̂el,vib(t ) =
Nel∑
α,β

|α〉〈β|
⊗

|ψα (t )〉〈ψβ (t )|. (17)

Therefore, the reduced electronic density operator ρ̂el =
Trvib(ρ̂el,vib) is [58]

ρ̂el (t ) =
Nel∑
α,β

|α〉〈β|〈ψβ (R, t )|ψα (R, t )〉. (18)

2In a general manner, Ŵ (t ) can be an external coupling (the case
of a laser pulse), an internal coupling (such as a radial nonadiabatic
coupling between electronic states), or a combination of both.
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ρ̂el (t ) describes an electronic subsystem which is entan-
gled with the vibrational environment [57]. For Nel popu-
lated states, the linear entropy L(t ) = 1 − Trel (ρ̂2

el (t )) of the
electronic-vibrational entanglement has the expression [58]

L(t ) = 2
Nel∑

α,β,α �=β

[P
α
(t )P

β
(t ) − |〈ψα (R, t )|ψβ (R, t )〉|2]. (19)

In Eq. (19), P
α
(t ) = 〈ψα (R, t )|ψα (R, t )〉 is the population

of the electronic state |α〉, and the total population obeys
the normalization condition

∑Nel

α=1 P
α
(t ) = 1. The other term

appearing in Eq. (19) involves the off-diagonal elements
〈α|ρ̂el (t )|β〉 = 〈ψβ (R, t )|ψα (R, t )〉, which are giving the co-
herence of the reduced electronic state ρ̂el (t ). Using the l1
norm definition of coherence [60], one obtains as measure of
the electronic coherence:

Cl1 (ρ̂el ) =
Nel∑

α,β,α �=β

|〈ψα (R, t )|ψβ (R, t )〉|. (20)

In the following, we suppose an electronic subsystem of
dimension dim(Hel ) = 2, and we derive the canonical form
of the master equation which describes its evolution.

B. The master equation for a two-dimensional
driven electronic subsystem

We consider a diatomic molecule in which two electronic
states |g〉, |e〉 are coupled by a laser pulse, such that a pure
molecular state |�el,vib(t )〉 is created:

|�el,vib(t )〉 = |g〉
⊗

|ψg (R, t )〉 + |e〉
⊗

|ψe(R, t )〉. (21)

The quantum dynamics of the molecular system driven by the
Hamiltonian (14) is given by the time-dependent Schrödinger
equation:

ih̄
∂

∂t
|�el,vib(t )〉 = [Ĥmol + Ŵ (t )]|�el,vib(t )〉. (22)

Projecting Eq. (22) on the electronic states |g〉, |e〉 and taking
into account the BO approximation (i.e., 〈α|Ĥmol|α〉 = T̂R +
V

α
(R) and 〈α|Ĥmol|β〉 = 0), as well as the off-diagonal nature

of the coupling (i.e., 〈α|Ŵ (t )|α〉 = 0), where |α〉, |β〉 generi-
cally designate the electronic adiabatic states, one obtains

ih̄
∂

∂t

(
ψg (R, t )

ψe(R, t )

)
=

(
T̂R + Vg (R) W (R, t )

W ∗(R, t ) T̂R + Ve(R)

)

×
(

ψg (R, t )

ψe(R, t )

)
. (23)

Equation (23) describes the vibrational dynamics of the wave
packets ψg,e(R, t ) moving in the electronic potentials Vg (R)
and Ve(R), which are coupled by W (R, t ) = 〈g|Ŵ (t )|e〉,
depending on the internuclear distance R and on the time t . As
we have mentioned, Eq. (23) can be used to describe evolution
in the case of an external driving field (we will consider a

laser pulse3), as well as for an internal coupling (i.e., a radial
nonadiabatic coupling between electronic states).

The matrix of the reduced electronic density ρ̂el (t ) in the
electronic basis {|g〉, |e〉} can be deduced from Eq. (18) as

(ρ̂el (t )){g,e} =
(

Pg (t ) 〈ψe(t )|ψg (t )〉
〈ψg (t )|ψe(t )〉 Pe(t )

)
,

(24)

where Pg,e(t ) = 〈ψg,e(R, t )|ψg,e(R, t )〉 are the populations of
the two electronic states g, e, with the normalization condition
Pg (t ) + Pe(t ) = 1. From Eq. (24), we obtain the master equa-
tion for ρ̂el (t ), having the following local-in-time form:

ih̄
dρ̂el

dt
= A(t )|g〉〈g| − A(t )|e〉〈e|

+B(t )|g〉〈e| − B∗(t )|e〉〈g|. (25)

A(t ) and B(t ) are the complex time-dependent functions

A(t ) = ih̄
dPg

dt
= −ih̄

dPe

dt
, (26)

B(t ) = ih̄
d〈ψe|ψg〉

dt
, (27)

which are determined by the time evolution of the vibrational
wave packets |ψg (R, t )〉 and |ψe(R, t )〉, directed by Eq. (23).

The next section shows the derivation of the canonical form
for Eq. (25).

C. Canonical form of the master equation for the
two-dimensional electronic subsystem of

a molecule driven by a laser pulse

We shall derive here the canonical form of the master
equation for the two-dimensional electronic subsystem ρ̂el (t ).
The master equation (25) will be used to deduce both (2) and
(7) forms, in order to obtain the decoherence matrix D and the
decoherence rates γk (t ).

As dim(Hel ) = 2, the orthornormal basis {Gi}3
i=0 can be

chosen as {Î /
√

2, σi/
√

2}, with {σi}i=1,2,3 being the Pauli
operators: σ1 = |e〉〈g| + |g〉〈e|, σ2 = −i|e〉〈g| + i|g〉〈e|, and
σ3 = |e〉〈e| − |g〉〈g|. We also use the operators σ+ = |e〉〈g| =
1/2(σ1 + iσ2) and σ− = |g〉〈e| = 1/2(σ1 − iσ2), leading to
|g〉〈g| = σ−σ+ and |e〉〈e| = σ+σ−. As a first step, Eq. (25)
can be written as

ih̄
dρ̂el

dt
= A(t )

Pe

σ−ρ̂elσ+ − A(t )

Pg

σ+ρ̂elσ− + B(t )

〈ψg|ψe〉

× σ−ρ̂elσ− − B∗(t )

〈ψe|ψg〉σ+ρ̂elσ+, (28)

giving

dρ̂el

dt
=

∑
i,j=1,2

dij (t )σiρ̂elσj . (29)

3The theoretical model treating the relative motion of the nuclei in
the ground and excited electronic channels coupled by a laser pulse
usually contains supplementary assumptions, involving the rotating
wave approximation and dressed electronic potentials [65,66,72].
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The form (29) can be completed in order to sort out an
equation having the structure of Eq. (2) which provides the
decoherence matrix. We then obtain

dρ̂el

dt
= − i

h̄
[H (t ), ρ̂el (t )] +

3∑
i,j=1

dij (t )
[
σiρ̂el (t )σj

− 1
2 {σjσi, ρ̂el (t )}]. (30)

In Eq. (30), the Hermitian operator H (t ) has the following
matrix in the electronic basis {|g〉, |e〉}:

(H (t )){g,e} = −
⎛
⎝Pg

Re(〈ψg |W |ψe〉)
|〈ψg |ψe〉|2

〈ψg |W |ψe〉
〈ψg |ψe〉

〈ψe|W ∗|ψg〉
〈ψe|ψg〉 Pe

Re(〈ψg |W |ψe〉)
|〈ψg |ψe〉|2

⎞
⎠, (31)

and the matrix dij (t ) has the form

(dij (t )) =

⎛
⎜⎝

d11(t ) d12(t ) 0

d21(t ) d22(t ) 0

0 0 d33(t )

⎞
⎟⎠. (32)

The elements Dij (t ) = 2dij (t ) of the Hermitian decoherence
matrix D are the following:

D11(t ) = 1

2ih̄

[
A(t )

Pe

− A(t )

Pg

+ B(t )

〈ψg|ψe〉 − B∗(t )

〈ψe|ψg〉
]
,

(33)

D12(t ) = 1

2h̄

[
A(t )

Pe

+ A(t )

Pg

− B(t )

〈ψg|ψe〉 − B∗(t )

〈ψe|ψg〉
]
,

(34)

D21(t ) = D∗
12(t ), (35)

D22(t ) = 1

2ih̄

[
A(t )

Pe

− A(t )

Pg

− B(t )

〈ψg|ψe〉 + B∗(t )

〈ψe|ψg〉
]
,

(36)

D33(t ) = −i
A(t )

2h̄
(Pg − Pe )

[
1

|〈ψg|ψe〉|2 − 1

PgPe

]
, (37)

D13 = D∗
31 = 0 , D23 = D∗

32 = 0, (38)

with A(t ) and B(t ) given by Eqs. (26) and (27). Let us remark
that the elements of the decoherence matrix are finite as long
as Pg, Pe �= 0, and 〈ψg|ψe〉 �= 0. These conditions are equally
required in order to obtain finite values for the canonical
decoherence rates, and in the following we will suppose them
fulfilled.

The canonical decoherence rates {γi (t )}i=1,2,3, obtained
as eigenvalues of the decoherence matrix with elements
Dij (t ), are

γ1,2(t ) = 1

2PgPe

dPg

dt
(Pg − Pe )

±
√(

1

2PgPe

dPg

dt

)2

+ 1

|〈ψg|ψe〉|2
∣∣∣∣d〈ψg|ψe〉

dt

∣∣∣∣
2

, (39)

γ3(t ) = 1

2

dPg

dt
(Pg − Pe )

[
1

|〈ψg|ψe〉|2 − 1

PgPe

]
. (40)

The canonical form of the master equation appears through
the diagonalization of the decoherence matrix [see Eq. (3)].
We deduce the unitary matrix (U ) formed by the eigenvectors
of the decoherence matrix (Dij ) as being

(U ) =

⎛
⎜⎝

n1 n2 0

n1
γ1−D11

D12
n2

γ2−D11

D12
0

0 0 1

⎞
⎟⎠, (41)

with γ1,2 being the decoherence rates given in Eq. (39) and
D11, D12, D22 being the elements of the decoherence matrix
shown in Eqs. (33)–(36). n1 and n2 are real normalization
factors (with n2

1 + n2
2 = 1) given by the expressions

n2
1 = γ1 − D22

γ1 − γ2
; n2

2 = D22 − γ2

γ1 − γ2
. (42)

The time-dependent decoherence operators {Li (t )}i=1,2,3,
corresponding to orthogonal decoherence channels, are ob-
tained using Eq. (5) as

L1(t ) = n1√
2

(
σ1 + γ1 − D11

D12
σ2

)
, (43)

L2(t ) = n2√
2

(
σ1 + γ2 − D11

D12
σ2

)
, (44)

L3(t ) = 1√
2
σ3. (45)

Finally, we obtain the canonical form for the master
equation of the reduced electronic density operator ρ̂el (t ) (24):

dρ̂el

dt
= − i

h̄
[H (t ), ρ̂el (t )] +

3∑
i=1

γi (t )
[
Li (t )ρ̂elL

+
i (t )

− 1
2 {L+

i (t )Li (t ), ρ̂el}
]
, (46)

with the operator H (t ) having the matrix (31), the de-
coherence rates {γi (t )}i=1,2,3 given in Eqs. (39) and (40),
and the decoherence operators {Li (t )}i=1,2,3 determined by
Eqs. (43)–(45).

The sum of the canonical decoherence rates is the trace of
the decoherence matrix given by Eqs. (33)–(37):∑

i

γi (t ) = Tr[D(t )]

= 1

2

dPg

dt
(Pg − Pe )

[
1

PgPe

+ 1

|〈ψg|ψe〉|2
]
, (47)

becoming zero at instants t for which dPg/dt = 0 or Pg (t ) =
Pe(t ).

The Bloch volume of the accessible states, obtained with
Eq. (13), is

V (t ) = V (t0) exp

[
−2

∫ t

t0

ds
∑

i

γi (s)

]
. (48)

As already discussed, if the sum
∑

i γi (t ) of the canonical de-
coherence rates is negative, the Bloch volume of the accessible
states increases, witnessing non-Markovianity. Therefore, a
first indication on the non-Markovian behavior is given by
Eq. (47), which shows that a growth of the Bloch volume,
V (t ) > V (t0), appears if dPg

dt
(Pg − Pe ) < 0.
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The normalization condition Pg (t ) + Pe(t ) = 1 implies

dPg

dt
(Pg − Pe ) = − d

dt
(PgPe ). (49)

Therefore, the condition to have
∑

i γi (t ) < 0, leading to
a growth of the Bloch volume, can also be expressed as
d
dt

(PgPe ) > 0.

D. Decoherence rates and canonical measures of
non-Markovianity for the electronic system

Let us analyze the signs of the decoherence rates γi (t )
given by Eqs. (39) and (40). Since PgPe � |〈ψg|ψe〉|2, and
with Eq. (49), it appears that the sign of γ3(t ) depends on the
time evolution of the electronic populations Pg (t ), Pe(t ) as
follows:

sgn[γ3(t )] = sgn

[
dPg

dt
(Pg − Pe )

]
= −sgn

[
d

dt
(PgPe )

]
.

(50)

On the other hand, Eq. (39) can be written as

γ1,2(t ) = 1

2PgPe

∣∣∣∣dPg

dt

∣∣∣∣
{

sgn

[
dPg

dt
(Pg − Pe )

]
|Pg − Pe|

±
√

1 + r2(t )

}
, (51)

with

r2(t ) = 4P 2
g P 2

e

(dPg/dt )2

|d〈ψg|ψe〉/dt |2
|〈ψg|ψe〉|2 . (52)

Taking into account that 0 � |Pg − Pe| � 1, it becomes
obvious that γ1(t ) is always positive, and γ2(t ) is always
negative:

γ1(t ) > 0 ; γ2(t ) < 0. (53)

Consequently, we will distinguish four cases:
(i) If dPg

dt
(Pg − Pe ) > 0, or equivalently, d

dt
(PgPe ) < 0,

there is one negative decoherence rate, γ2(t ) < 0, and the non-
Markov index defined by Eq. (12) is n(t ) = 1. Equation (47)
shows that the sum of the decoherence rates is positive,∑

i γi (t ) > 0, leading to a diminution of the Bloch volume.
The non-Markovianity measure obtained with Eqs. (8) and

(9) is f (t ) = f2(t ) = |γ2(t )|. Using Eq. (51), we find

f (t ) = 1

2PgPe

∣∣∣∣dPg

dt

∣∣∣∣[√1 + r2(t ) − |Pg − Pe|]. (54)

(ii) If dPg

dt
(Pg − Pe ) < 0, or equivalently, d

dt
(PgPe ) > 0,

there are two negative decoherence rates, γ2(t ) < 0 and
γ3(t ) < 0. The dimension of the space of non-Markovian
evolution, given by the non-Markov index [16], becomes
n(t ) = 2. The non-Markovianity measure is obtained from
the negative decoherence rates using Eqs. (8) and (9), as
f (t ) = f2(t ) + f3(t ) = |γ2(t )| + |γ3(t )|. Using Eqs. (51) and

(40), we find

f (t ) = 1

2PgPe

∣∣∣∣dPg

dt

∣∣∣∣[|Pg − Pe| +
√

1 + r2(t )]

+ 1

PgPe

d(PgPe )

dt

L(t )[
Cl1 (ρ̂el )

]2 . (55)

In Eq. (55), L(t ) and Cl1 (ρ̂el ) are the linear entropy of the
electronic-vibrational entanglement and the electronic coher-
ence, respectively, whose expressions can be derived from
Eqs. (19) and (20) for Nel = 2.

Moreover, the sum of the decoherence rates is negative,∑
i γi (t ) < 0, which means that the Bloch volume of the

dynamically accessible states increases [Eq. (13)], witness-
ing non-Markovianity. We distinguish this case as indicating
enhancement of non-Markovianity.

(iii) If Pg (t ) = Pe(t ), the decoherence rates are γ3(t ) =
0 and γ2(t ) = −γ1(t ). The sum of the decoherence rates
becomes zero,

∑
i γi (t ) = 0. Using Eq. (51), the non-

Markovianity measure f (t ) = |γ2(t )| becomes

f (t ) = 1

2PgPe

∣∣∣∣dPg

dt

∣∣∣∣√1 + r2(t ). (56)

(iv) If dPg

dt
= 0. This condition corresponds to extrema in

the evolution of the electronic populations during the pulse,
or to constant populations after pulse. The decoherence rates
become γ3(t ) = 0, and γ2(t ) = −γ1(t ), with

∑
i γi (t ) = 0.

Equation (39) gives

γ1,2(t ) = ± 1

|〈ψg|ψe〉|
∣∣∣∣d〈ψg|ψe〉

dt

∣∣∣∣ (57)

and f (t ) = |γ2(t )|.
Let us consider the case of a molecule with constant

populations in the electronic states g, e (it can be a molecule
after the action of a laser pulse): dPg

dt
= 0 for all t . Therefore,

the Bloch volume of the dynamically accessible states remains
constant, V (t ) = V0. For W (R, t ) = 0, Eqs. (57) and (23) give
an alternative form of the decoherence rates as

γ1,2(t ) = ± 1

h̄

|〈ψg|Ve(R) − Vg (R)|ψe〉|
|〈ψg|ψe〉| . (58)

Writing the complex overlap of the vibrational packets as
〈ψg|ψe〉 = |〈ψg|ψe〉|exp(iα(t )), with α(t ) a real function,
the non-Markovianity measure f (t ) = |γ2(t )| obtained using
Eq. (57) becomes

f (t ) =
√(

1

|〈ψg|ψe〉|
d|〈ψg|ψe〉|

dt

)2

+
(

dα

dt

)2

.

(59)

Equation (59) is useful for understanding the relation between
f (t ) and the electronic coherence |〈ψg|ψe〉|. It appears that
if at an instant tm one has ( d|〈ψg |ψe〉|

dt
)tm = 0 (an extremum

in the time evolution of the coherence), but |〈ψg|ψe〉|tm �=
0, one obtains a minimum of the function f (t ), which
becomes f (tm) = | dα

dt
|tm . On the contrary, at an instant tM

for which |〈ψg|ψe〉|tM → 0 (which obviously represents a
minimum in the time evolution of the coherence and there-
fore ( d|〈ψg |ψe〉|

dt
)tM = 0), the function f (t ) has a maximum,
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becoming f (tM ) =
√

1 + ( dα
dt

)
2

tM
. Equation (59) shows that

in a molecule with constant electronic populations, the non-
Markovianity measure f (t ) can be seen as a measure of the
temporal behavior of the electronic coherence, having minima
when the electronic coherence has maxima and attaining
maximum values whenever the overlap of the vibrational
packets tends to zero, |〈ψg|ψe〉| → 0. At the same time, as
we have shown previously [58], if the electronic populations
are constant, the time variations of the coherence |〈ψg|ψe〉|
completely determine the temporal evolution of the linear
entropy of entanglement L(t ) [see Eq. (61)], which becomes
maximum when coherence attains a minimum. Therefore, the
maxima of the non-Markovianity measure f (t ) correspond to
maxima of the electronic-vibrational entanglement measured
by the linear entropy.

These results make explicit the fundamental non-
Markovian character of the electronic subsystem evolution.
Indeed, we have shown that one of the decoherence rates
is always negative: γ2(t ) < 0. Besides this inherent non-
Markovianity, the character of the electronic evolution be-
comes strongly non-Markovian under the condition (Pg −
Pe )dPg/dt < 0, i.e., d(PgPe )/dt > 0, which supposes an ex-
change of population between the electronic channels. In the
following, d(PgPe )/dt will be called the non-Markovianity
factor.

The condition (Pg − Pe )dPg/dt < 0 implies sgn
(dPg/dt ) = −sgn[Pg (t ) − Pe(t )]. Therefore, it appears that
the non-Markovian character of the dynamics is strengthened
when the transfer of population between the two electronic
channels is such as the larger population decreases (i.e.,
the smaller electronic population increases). This condition,
describing an evolution oriented to the equalization of the
electronic populations, is in fact a condition indicating the
increase of the electronic-vibrational entanglement, which
becomes maximum when the electronic populations are equal
[57]. This observation will be developed in the following
sections.

IV. CONNECTING NON-MARKOVIANITY OF THE
ELECTRONIC EVOLUTION WITH

ELECTRONIC-VIBRATIONAL ENTANGLEMENT AND
ELECTRONIC COHERENCE

We will now analyze enhancement of non-Markovianity,
determined by the condition d(PgPe )/dt > 0, in relation to
the evolutions of the electronic-vibrational entanglement and
the electronic coherence. The key observation is that the
quantity Pg (t )Pe(t ) is connected to measures of entanglement
and coherence in the molecular system.

The electronic-vibrational entanglement in the bipartite
molecular state |�el,vib(t )〉 given by Eq. (21) can be analyzed
using the von Neumann entropy SvN (ρ̂el (t )) or the linear
entropy L(t ) of the reduced density operator ρ̂el . In previous
works [57,58], we have investigated the results given by
these two entanglement measures. Both of them depend on
the temporal behavior of the electronic populations, but only
L(t ) depends on the electronic coherence. The von Neumann
entropy of the electronic-vibrational entanglement has the

following expression [57]:

SvN (ρ̂el (t )) = −Pg (t ) log2 Pg (t ) − Pe(t ) log2 Pe(t ). (60)

For Nel = 2, the linear entropy L(t ) = 1 − Tr(ρ̂2
el (t )) ob-

tained with Eq. (19) becomes

L(t ) = 2Pg (t )Pe(t ) − 2|〈ψg (R, t )|ψe(R, t )〉|2, (61)

and, with Eq. (20), the l1 norm measure of the electronic
coherence is

Cl1 (ρ̂el ) = 2|〈ψg (R, t )|ψe(R, t )〉|. (62)

Therefore, Eq. (61) can be read as a relation between
the phenomena of electronic-vibrational entanglement, non-
Markovianity of the electronic evolution, and electronic co-
herence. Indeed, Eqs. (61) and (62) lead to

d

dt
[Pg (t )Pe(t )] = 1

2

dL

dt
+ 1

2
Cl1 (ρ̂el )

dCl1 (ρ̂el )

dt
. (63)

In the following, Eq. (63) will be used to explore the relations
between enhancement of non-Markovianity [d(PgPe )/dt >

0], increase of entanglement (dL/dt > 0), and increase of the
electronic coherence [dCl1 (ρ̂el )/dt > 0].

Expressions of the decoherence rates as functions of L(t )
and Cl1 (t ) can be given. Using Eq. (47), the sum of the
decoherence rates becomes

∑
i

γi (t ) = −d[ln(PgPe )]

dt

L(t ) + [
Cl1 (ρ̂el )

]2[
Cl1 (ρ̂el )

]2 , (64)

and, with Eq. (40), γ3(t ) can be written

γ3(t ) = −d[ln(PgPe )]

dt

L(t )[
Cl1 (ρ̂el )

]2 . (65)

Besides the l1 norm measure of the electronic coherence,
Cl1 (ρ̂el ), we shall use the Wigner-Yanase skew information
IS (ρ̂el, Ĥel ) = − 1

2 Trel[
√

ρ̂el , Ĥel]2 for the electronic state ρ̂el ,
with respect to the electronic Hamiltonian Ĥel , to additionally
characterize electronic subsystem coherence [58]. The skew
information IS is a measure of coherence as asymmetry
relative to a group of translations [61–63], quantifying the
coherence of a state with respect to a certain Hamiltonian
eigenbasis. This notion of coherence was termed unspeakable
[61], to show its structural relation to the eigenvalues of the
observable which defines the basis relative to which coherence
is defined.4 It is a notion of coherence closely related to
the context of quantum speed limits [62,63]. In particular,

4The term “unspeakable coherence” derives from the syntagm
“unspeakable information,” which designates an information which
can only be encoded in certain degrees of freedom [61]. Also
following Ref. [61], “speakable information is information for
which the means of encoding is irrelevant.” (p. 2) The term
“unspeakable coherence” refers to the notion of “coherence as
asymmetry,” and the term “speakable coherence” is applied to
the concept of coherence defined in the recently developed
framework of resource theories of quantum coherence [61–63].
It was shown that measures of coherence are a subset of measures
of asymmetry [62].
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TABLE I. Connections between the time behavior of the electronic-vibrational entanglement (dL/dt), the enhancement of non-
Markovianity in the evolution of the electronic subsystem [d (PgPe )/dt > 0], and behaviors of speakable and unspeakable [61] electronic
coherences, measured by l1 norm Cl1 (t ) and skew information IS (t ), respectively.

dL

dt

d (PgPe )
dt

dCl1
dt

∂IS

∂t

(1) > 0 < 0 =⇒ < 0 < 0

(2) > 0 > 0 =⇒ > 0, if > 0, if
d (PgPe )

dt
> 1

2
dL

dt

1
2
√

2L(1+√
2L)

dL

dt
< 1√

2L+L+2PgPe

d (PgPe )
dt

< 1
Cl1

dCl1
dt

< 0, if
1

2
√

2L(1+√
2L)

dL

dt
> 1√

2L+L+2PgPe

d (PgPe )
dt

> 1
Cl1

dCl1
dt

< 0, if < 0
d (PgPe )

dt
< 1

2
dL

dt

(3) < 0 > 0 =⇒ > 0 > 0

(4) < 0 < 0 =⇒ < 0, if > 0, if

− 1
2

dL

dt
< − d (PgPe )

dt
− 1

2
√

2L(1+√
2L)

dL

dt
> − 1√

2L+L+2PgPe

d (PgPe )
dt

> − 1
Cl1

dCl1
dt

< 0, if

− 1
2
√

2L(1+√
2L)

dL

dt
< − 1√

2L+L+2PgPe

d (PgPe )
dt

< − 1
Cl1

dCl1
dt

> 0, if > 0

− 1
2

dL

dt
> − d (PgPe )

dt

IS (ρ̂el, Ĥel ) characterizes the coherence of the reduced elec-
tronic state ρ̂el relative to the eigenbasis {|g〉, |e〉} of the elec-
tronic Hamiltonian Ĥel , whose eigenvalues are the electronic
potentials Vg (R), Ve(R). The skew information IS (ρ̂el, Ĥel )
has the following expression [58]:

IS (ρ̂el, Ĥel ) = [Vg (R)−Ve(R)]2 |〈ψg (R, t )|ψe(R, t )〉|2
1 + √

2L(t )
.

(66)

IS (ρ̂el, Ĥel ) = IS (R, t ) appears as a product between a func-
tion of the internuclear distance R (depending on the elec-
tronic potentials difference at given R) and a function of time
t , a factorization which reflects the BO approximation. It can
be said that IS (R, t ) is a measure of the unspeakable elec-
tronic coherence which characterizes the reduced electronic
state ρ̂el at a given internuclear distance R. Let us observe that
the time behavior of IS is determined by the time evolutions
of the electronic coherence Cl1 (t ) and the linear entropy of
entanglement L(t ). Our aim is to investigate non-Markovian
behavior in relation to various quantum correlations in the
molecular system, and we find it useful to also examine
this measure of correlations, which combines coherence and
entanglement.

Equations (66) and (62) determine the relation between the
time variations of the electronic coherences IS (R, t ), Cl1 (t ),
and of the linear entropy of entanglement L(t ):

1

IS

∂IS

∂t
= 2

Cl1

dCl1

dt
− 1√

2L(1 + √
2L)

dL

dt
. (67)

We shall analyze the condition d(PgPe )/dt > 0 of en-
hanced non-Markovian behavior in the electronic evolution
in connection to the time behaviors of entanglement and the
two kinds of electronic coherence (speakable, quantified by

the l1 norm Cl1 , and unspeakable [61], quantified by the skew
information IS). Equations (67) and (61) give

d(PgPe )

dt
=

√
2L + L + 2PgPe

2
√

2L(1 + √
2L)

(
dL

dt

)
+ C2

l1

4IS

(
∂IS

∂t

)
,

(68)

d(PgPe )

dt
=

√
2L + L + 2PgPe

Cl1

(
dCl1

dt

)

−
√

2L(1 + √
2L)2

2IS

(
∂IS

∂t

)
. (69)

Table I systematizes the relations between enhancement of
non-Markovianity (d(PgPe )/dt > 0) and the dynamics of the
quantum correlations measured using L(t ), Cl1 (t ), and skew
information IS (ρ̂el, Ĥel ). This analysis is performed using
Eqs. (63) and (67)–(69). Observing that non-Markovian be-
havior accompanies the phenomenon of electronic-vibrational
entanglement, we have considered definite signs for dL/dt

and d(PgPe )/dt , in order to deduce the compatible behaviors
of electronic coherences. Table I shows the following relations
among phenomena:

(1) Entanglement growth (dL/dt > 0) accompanied by
diminution of non-Markovianity [d(PgPe )/dt < 0] has to be
associated with a decrease of both electronic coherences (Cl1

and IS).
(2) When both entanglement and non-Markovianity in-

crease [dL/dt > 0, d(PgPe )/dt > 0], the electronic coher-
ence Cl1 may either increase (if d(PgPe )

dt
> 1

2
dL
dt

) or decrease
(if the opposite relation is true). If dCl1/dt > 0, the skew
information can increase or decrease, depending on the hi-
erarchy among the time behaviors of L(t ), Pg (t )Pe(t ), and
Cl1 (t ), as shown in the fourth column of the Table I. On
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the contrary, if dCl1/dt < 0, the skew information can only
decrease, ∂IS/∂t < 0.

(3) Decrease of entanglement (dL/dt < 0) is accompanied
by enhanced non-Markovian behavior [d(PgPe )/dt > 0] only
if the electronic coherences (Cl1 and IS) increase.

(4) When both entanglement and non-Markovianity de-
crease [dL/dt < 0, d(PgPe )/dt < 0], the electronic coher-
ence Cl1 may either increase or decrease. As in the case (2),
we will have several possibilities, shown in the table.

We observe a notable difference between the cases (2) and
(4), with dL/dt, d(PgPe )/dt having the same sign, and cases
(1) and (3), with them having opposite signs. The numerical
results presented in Sec. VI will show that cases (2) and (4)
represent the rule and cases (1) and (3) are the exception,
because enhanced non-Markovian behavior is deeply con-
nected with increase of entanglement, as already explained in
Sec. III D.

It is interesting to compare the time behaviors of the
two electronic coherences: Even if the skew information has
the tendency to follow the Cl1 time behavior, its sensitivity
to entanglement brings cases in which the increase of the
electronic coherence Cl1 is accompanied by the decrease of
IS , or the opposite. The conditions of possibility leading to
these situations appear in the cases (2) and (4), specified in
Table I.

The aim of this analysis is to gain insight into the meaning
of non-Markovianity in relation to entanglement and coher-
ence. An interesting question would be if the model used
here to characterize non-Markovianity allows us to relate
non-Markovian behavior to a backflow of information from
environment to the system. More specifically, the question
is if any of the conditions d(PgPe )/dt > 0, dL/dt > 0, or
dCl1/dt > 0 could be related to a flow of information from
the vibrational environment to the electronic open subsys-
tem. As is well known, Breuer et al. [10] identify as an
essential feature of non-Markovian behavior the existence
of a reversed flow of information from the environment to
the open system, a “backflow” which is manifested in the
growth of distinguishability between quantum states of the
open system. In the appendix, we show that the trace distance
between ρ̂el (t ) and a state ρ̂el (t0) with coherence Cl1 (t0) = 0 is
increased when d(PgPe )/dt > 0 and dCl1/dt > 0. In general
(see the appendix), the condition d(PgPe )/dt > 0 for en-
hanced non-Markovian behavior participates in the increase of
the trace distance D(ρ̂el (t0), ρ̂el (t )), contributing with a pos-
itive term at the rate of change dD(ρ̂el (t0), ρ̂el (t ))/dt given
by Eq. (A3). Regarding the condition dL/dt > 0, Sec. III D
explained that the condition (Pg − Pe )dPg/dt < 0 indicat-
ing enhanced non-Markovian behavior describes an evolution
of the electronic populations which increases entanglement.
The close bond between the condition d(PgPe )/dt > 0 and
the increase of entanglement (dL/dt > 0, dSvN/dt > 0) will
appear clearly in the numerical results presented in Sec. VI.

This theoretical analysis, grounded on the analytic for-
mulas relating the non-Markovianity factor d(PgPe )/dt with
the time behaviors of entanglement and coherence, will be
completed in Sec. VI with an examination of numerical results
for the canonical measures of non-Markovianity obtained
from simulations of the molecular dynamics in a laser-driven
molecule.

V. NON-MARKOVIANITY AND QUANTUM
UNCERTAINTY ON THE ELECTRONIC ENERGY

If ρ̂el,vib(t ) is a pure state, the uncertainty on the electronic
energy (i.e., the mean square deviation from the average
value) is given by [58]

(�Ĥel )
2 = IS (ρ̂el,vib, Ĥel

⊗
Îv )

= [Vg (R) − Ve(R)]2Pg (t )Pe(t ), (70)

where IS (ρ̂el,vib, Ĥel

⊗
Îv ) is the Wigner-Yanase skew infor-

mation for the molecular state ρ̂el,vib with respect to the elec-
tronic Hamiltonian Ĥel . Consequently, enhancement of non-
Markovianity in the electronic evolution increases uncertainty
on the electronic energy (and inversely, growing uncertainty
on the electronic energy reflects a non-Markovian behavior in
the electronic evolution):

d(PgPe )

dt
> 0 ⇐⇒ ∂ (�Ĥel )2

∂t
> 0. (71)

The Wigner-Yanase skew information IS (ρ̂el, Ĥel ) is also
recognized as a measure of the quantum uncertainty of Ĥel

in the state ρ̂el [64]. Let us observe that Eq. (69) connects the
time behavior of the uncertainty on the electronic energy in the
pure molecular state ρ̂el,vib(t ) with behavior of the quantum
uncertainty IS (ρ̂el, Ĥel ) in the reduced state ρ̂el .

VI. NON-MARKOVIAN DYNAMICS OF THE ELECTRONIC
SUBSYSTEM IN A LASER-DRIVEN MOLECULE:

ANALYSIS FROM SIMULATIONS OF
MOLECULAR DYNAMICS

This section will present results obtained from the simula-
tion of the intramolecular dynamics for a diatomic molecule
which is under the action of a laser pulse coupling two
electronic states. Non-Markovian behavior of the electronic
subsystem is characterized using the canonical measures of
non-Markovianity f (t ) and F (t1, t2) = ∫ t2

t1
f (t )dt , calculated

using the equations established in Sec. III D. We will also
examine the time behavior of the Bloch volume V (t ) of the
accessible states, obtained using Eqs. (47) and (48), as well
as the dynamics of the electronic-vibrational entanglement
and the electronic coherence in the molecule. Non-Markovian
behavior during time evolution will be connected with the
dynamics of quantum correlations.

As a model system, we consider the Cs2 molecule in which
the electronic states g = a 3�+

u (6s, 6s) and e = 1g (6s, 6p3/2)
are coupled by a laser pulse. In previous works [57,65,66],
we have analyzed the vibrational dynamics in these electronic
potentials for various conditions of coupling, and we shall
refer to these works for details of the molecular model,
including definitions of the characteristic times of dynamics,
such as vibrational and Rabi periods.

Let us suppose the electronic states g = a 3�+
u (6s, 6s) and

e = 1g (6s, 6p3/2) coupled by an electric field with temporal
amplitude E (t ) = E0e(t ) cos ωLt . The field amplitude E0 =√

2I/cε0 depends on the laser intensity I , e(t ) is the temporal
envelope of the pulse, and ωL/2π is the frequency of the
field, such as the photon energy h̄ωL couples the electronic
potentials Vg (R) and Ve(R) at a internuclear distance of about
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FIG. 1. a 3�+
u (6s, 6s ) and 1g (6s, 6p3/2) electronic potentials of

Cs2, coupled at a internuclear distance of about Rc ≈ 29 a0 by a pulse
with frequency ωL/2π and envelope e(t ) shown in the inset. The
energy origin is taken to be the dissociation limit E6s+6s = 0 of the
a 3�+

u (6s, 6s ) potential.

Rc ≈ 29 a0, as shown in Fig. 1. Using the rotating-wave ap-
proximation with the frequency ωL/2π and a transformation
of the radial wave functions with appropriate phase factors,
one obtains the typical Eq. (23) for the vibrational wave
packets ψg (R, t ) and ψe(R, t ) whose dynamics takes place
in the diabatic electronic potentials crossing in Rc [65]. The
coupling between the electronic channels is W (t ) = WLe(t ),
with the strength WL = − 1

2E0D
�eL

ge , where D �eL
ge is the transition

dipole moment between the ground g and the excited e

electronic states, for a polarization �eL of the electric field [65].
Here, the R dependence of the transition dipole moment is
neglected, and several coupling strengths WL are considered,
for the same pulse envelope e(t ) (represented in Fig. 1).

The intramolecular dynamics is obtained using Eq. (23),
which is solved numerically by propagating in time an ini-
tial wave function (here the initial state is the vibrational
eigenstate with ve = 142 of the 1g (6s, 6p3/2) potential) on
a spatial grid with length LR . The mapped sine grid (MSG)
method [67,68] is used to represent the radial dependence of
the wave packets, and the time propagation uses the Cheby-
chev expansion of the evolution operator [69,70]. The elec-
tronic populations Pg (t ), Pe(t ) are calculated from the vibra-

tional wave packets as Pg,e(t ) = ∫ LR |�g,e(R′, t )|2dR′, and
the electronic coherence (62) is obtained from the overlap
of the vibrational wave packets calculated on the spatial
grid: 〈ψg (t )|ψe(t )〉 = ∫ LR �∗

g (R′, t )�e(R′, t )dR′. These re-
sults are used to calculate the canonical decoherence rates
and measures of non-Markovianity, as well as the entropies
of the electronic-vibrational entanglement and the skew
information.
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FIG. 2. Results characterizing the vibrational dynamics in the
electronic potentials g = a 3�+

u and e = 1g of Cs2 coupled by a pulse
with envelope e(t ) (Fig. 1), for a coupling strength WL = 3.29 cm−1.
Time evolutions during the pulse (t < 250 ps) and after pulse (t >

250 ps) are both shown. (a) Time evolution of the populations Pg (t )
and Pe(t ) (two specific Rabi periods T R

ve,vg
, of 47.4 and 16.5 ps,

are marked). (b) Time evolution of the non-Markovianity factor
d (PgPe )/dt (non-Markovianity is enhanced if d (PgPe )/dt > 0).
(c) Time evolutions of the linear entropy L(t ) and von Neu-
mann entropy SvN (t ) of the electronic-vibrational entanglement. (d)
Time evolution of the skew information IS (t ) = IS (R, t )/[�V (R)]2.
(e) Time evolution of the electronic coherence Cl1 (t )/2 =
|〈ψg (t )|ψe(t )〉|. (f) Non-Markovianity measure f (t ). The filled sur-
face shows the integral

∫
f (t )dt .

We begin by analyzing dynamics for a coupling strength
WL = 3.29 cm−1 (corresponding to a pulse intensity I ≈
2.7 MW/cm2 for a linear polarization vector �eL [71]), for
which the results are given in Figs. 2, 3, and 4. Figure 2
shows the time evolutions of several significant quantities:
electronic populations Pg (t ), Pe(t ), non-Markovianity factor
d(PgPe )/dt , entropies L(t ) and SvN (t ) of the electronic-
vibrational entanglement, electronic coherence Cl1 (t ) and
skew information IS (t ), as well as the non-Markovianity
measure f (t ). The vertical dotted lines in the figure help us
to observe the correlations between the temporal variations of
all these properties. Figures 3 and 4 show the time evolution of
the vibrational wave packets |�g (R, t )| and |�e(R, t )|, during
the pulse and after pulse.

The pulse, which operates from 50 to 250 ps [see the
envelope e(t ) in Fig. 1], couples the two electronic states
activating a vibrational dynamics which involves several vi-
brational levels of each surface, with vibrational periods of
about 11 ps in the 1g electronic potential (the vibrational
levels ve = 140 up to 143 are implied), and between 33
and more than 100 ps in the a3�+

u potential (corresponding
mainly to the vibrational levels from vg = 43 up to 49).
The pulse produces a rich vibrational dynamics, implying
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FIG. 3. Time evolution (80 - 190 ps) of the vibrational wave
packets |�g (R, t )| (full line) and |�e(R, t )| (dotted line) in g =
a3�+

u (6s, 6s ) and e = 1g (6s, 6p3/2) electronic potentials coupled by
a pulse with envelope e(t ) (Fig. 1), for a coupling strength WL =
3.29 cm−1.

transfer of population between the electronic states, inversion
of population, and beats with various Rabi periods T R

ve,vg

[66] between the populated vibrational levels of the excited
and ground states. These phenomena are visible in Fig. 2(a),
where typical Rabi periods can be identified, such as T R

ve,vg
=

47.4 ps (between ve = 142 of 1g and vg = 47 of a3�+
u )

and T R
ve,vg

= 16.5 ps (between ve = 142, vg = 45). The time
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FIG. 4. Continuation of Fig. 3: time evolution (200–370 ps) of
the vibrational wave packets |�g (R, t )| (full line) and |�e(R, t )|
(dotted line) for a coupling WL = 3.29 cm−1. [(a)–(e)] Time evo-
lution during the pulse. [(f)–(j)] Time evolution after pulse.

evolution of the wave packets in Figs. 3 and 4 allows us to
observe the relation between the population transfer between
electronic channels and the vibrational motion in the potential
wells. Let us briefly decipher the dynamics from these results.
The pulse begins by transferring electronic population from
e = 1g state [Pe(0) = 1] to g = a 3�+

u state, the populations
becoming equals at about 80 ps. This process, taking place
from 50 to 80 ps, increases entanglement [Fig. 2(c)] and is
associated with a strong non-Markovian behavior [Fig. 2(f)].
After 80 ps, Pg (t ) > Pe(t ), and the population transfer from e

to g continues with the diminution of the entanglement and the
non-Markovianity measure f (t ). The inversion of population
is almost completed at 100 ps, and the transfer is inverted,
producing a non-Markovianity maximum between 100 and
110 ps [Fig. 2(f)], followed by stabilization of populations
with small Rabi beatings between 110 and 130 ps. The vi-
brational motion inside the a 3�+

u potential empties the trans-
fer zone located around the crossing point Rc ≈ 29 a0 [see
Fig. 3(f), t = 140 ps]; therefore, between 130 and 140 ps the
population is transferred from 1g to a 3�+

u , diminishing the
entanglement and the function f (t ). Between 160 and 190 ps,
the pulse again transfers population from the g = a 3�+

u

state to the e = 1g state, increasing the entanglement and the
non-Markovianity function f (t ) [this process is temporarily
stopped around 170 ps by the vibration of the g = a 3�+

u

packet, as shown in Fig. 3(h)]. Finally, before the end of the
pulse, the massive transfer of population from the g = a 3�+

u

state to the e = 1g state, between 200 and 220 ps, increases
the entanglement and has a notable non-Markovian character
[see Figs. 2(a), 2(c) and 2(f) and 4(a)–4(c)].

Let us observe more closely the influence exerted by this
dynamics of transfer and vibration on the non-Markovian
character of the electronic evolution. Let us analyze the
evolution during the pulse (t < 250 ps). A first obser-
vation [see Figs. 2(b) and 2(c)] is that whenever the
electronic-vibrational entanglement increases [dL(t )/dt >

0, dSvN (t )/dt > 0], the non-Markovianity factor is posi-
tive, d(PgPe )/dt > 0, and whenever entanglement decreases
[dL(t )/dt < 0, dSvN (t )/dt < 0], the non-Markovianity fac-
tor is negative, d(PgPe )/dt < 0. There is no exception from
this rule in this case; therefore we observe only the situations
(2) and (4) from Table I. Second, Figs. 2(b), 2(c) and 2(f)
show clearly that, in the time intervals [t1, t2] when the con-
dition of enhanced non-Markovian behavior d(PgPe )/dt > 0
is fulfilled (i.e., whenever there is entanglement growth), the
total amount of non-Markovianity defined by the integral
F (t1, t2) = ∫ t2

t1
f (t )dt becomes significantly bigger (for ex-

ample, the intervals 100–110, 120–130, 145–155, 160–190,
and 203–220 ps). On the contrary, if the entanglement de-
creases during the time interval [t1, t2], F (t1, t2) is drastically
diminished, approaching 0 (between 130 and 145 ps, for
example).

After pulse (t > 250 ps), the electronic populations be-
come constant, and d(PgPe )/dt = 0. Vibrational motion in
the electronic potentials leads to oscillations of the elec-
tronic coherence and implicitly of the linear entropy L(t ).
The non-Markovianity measure is deduced from Eq. (57)
as f (t ) = 1

|〈ψg |ψe〉| |
d〈ψg |ψe〉

dt
|, taking the form (59) as function

of the electronic coherence |〈ψg|ψe〉|. The results shown in
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FIG. 5. Results for a coupling strength 4WL = 13.16 cm−1 be-
tween the electronic states g = a3�+

u and e = 1g of Cs2 coupled
by a pulse with the same envelope e(t ) shown in Fig. 1. Evolutions
during the pulse and after pulse. (a) Time evolutions of the popula-
tions Pg (t ) and Pe(t ). (b) Time evolution of the non-Markovianity
factor d (PgPe )/dt . (c) Time evolutions of the linear entropy L(t )
and von Neumann entropy SvN (t ) of the electronic-vibrational en-
tanglement. (d) Time evolution of the skew information IS (t ) =
IS (R, t )/[�V (R)]2. (e) Time evolution of the electronic coherence
Cl1 (t )/2 = |〈ψg (t )|ψe(t )〉|. (f) Non-Markovianity measure f (t ). The
filled surface shows the integral

∫
f (t )dt .

Figs. 2(e) and 2(f) confirm the analysis made in Sec. III D
for a molecule with constant electronic populations: Indeed,
the non-Markovianity measure f (t ) has minima when the
electronic coherence |〈ψg|ψe〉| has maxima (for example, at
t = 250, 280, 385 ps) and attains maximum values when
|〈ψg|ψe〉| → 0 (at t = 263 or 370 ps, for example). Let us
observe the wave packets evolution in Figs. 4(f)–4(j): The
minima of the electronic coherence are obtained when the
overlap of the vibrational wave packets is minimum. As can
be seen for t = 263 ps or 370 ps, the minimum overlap is a
result of the ψg (R, t ) vibration inside the a 3�+

u potential.
This vibrational motion (during which the vibrational wave
packets explore the electronic potentials) diminishes coher-
ence, increasing the electronic-vibrational entanglement and
bringing a memory character to dynamics.

Let us observe the evolution of the two electronic co-
herences, Cl1 (t ), and the skew information, IS (t ), shown in
Figs. 2(e) and 2(d), respectively. During the pulse, they man-
ifest similar behaviors, so we do not observe the exceptions
signaled in Table I for the cases (2) and (4). After pulse,
their temporal behaviors are also similar, but IS (t ) → 0 in the
time intervals for which Cl1 (t ) has small values (for example,
260–270 or 360–370 ps). At the same time, these intervals
are also the periods when the non-Markovianity measure
F (t1, t2) = ∫ t2

t1
f (t )dt attains the bigger values after pulse

[see Figs. 2(d)–2(f)].
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FIG. 6. Results during the pulse for a coupling 4WL =
13.16 cm−1. (a) Time evolutions of the linear entropy L(t ) and
von Neumann entropy SvN (t ) of the electronic-vibrational entangle-
ment. (b) Time evolution of the non-Markovianity factor d (PgPe )/dt

(non-Markovianity is enhanced for d (PgPe )/dt > 0). [(c)–(e)] Time
evolution of the Bloch volume of the accessible states relative to the
volume at an initial time t0, V (t )/V (t0). Three time periods (with
appropriated initial times t0) are considered: (c) beginning of the
pulse [50–100] ps; (d) the period of constant strength [100–195]
ps; and (e) end of the pulse, [195–250] ps. (f) Non-Markovianity
measure f (t ). The filled surface shows the integral

∫
f (t )dt .

We will now analyze the results obtained for a much
bigger coupling strength, 4WL = 13.16 cm−1, which are
shown in Figs. 5 (evolution during and after pulse) and
6 (detailed evolution during the pulse). The transfer of
population between the electronic channels becomes more
intense and fast, and then the non-Markovianity factor
d(PgPe )/dt varies more rapidly [Figs. 5(a) and 5(b)]. As in
the case discussed previously, the increase of the electronic-
vibrational entanglement [dL(t )/dt > 0, dSvN (t )/dt > 0]
is completely correlated with the positivity of the non-
Markovianity factor [d(PgPe )/dt > 0] indicating enhanced
non-Markovian behavior. Also, entanglement decrease cor-
responds to d(PgPe )/dt < 0. The dotted vertical lines in
Figs. 5(b), 5(c) 6(a), and 6(b) clearly show these correlations.
Nevertheless, in this case exceptions from this rule can be
observed: indeed, as shown in Figs. 6(a) and 6(b), one can
distinguish small periods of time corresponding to the cases
(1) and (3) analyzed in Table I. Figures 6(a), 6(b) and 6(f) also
show that, as previously, when entanglement increases and the
condition d(PgPe )/dt > 0 is fulfilled, the integral

∫
f (t )dt is

significantly increased.
Figures 6(c)–6(e) show time evolutions of the Bloch vol-

ume reported at an initial time t0, V (t )/V (t0), corresponding
to three periods belonging to the time interval [50,250] ps
of the pulse action, and relative to different initial times t0:
(c) beginning of the pulse [50–100] ps (t0 = 62, t0 = 76 ps);
(d) the period of constant strength [100–195] ps (t0 = 100 ps);
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FIG. 7. Results for the coupling strengths WL = 3.29 cm−1 (thin
line), 2WL (dashed line), and 4WL (thick line) between the elec-
tronic states g = a 3�+

u and e = 1g of Cs2 (Fig. 1). The dashed
vertical line at t = 250 ps indicates the end of the pulse. (a) Pulse
envelope e(t ). (b) Time evolution of the linear entropy L(t ) of the
electronic-vibrational entanglement. (c) Time evolution of the elec-
tronic coherence Cl1 (t )/2 = |〈ψg (t )|ψe(t )〉|. (d) Non-Markovianity
measure f (t ).

and (e) end of the pulse, [195–250] ps (t0 = 195 ps). From the
theoretical analysis exposed in Sec. III D, it is expected that
the Bloch volume will increase, witnessing non-Markovianity,
only if d(PgPe )/dt > 0. This is exactly what we observe
in Figs. 6(a)–6(f): Increase of the Bloch volume is corre-
lated to increase of entanglement, the condition of enhanced
non-Markovian behavior d(PgPe )/dt > 0, and the increase of
the integral

∫
f (t )dt .

Non-Markovianity evolution after pulse is shown in
Fig. 5(f). The function f (t ) evolves in the manner previously
analyzed, with pronounced maxima corresponding to the elec-
tronic coherence |〈ψg|ψe〉| minima.

The results obtained for three strengths of the coupling
(WL = 3.29 cm−1, 2WL, and 4WL) and the same pulse enve-
lope are compared in Fig. 7, which exposes the linear entropy
L(t ) of the electronic-vibrational entanglement, the electronic
coherence |〈ψg|ψe〉|, and the non-Markovianity measure f (t ).
The total amount of non-Markovianity F (ti , tf ) = ∫ tf

ti
f (t )dt

over the time interval [ti , tf ] was calculated for several
time intervals, corresponding to the beginning of the pulse
([50,100] ps), the period of constant coupling ([100,195] ps),
the end of the pulse ([195,250] ps), and after pulse
([250,495] ps). The values given in the Table II show that the
total amount of non-Markovianity corresponding to the pulse
action, F (50,250 ps), decreases with the increase of the cou-
pling WL, but, after pulse, the values F (250,495 ps) calculated
for the three strengths of the coupling attain similar values.

Therefore, we find that during the pulse action, it is the
weaker pulse which stimulates the bigger amount of non-
Markovianity. This behavior is related to the Rabi periods of

TABLE II. The total amount of non-Markovianity over the time
interval [ti , tf ], F (ti , tf ) = ∫ tf

ti
f (t )dt , calculated for various time

intervals [during the pulse with the envelope e(t ) shown in Fig. 7(a)
and after pulse], and for the strengths WL = 3.29 cm−1, 2WL, and
4WL of the coupling.

F (50,100 F (100,195 F (195,250 F (50,250 F (250,495
ps) ps) ps) ps) ps)

WL 57.6 74.6 98.3 187.3 53.2
2WL 50.3 20.7 31.6 102.6 59.7
4WL 36.8 16.1 22.3 75.2 58.9

the population exchange between electronic channels, with
a weak coupling enabling a more powerful presence of the
vibrational environment. Indeed, a strong coupling induces
a stronger electronic coherence [see Fig. 7(c)], favoring the
transfer of population between channels (localized around
the crossing point of the electronic potentials) over the vi-
brational motion in the molecular potentials. A fast transfer
of population corresponding to a strong coupling (i.e., small
Rabi period) has the effect of “locking” the population in
the transfer zone, inhibiting vibration. By contrast, a slower
transfer of population, produced by a weak pulse, gives wave
packets more time to explore the electronic potentials, increas-
ing gradually the entanglement and enhancing non-Markovian
behavior.

VII. CONCLUSIONS

We have examined non-Markovian behavior in the reduced
time evolution of the electronic subsystem of a laser-driven
molecule, as an open quantum system entangled with the
vibrational environment.

Non-Markovianity was characterized using the canonical
measures defined in Ref. [16] as functions of the negative
decoherence rates appearing in the corresponding canonical
master equation. The canonical measures provide a com-
plete description of non-Markovian behavior, being sensitive
to individual decoherence rates when several decoherence
channels are present. The Bloch volume of accessible states
was also considered as a non-Markovianity witness, even
if it does not always detect non-Markovian behavior, being
only sensitive to the sum of the decoherence rates [16].
The use of different non-Markovianity measures helped to
highlight the enhanced non-Markovian behavior, detected by
both measures and generally accompanied by the increase of
the electronic-vibrational entanglement.

For a laser-driven molecule described in a bipartite Hilbert
space H = Hel

⊗
Hvib with dimension 2 × Nv , we have de-

rived the canonical form of the electronic master equation,
deducing the canonical decoherence rates as functions of
the electronic populations Pg (t ), Pe(t ) and of the electronic
coherence [Eqs. (39) and (40)]. Subsequently, the canonical
measures of non-Markovianity and the Bloch volume of dy-
namically accessible states were obtained. We found that one
of the decoherence rates is always negative, accounting for the
inherent non-Markovian character of the electronic evolution.
Moreover, a second decoherence rate becomes negative if the
condition d(PgPe )/dt > 0 is fulfilled, leading to enhanced
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non-Markovian behavior characterized by two negative deco-
herence rates and a negative sum of the decoherence rates;
consequently, the Bloch volume of accessible states increases,
detecting enhanced non-Markovian behavior. Section III D
contains a detailed examination of the canonical measures in
relation to the time evolution of the electronic populations and
electronic coherence.

We showed that in the case of a molecule with constant
electronic populations, the non-Markovianity measure f (t )
can be seen as a measure of the temporal behavior of the
electronic coherence (which determines the evolution of L(t ),
the linear entropy of entanglement), having minima when
the electronic coherence has maxima [L(t ) minima], and
attaining maximum values whenever the overlap of the vi-
brational packets tends to zero [L(t ) maxima]. This signifies
that vibrational motion which explore the electronic potentials
diminishing nuclear overlap (i.e., increasing the linear entropy
of entanglement) brings a memory character to dynamics.

The condition d(PgPe )/dt > 0 was used as an instru-
ment to explore the meaning of enhanced non-Markovian
behavior in the evolution of the electronic subsystem, observ-
ing its connections to the dynamics of electronic-vibrational
entanglement and electronic coherence in molecule. We have
employed analytical formulas to analyze connections between
d(PgPe )/dt , the time behavior of linear entropy of entan-
glement (dL/dt), and behaviors of speakable and unspeak-
able [61] electronic coherences, measured by l1 norm Cl1 (t )
and skew information IS (t ), respectively. We have also dis-
cussed the possibility of relating the conditions d(PgPe )/dt >

0, dL/dt > 0, or dCl1/dt > 0 to a flow of information from
the vibrational environment to the electronic open subsys-
tem. In this respect, in the appendix we have examined the
conditions determining the growth of distinguishability [10]
between two electronic states. It appears that the condition
d(PgPe )/dt > 0 of enhanced non-Markovian behavior partic-
ipates in the increase of the trace distance D(ρ̂el (t0), ρ̂el (t ))
and is closely related to the condition of increase of entangle-
ment, dL(t )/dt > 0.

In the last part of the paper, we have analyzed non-
Markovian behavior in the reduced evolution of the elec-
tronic states g = a 3�+

u (6s, 6s) and e = 1g (6s, 6p3/2) of the
Cs2 molecule, coupled by a laser pulse. The motion of the
vibrational wave packets in the electronic molecular poten-
tials coupled by the laser pulse was simulated numerically
for several strengths of the pulse. The non-Markovian be-
havior, characterized using the canonical measures and the
Bloch volume, was analyzed in relation to dynamics of
the electronic-vibrational entanglement and electronic coher-
ence in the molecule. We found that increase of electronic-
vibrational entanglement [dL(t )/dt > 0, dSvN (t )/dt > 0] is
correlated with the positivity of the non-Markovianity fac-
tor [d(PgPe )/dt > 0], indicating enhanced non-Markovian
behavior, with the increase of the Bloch volume, and with
the growth of the total amount of non-Markovianity over an
interval [t1, t2], given by the integral F (t1, t2) = ∫ t2

t1
f (t )dt ,

where f (t ) is the canonical measure of non-Markovianity,
defined from the appearance of negative decoherence rates in
the canonical master equation.

We have shown that the total amount of non-Markovianity
corresponding to the pulse action decreases with the increase

of the coupling. Nevertheless, the values F (t1, t2) correspond-
ing to evolutions after pulses are similar, probably because
analogous domains of vibrational levels are populated, and
therefore a similar vibrational dynamics is activated. The fact
that during the pulse action it is the weaker pulse which
stimulates the bigger amount of non-Markovianity has to
be related to the Rabi periods characterizing the exchange
of population between electronic channels and influencing
vibration in the electronic potentials. A weak pulse gives more
time to vibrational wave packets to explore the electronic
potentials, leading to entanglement increase and enhancement
of non-Markovianity.

In conclusion, in a molecule (here with two populated
electronic states), the evolution of the electronic subsys-
tem has an inherent non-Markovian character due to the
dynamics of the vibrational environment, even if there is
no exchange of population between electronic channels but
only vibrational motion in the electronic potentials. Enhanced
non-Markovian behavior of the electronic dynamics arises if
there is a coupling between electronic channels such that the
evolution of electronic populations obeys d(PgPe )/dt > 0,
and it appears as a dynamical property associated with the
increase of the electronic-vibrational entanglement. Several
non-Markovianity regimes, determined by the sign of the non-
Markovianity factor d(PgPe )/dt , were analyzed in Secs. III D
and IV.

A key motivation shaping the present work was to exam-
ine non-Markovian behavior of the electronic evolution in
relation to the dynamics of the quantum correlations in the
molecular system. In this sense, observation of the correlation
phenomena accompanying enhancement of non-Markovianity
reveals appropriate ways to understand non-Markovian be-
havior. Therefore, if the non-Markovian character of the
electronic dynamics cannot be separated from the presence
of the electronic coherence, the most significant relation is
between non-Markovianity and entanglement dynamics: We
have shown that non-Markovianity of the electronic evolution
is essentially a dynamical property generated during the in-
crease of electronic-vibrational entanglement.
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APPENDIX: DISTINGUISHABILITY BETWEEN TWO
ELECTRONIC STATES, ρ̂el (t0) AND ρ̂el (t )

Distinguishability between two electronic states ρ̂el (t0) and
ρ̂el (t ) can be analyzed using as measure the trace distance
D(ρ̂el (t0), ρ̂el (t )) between the two states, defined as [2,10]

D(ρ̂el (t0), ρ̂el (t )) = 1
2 Trel|(ρ̂el (t0) − ρ̂el (t ))|. (A1)

Taking into account the matrix of the electronic density given
by Eq. (24), one obtains [2]

D(ρ̂el (t0), ρ̂el (t )) =
√

[Pg (t0) − Pg (t )]2 + |C(t0) − C(t )|2.
(A2)
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In Eq. (A2), Pg (t0) − Pg (t ) is the difference of the populations
between t0 and t , and C(t0) − C(t ) is the difference between
the complex nondiagonal elements C(t ) = 〈ψg (t )|ψe(t )〉 =
|C(t )|exp[iα(t )] of the electronic density matrix (24) at t0
and t . The l1 norm measure of the electronic coherence is
Cl1 (ρ̂el ) = 2|C(t )|.

We look for the conditions determining an increase
of the trace distance, i.e., a positive rate of change
dD(ρ̂el (t0), ρ̂el (t ))/dt > 0. From Eq. (A2), one ob-
tains the following equation giving the rate of change of
the trace distance, dD(ρ̂el (t0), ρ̂el (t ))/dt :

D(ρ̂el (t0), ρ̂el (t ))
dD(ρ̂el (t0), ρ̂el (t ))

dt

= [Pg (t ) − Pg (t0)]
dPg (t )

dt
+ |C(t )|d|C(t )|

dt

− |C(t0)|d|C(t )|
dt

cos[α(t0) − α(t )]

− |C(t0)||C(t )|sin[α(t0) − α(t )]
dα(t )

dt
. (A3)

As could be expected, Eq. (A3) shows that
dD(ρ̂el (t0), ρ̂el (t ))/dt is an oscillating function, which
becomes positive or negative depending on the evolution at
the instant t and on the initial state at t0. Nevertheless, some
interesting observations can be made.

Let us consider the right-hand side of Eq. (A3). The
first term becomes positive, [Pg (t ) − Pg (t0)]dPg (t )/dt > 0,
if sgn(dPg/dt ) = sgn[Pg (t ) − Pg (t0)], i.e., on those intervals
[t0, t] of the time evolution on which a smaller popula-
tion at t0 is increased at t [Pg (t0) < Pg (t ), dPg (t )/dt > 0]

or a larger population at t0 is diminished at t [Pg (t0) >

Pg (t ), dPg (t )/dt < 0]. In Sec. III D, we have shown that the
condition (Pg − Pe )dPg/dt < 0 of enhanced non-Markovian
behavior is fulfilled when the transfer of population between
the two electronic channels is such as the larger population
decreases (i.e., the smaller electronic population increases).
Moreover, this is also the condition leading to the increase
of the electronic-vibrational entanglement. Therefore, our
observation is that on time intervals [t0, t] when the con-
dition (Pg − Pe )dPg/dt < 0 [d(PgPe )/dt > 0] is fulfilled,
also [Pg (t ) − Pg (t0)]dPg (t )/dt > 0.

The second term on the right-hand side of Eq. (A3) is equal
to (Cl1dCl1/dt )/4, and it becomes positive if the electronic
coherence increases, dCl1/dt > 0.

The last two terms on the right-hand side of Eq. (A3)
depend on the complex coherences C(t0) and C(t ) and can
be characterized as easily oscillating terms, whose signs are
rapidly changing.

Let us suppose that the electronic state ρ̂el (t0) is a state
with electronic coherence |C(t0)| = 0. Therefore, the last
two terms become 0, and Eq. (A3) shows that the trace
distance between ρ̂el (t0) and another state ρ̂el (t ) will in-
crease [dD(ρ̂el (t0), ρ̂el (t ))/dt > 0] in a interval [t0, t] in
which the conditions d(PgPe )/dt > 0 and dCl1/dt > 0 are
fulfilled. In other words, distinguishability between ρ̂el (t ) and
a state ρ̂el (t0) with coherence Cl1 (t0) = 0 is increased when
d(PgPe )/dt > 0 and dCl1/dt > 0. Breuer et al. [10] interpret
the growth of distinguishability between two states of the open
system as the signature of a reversed flow of information from
the environment back to the open system, an essential trait of
non-Markovian behavior.
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