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Photodetachment of the H− ion in a quantum well with one expanding wall
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The standard closed orbit theory is extended to investigate the photodetachment of a negative ion near a
moving wall. The photodetachment cross section of the H− ion in a quantum well with one expanding wall
is specifically put forward. In contrast to the photodetachment of the negative ion in a static quantum well,
the returning kinetic energy of the detached electron is different from its initial value after collision with the
moving wall, therefore an additional modulation factor appears in the oscillating cross section, which depends
on the electron’s initial outgoing and returning momentum. Four different types of closed orbits are found for the
detached electron in a quantum well with one expanding wall, and their connections with the oscillating cross
section are analyzed quantitatively. The calculation results suggest that the photodetachment cross section of this
system depends on the speed of the moving wall and the initial distances from the ion to the walls sensitively. The
method used in this paper is universal and can be extended to study the photodetachment of the nonhydrogenic
negative ion near a moving wall, whether the wall is moving with constant velocity or oscillatory. The results
provide insight into the behavior of photodetachment dynamics of the negative ion in the presence of a moving
boundary and may have potential interest for future experimental researches.
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I. INTRODUCTION

Both experiments and theories have shown that the surface
can affect the photodetachment process of negative ions [1–3].
In 2006, Yang et al. first studied the photodetachment of the
H− ion near an elastic surface on the basis of semiclassical
closed orbit theory [4]. It is found that the photodetachment
cross section of the H− ion near a surface is oscillatory when
the laser light polarization is perpendicular to the surface. The
oscillations in the cross section can be attributed to the inter-
ference effect between the returning electron waves reflected
by the surface and the source of the waves localized around the
bound state of H−, which was similar to the photodetachment
of the H− ion in a static electric field [5]. Afaq and Du put
forward a theoretical imaging method to investigate the same
system [6], and found the oscillations in the photodetachment
cross section correspond to the case given by Yang et al. [4].
Further work for the photodetachment of the H− ion near an
inelastic surface has been reported subsequently [7]. Hansen
et al. in 2006 [8] and Novick et al. in 2012 [9,10] investigated
the escape of a quantum particle from an open vase-shaped
cavity. Since the classical trajectory of the particle in a cavity
is similar to that of the photodetached electron in a cavity,
the investigation of the photodetachment dynamics of the H−
ion near a surface has been extended to a quantum well or a
microcavity. For example, Yang et al. [11] and Zhao et al. [12]
used both the closed orbit theory and the quantum mechanical
method to study the photodetachment of the H− ion in a
quantum well. Zhao and Du investigated the photodetachment
of the H− ion in a wedge-shaped cavity [13]. Later, the
photodetachment of the H− ion inside a square, circular, or
cubic microcavity was studied in great detail [14–17].
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In these early studies, the surface in the quantum well or in
the microcavity is static, and the detached electron’s classical
motion is relatively simple. The system is time independent.
So, what will happen if the photodetachment process of the
negative ion takes place near a moving surface? For the
moving boundary problem, the photodetachment process is
time dependent and its theoretical treatment becomes compli-
cated and interesting. Until now, no reports have been given.
Quantum systems with time-dependent boundary conditions
are delicate to handle. Even the simplest system, such as
a particle in a box with infinitely high but moving walls,
remains the object of ongoing investigations. However, some
works related to the moving boundary problem have been
reported for several decades. In 1949, Fermi proposed a
classical model for cosmic ray production with a particle
moving in the inhomogeneous magnetic field, which was later
called a Fermi accelerator [18]. A number of articles fol-
lowed, studying the moving boundary problem from different
aspects. For instance, Ulam introduced the Fermi accelerator
with a ball bouncing back and forth between two oscillating
walls [19]. A quantum mechanical treatment of a particle in
an infinite square-well potential with a moving wall was given
by Dosecher and Rice [20], who analyzed the case in which
one of the walls is static while the other moves with a linear
velocity. Furthermore, da Luz and Cheng used the semiclassi-
cal approximation to evaluate the propagators for the moving
hard-wall potentials [21]. The time-dependent wave functions
derived from their propagators are in agreement with those
of the corresponding Schrödinger equation, which verifies the
correctness of the semiclassical method. Di Martino et al.
studied the quantum particle in a box with two moving walls
[22]. They recast this problem into the equivalent one of
a quantum particle in a fixed box the dynamics of which
is governed by an appropriate time-dependent Schrödinger
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operator. Very recently, Matzkin investigated the issue of a
single-particle nonlocality in a quantum system subjected to
time-dependent boundary conditions [23]. From the above
studies, one can find that the moving surface problem looks
simple, but it can cause some interesting phenomena in reality.

In this paper, we investigate the photodetachment of the H−
ion in a quantum well with one wall moving with a constant
velocity based on the semiclassical closed orbit theory. First,
we discover all the closed orbits of the detached electron in the
quantum well. Then we construct the electron wave function
according to the semiclassical approximation. Finally, we put
forward an analytical formula for the photodetachment cross
section of this system, which can be written as a sum of a
smooth background term plus many oscillating terms. The
calculation results suggest that the photodetachment cross
section of this system depends on the speed of the moving wall
and the initial distances from the ion to the walls sensitively.
In contrast to the photodetachment of the H− ion in a quantum
well with two fixed walls [11], due to the collision of the
detached electron with the moving wall, some energy of the
electron will be lost, which makes the returning momentum
of the detached electron less than its initial value; as a conse-
quence, the interference effect between the returning electron
wave with the initial outgoing electron wave gets weakened.
If the moving wall moves very fast, its effect on the pho-
todetachment cross section vanishes. The semiclassical closed
orbit theory used in this paper has many advantages: one is
reflected in the construction of the wave function. We use the
semiclassical approximation to construct the electron wave
function instead of solving the time-dependent Schrödinger
equation. It is well known that the Schrödinger equation
is easy to formulate but its result is difficult to evaluate.
However, in the semiclassical approximation, only the closed
orbits contribute to the wave function and construction of the
wave function becomes much simpler. Another advantage lies
in its clear physical description and wide application, which
can be extended to study the photodetachment of any nonhy-
drogenic negative ion near a moving surface for more general
motions, such as an oscillatory motion. Therefore, our paper
provides a very visual method to study the photodetachment
dynamics of the negative ion near a moving boundary.

This paper is organized as follows: In Sec. II, we show
a schematic representation of the theoretical model for the
photodetachment of the H− ion in a quantum well with
one expanding wall and discuss the classical motion of the
photodetached electron. The general formula for calculating
the photodetachment cross section of this system has been put
forward in Sec. III. In Sec. IV, we calculate the photodetach-
ment cross section of H− in a quantum well with one wall
moving with a constant velocity. Some conclusions of this
paper are presented in Sec. V. Atomic units are used in this
paper unless indicated otherwise.

A. Theoretical model and the classical motion
of the detached electron

Figure 1 shows a schematic representation of the theo-
retical model for the photodetachment of the H− ion in a
quantum well. The solid dark point at the origin denotes the
negative-ion source. The quantum well is composed of two
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FIG. 1. Schematic representation of the theoretical model for
the photodetachment of the H− ion in a quantum well with one
expanding wall.

parallel elastic walls. The moving wall is denoted by number
“1” and the fixed wall is number “2.” At first, the moving wall
is located perpendicular to the −z axis at the z = −d10 plane,
then it moves at a constant speed v along the −z axis. At
time t , the distance from the moving wall to the origin is d:
d = d10 + vt . The second wall is fixed at the z = d20 plane.

Following the physical picture description of the closed
orbit theory, when a laser light is applied to the negative ion,
it may absorb a photon. As the photon energy is larger than
the binding energy of the negative ion, the bound electron will
be detached. The photodetached electron can be considered
as a free particle and moves freely in the quantum well,
with the electron trajectories along straight lines inside the
quantum well until they are reflected by the surfaces of the
wall. After several reflections, the electron may return to the
negative-ion source to form a closed orbit. The interference
effect between the returning electron waves traveling along
the closed orbits with the initial outgoing electron waves in-
duces the oscillatory structures in the photodetachment cross
section. In the quantum well, the detached electron has an
infinite number of closed orbits which start from the origin
and finally return to it after some time. In order to find out
the closed orbit of the detached electron, we adopt a similar
method as that given by da Luz and Cheng in Ref. [21].
The closed orbits can be classified by specifying which walls
(the fixed or the moving) the particle collides with on the
first and last collisions. We use two parameters n and m to
distinguish different closed orbits, which are non-negative
integers (n = 0, 1, 2 . . .; m = 0,1,2 …), where n denotes the
number of collisions with the moving wall and m corresponds
to the number of collisions with the fixed wall. According to
the collision theory, after each collision with the moving wall,
the speed of the detached electron will reduce 2v. Assuming
the initial momentum of the detached electron is k0, then after
n collisions with the moving wall the returning momentum of
the detached electron becomes kret = k0 − 2nv. If the initial
momentum of the detached electron k0 � 2nv, it cannot be
bounced back by the moving wall to the origin to form a
closed orbit. The closed orbit for the detached electron in the
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(a)m=1,n=0      (b) m=2,n=1        (c) m=3,n=2         (d)m=4,n=3  

FIG. 2. The first type of closed orbit for the detached electron in
the quantum well with one moving wall.

quantum well with one expanding wall can be classified into
four types.

(1) Both the first and the last collisions with the fixed
wall. For this kind of closed orbit, m = n + 1. The initial
outgoing angle of the detached electron is θi = 0, while the
returning angle is θret = π . Some closed orbits belonging to
this type are given in Fig. 2. Figure 2(a) shows the electron
goes up along the +z axis after collision with the fixed
wall once and returns back to the origin. This orbit does
not collide with the moving wall, so we denote it as the
(1,0) closed orbit. Figure 2(b) shows the (2,1) closed orbit,
which travels along the +z direction, after being reflected
by the fixed wall once, then travels toward the moving wall.
If the initial speed of the electron is larger than the speed
of the moving surface, the electron will hit the moving
wall after a period of time. After being bounced back by
the moving wall, it will continue traveling along the +z axis,
then hit the fixed wall for the second time and bounce back.
Finally, it returns to the origin to form a closed orbit. Figure
2(c) shows the (3,2) closed orbit, which collides with the fixed
wall three times and the moving wall twice before it returns to
the origin. Figure 2(d) corresponds to the (4,3) closed orbit.

(2) Both the first and the last collisions with the moving
wall. For this kind of closed orbit, m = n − 1. The initial
outgoing angle of the detached electron is θi = π , while the
returning angle is θret = 0. The shape of this kind of closed
orbit can be easily inferred from Fig. 2.

(3) The first collision with the fixed wall and the last
collision with the moving wall. For this kind of closed orbit,
m = n. Both the initial outgoing angle and the returning angle
of the detached electron are equal to 0: θret = θi = 0.

(4) The first collision with the moving wall and the last
collision with the fixed wall. This kind of closed orbit is
similar to the third type, but in reverse order. Both the ini-
tial outgoing angle and the returning angle of the detached
electron are equal to π : θret = θi = π .

The period of the above four types of closed orbit can be
written as

Tj = 2nd10 + 2md20

k0 − 2nv
. (1)

Here j = 1, 2, 3, 4 denotes the first, second, third, and
fourth type of closed orbit, respectively.

The corresponding classical action of each closed orbit can
be calculated using the formula Sj = ∫ Tj

0 pjdqj. For the above

four types of closed orbits, the action can be described as
follows:

S1 = 2k0(nd10 + md20), (2)

S2 = 2k0(nd10 + md20), (3)

S3 = 2k0n(d10 + d20) + 4mvd20, (4)

S4 = 2k0n(d10 + d20) − 4mvd20. (5)

II. DERIVATION OF THE PHOTODETACHMENT
CROSS SECTION

As in the previous studies, the H− ion can be considered as
a one-electron system. Let the initial bound state of H− be ψi :
ψi = B exp(−kbr )/r . Here, B = 0.31552 is a normalization
constant. kb is related to the binding energy Eb of the H−
ion: kb = √

2Eb, Eb = 0.754 eV. Assume the laser light used
for the photodetachment is polarized along the z axis. After
photodetachment, the outgoing electron wave in the quantum
well ψd satisfies the following Schrödinger equation [24]:

(E − H )ψd = Dψi, (6)

where E is the initial kinetic energy of the detached electron,
E = k2

0/2, and k0 is the initial momentum. H is the Hamil-
tonian governing the electron motion in the quantum well:
H = p2

2 + Vb(r ) + V (r ). Vb(r ) is a short-ranged potential
between the neutral atom and the bound electron, which can
be neglected after the photodetachment. V (r ) denotes the
potential in the quantum well:

V (r ) =
{

0 −d � z � d20

+∞ z < −dorz > d20
. (7)

D is the dipole operator, for z-polarized laser light, D = z.
On the basis of the closed orbit theory, the photodetach-

ment cross section of the H− ion in the quantum well can be
written as [16]

σ = σ0 + σosc. (8)

Here,σ0 is the smooth background term in the photodetach-
ment cross section without the quantum well:

σ0 = 16
√

2π2B2E3/2

3c(E + Eb )3 .

σosc is an oscillatory term, which comes from the returning
electron wave overlapping with the outgoing source wave:

σosc = −4πEp

c
Im〈Dψi |ψret〉. (9)

In the above equation, Ep is the photon energy: Ep =
E + Eb. ψret is the returning electron wave function traveling
along the closed orbit, which can be obtained by semiclassical
approach. Drawing a small spherical surface centered at the
origin with radius R ≈ 5.0a0, the initial outgoing wave on this
sphere surface is [24]

ψout (R, θ, φ) = C(k0)Ylm(θ, φ)
eik0R

R
. (10)

C(k0) is an energy-dependent factor, and Ylm(θ, φ) is the
spherical harmonic function. For the H− ion, the detached
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electron wave source is a p wave, and then l = 1, m = 0.

C(k0) = 4Bk0i(
k2
b + k2

0

)2

√
4π

3
.

The phase and amplitude will be changed as the outgoing
wave propagates out from the surface. In the semiclassical
approximation, the electron wave function in the quantum
well can be written as

ψSC(r, θ, φ) =
∑

j

ψout (R, θ, φ)Aje
i[Sj −μj ·π/2], (11)

where the sum includes all of the j th closed orbit. Aj is the
amplitude of the wave function, Aj = | Jj (ρ,z,0)

Jj (ρ,z,t ) |1/2. J (ρ, z, t )

is the Jacobian: J (ρ, z, t ) = ρ(t ) ∂ (ρ,z)
∂ (t,θ ) . Due to the free motion

of the electron in the quantum well, we get

Aj = R

R + k0Tj

∣∣∣∣ k0

k
j
ret

∣∣∣∣
1/2

. (12)

Sj is the action along the closed orbit, which is given in
Eqs. (2)–(5). μj is the Maslov index of the closed orbit, which
equals to the number of collisions of the electron with two
walls: μj = 2(n + m).

When the electron wave is bounced back by the walls of
the quantum well to the negative-ion source along the closed
orbit, the returning wave can be approximated by a sum of
plane waves travelling along the z axis:

ψret =
∑

j

NjC(k0)Ylm(θ, φ)e±ik
j
retz, (13)

where Nj is a matching factor. By matching Eqs. (13) and (11)
and letting r → R, we get

Nj = g0
Aj

R
ei(Sj −μj ·π/2). (14)

Here g0 is a sign factor. For a closed orbit with opposite
outgoing and returning directions, such as the first and second
type of closed orbits, g0 = −1, while for the closed orbit with
the same outgoing and returning directions, such as the third
and fourth type of closed orbits, g0 = +1.

Substituting the above equations into Eq. (9) and carrying
out the overlap integral, we obtain the oscillatory part σosc in
the photodetachment cross section:

σosc =
∑

j

3g0C
∗(k0)C(kret )

2πEp

c
× Aj

R
sin(Sj − μjπ/2)

= σ0

∑
j

3g0
C(kret )

C(k0)

Aj

k0R
sin(Sj − μjπ/2). (15)

Finally, the total photodetachment cross section of the H−
ion in the quantum well with one expanding wall can be
written as

σ = σ0 + σret = σ0H (k0, v), (16)

where H (k0, v) is a modulation function induced by the
quantum well:

H (k0, v) = 1 +
∑

j

3g0
C(kret )

C(k0)

Aj

k0R
sin(Sj − μjπ/2). (17)

From Eqs. (16) and (17), we find the photodetachment
cross section consists of a smooth background term plus many
sinusoidal oscillating terms, which is similar to the photode-
tachment of H− in a static quantum well [15]. However, there
are some differences in comparison with the photodetachment
of the H− ion in a static quantum well.

(i) In the static quantum well, the detached electron can
always collide with the down wall and guarantee one closed
orbit; nevertheless, for the current moving wall, no closed
orbit exists if the initial momentum of the detached electron
k0 � 2nv.

(ii) The detached electron’s kinetic energy is conserved
if it is bounced back to the ion source by a static wall. In
contrast, when the electron is returned back by a moving wall,
its returning kinetic energy is different from its initial value.
Consequently, an extra coefficient related to the electron’s
initial and returning momentum along the closed orbit appears
in the oscillating cross section.

(iii) Both the amplitude A and action S in the oscillating
cross section are different from the case of the static quantum
well.

III. CALCULATIONS AND DISCUSSIONS

Since the photodetachment cross section of H− in the
quantum well with one moving wall is related to positions
of the two walls and the speed of the moving wall, in the
following calculation, we consider the case with the fixed wall
localized at z2 = 100 a.u.

In Fig. 3, we show how the pattern of the photodetachment
cross section varies with the electron energy and the speed of
the moving wall. Suppose the initial distance from the ion to
the moving wall is d10 = 200 a.u. It is found with the increase
of the electron energy that oscillatory structures appear in the
photodetachment cross section. As the moving wall moves
very slowly, saw-tooth structures appear in the photodetach-
ment cross section, which is similar to the photodetachment
in the quantum well with fixed walls [11]. However, when
the moving wall moves very fast, the saw-tooth structures in
the photodetachment cross section nearly disappear, and the
oscillatory structure becomes dampened.
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FIG. 3. Variation of the photodetachment cross section of the
H− ion in the quantum well with the speed of the moving wall
and the electron energy. Assuming the fixed wall is localized at
z2 = 100 a.u., the initial distance from the ion to the moving wall
is d10 = 200 a.u.
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FIG. 4. Dependence of the photodetachment cross section of H−

on the moving speed of the wall in the quantum well. The initial
distance between H− and the wall is fixed to be d10 = 200 a.u.

The red line is the photodetachment cross section of H− in a static
quantum well and the black line is the case with one expanding wall.
The speed of the moving wall is as follows: (a) v = 0.0001 a.u.,
(b) v = 0.001 a.u., (c) v = 0.01 a.u., and (d) v = 0.1 a.u.

In order to show the influence of the moving wall in the
quantum well on the photodetachment cross section of the
H− ion clearly, we plot the photodetachment cross section for
different speed of the moving wall. We assume the moving
wall is localized at z = −200 a.u. The result is shown in
Fig. 4. The red line is the photodetachment cross section
of the H− ion in the quantum well with two static walls,
which is given for comparison. We find the photodetach-
ment cross section exhibits saw-tooth oscillatory structures,
which is caused by the interference of the returning electron
wave with the initial outgoing wave. As the down wall in
the quantum well is moving, the oscillatory pattern in the
photodetachment cross section will change. The black line
in each plot denotes the photodetachment cross section with
one expanding wall. Figure 4(a) shows the photodetachment
cross section with the moving wall moves very slowly, v =
0.0001 a.u. Under this condition, the effect of the moving
wall on the cross section is not obvious. As we increase
the speed of the moving wall, the moving wall effect on
the photodetachment cross section becomes apparent. Figure
4(b) shows the photodetachment cross section with the speed
of the moving wall v = 0.001 a.u. The oscillatory structures
in the cross section become irregular. As we further increase
the moving speed, v = 0.01 a.u., the saw-tooth oscillatory
structures nearly disappear, and the oscillating cross section
becomes dampened, as we show in Fig. 4(c). When the
moving wall moves very fast, v = 0.1 a.u., the influence of
this wall on the photodetachment cross section can be totally
omitted [Fig. 4(d)], and the photodetachment cross section
approaches to the case near one elastic surface [4], which can
be considered as a smooth background term plus a sinusoidal
oscillating term. The reason can be analyzed on the basis of
the classical motion of the detached electron in the quantum
well. As we show in Sec. II, if the initial momentum of the
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FIG. 5. Dependence of the photodetachment cross section of the
H− ion on the initial position d10 of the moving wall in the quantum
well. The moving speed of the wall is fixed to v = 0.002 a.u. The
initial distance between H− and the moving wall is (a) d10 = 50 a.u.,
(b) d10 = 500 a.u., (c) d10 = 1000 a.u., and (d) d10 = 2000 a.u.

detached electron k0 > 2nv, it can be bounced back by the
moving wall to the origin to form a closed orbit. In Fig. 4, the
initial momentum of the detached electron 0 < k0 < 0.2 a.u.;
as the moving speed of the wall v = 0.1 a.u., the detached
electron cannot be bounced back by the moving wall to the
origin, therefore all the other closed orbits disappear except
the one shown in Fig. 2(a). Under this condition, the effect
of the moving wall on the photodetachment cross section
disappears and the cross section is similar to the case near
one elastic surface.

Next, we let the wall move at a given speed v = 0.002 a.u.,
then we show how the pattern of the photodetachment cross
section varies with the initial distance from the moving wall
to the origin. The results are given in Fig. 5. It is found that,
as the moving wall is very close to the origin, its influence on
the photodetachment cross section is significant. For example,
in Fig. 5(a), the initial distance from the moving wall to
the origin is d20 = 50 a.u. After the electron is emitted from
the origin, it will hit the fixed and the moving walls in a
short period of time and return back to the origin to form a
closed orbit. The interference between the returning electron
waves with the outgoing waves traveling along the closed
orbits causes the oscillatory structure in the cross section. Four
types of closed orbits described in Sec. II all contribute to the
photodetachment cross section, thus the oscillating amplitude
in the cross section is very large. With the increase of the
initial distance from the ion to the moving wall, the oscillating
amplitude in the cross section becomes decreased, but the
oscillating frequency gets increased, as shown in Figs. 5(b)
and 5(c). If the initial distance from the moving surface to
the origin is very large, d10 � 2000 a.u., the contribution of
the closed orbit to the photodetachment cross section caused
by the collision with the moving wall becomes dampened.
Only the closed orbit shown in Fig. 2(a) has a great influence
on the photodetachment cross section. As a consequence,
the oscillatory structure caused by the moving wall nearly
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FIG. 6. Connection of each kind of closed orbit to the photode-
tachment cross section in the quantum well with one moving wall.
The wall moves with a speed v = 0.002 a.u. The initial distance
from the moving wall to the origin is d20 = 50 a.u. (a) The total
oscillating cross section induced by all the closed orbits. (b, c, d,
e)The oscillating cross section induced by the first, second, third, and
fourth type of closed orbit, respectively.

disappears, and the cross section approaches to the case near
one elastic surface [4].

Finally, in order to see the contribution of each kind of
closed orbit to the photodetachment cross section, we cal-
culate the oscillating cross section connected with the four
types of closed orbits. The results are given in Fig. 6. The
moving wall moves with a speed v = 0.002 a.u., and the
initial distance from the moving wall to the origin is d20 =
50 a.u. Figure 6(a) is the total oscillating cross section induced
by all the closed orbits. Figures 6(b)–6(e) show some typical
oscillatory patterns caused by the four kinds of the detached
electron’s closed orbits, respectively. We can see that the
contribution of the second kind of closed orbit to the cross
section is significant, followed by the first kind of closed orbit.
These two kinds of closed orbits make a strong modulation for
the oscillating cross section. The oscillating amplitude in the
cross section is relatively large and the oscillatory structure is
irregular, as we can see from Figs. 6(b) and 6(c). However,
the oscillating amplitude in the cross section caused by the
third and fourth types of closed orbit is relatively small, but its
oscillating frequency is relatively large. They only give a weak
modulation for the oscillating pattern in the cross section. In
addition, the oscillatory structures in the cross section induced
by these closed orbits are regular.

IV. CONCLUSIONS

In summary, we have investigated the photodetachment
dynamics of negative ions in the quantum well with one

expanding wall for the first time. Four different types of
closed orbits have been found for the detached electron in the
quantum well, which depend on the order of the collisions
with the fixed wall or the moving wall. An analytical formula
for the photodetachment cross section of the H− ion has been
put forward based on the semiclassical closed orbit theory.
It is found that the photodetachment cross section can be
written as a summation of a smooth background term plus
many oscillating terms induced by the two walls. Due to the
collision of the detached electron with the moving wall, some
of the electron’s kinetic energy is lost; as a result, the returning
kinetic energy of the detached electron is different from
its initial value after bouncing back from the moving wall.
In order to solve this problem, we introduce a modulation
factor which depends on the electron’s initial and returning
momentum in the oscillating cross section in contrast to
the case in the static quantum well. The calculation results
suggest that the photodetachment cross section depends on
the electron’s energy and the position and the speed of the
moving wall sensitively. As the wall moves slowly, the cross
section approximates to the case in the static quantum well.
However, as the wall moves fast, the moving wall can affect
the photodetachment cross section obviously. It can weaken
the oscillatory structure in the cross section significantly.

In this paper, we only deal with the simplest case of
an expanding wall with constant velocity. For more gen-
eral surface motions, the method used in this paper is still
suitable. An immediate application of the current method
would be the photodetachment of the negative ion in the
presence of an oscillatory surface, for example, the surface
moves with the equation l(t ) = l0 + l0 sin(wt ). Under this
condition, more interesting physics can happen. The detached
electron’s movement will become irregular and oscillatory,
and an infinite number of the electron’s closed orbits would
appear, which depends on the oscillating frequency w in
the equation. For the oscillatory surface, we will use the
Taylor series expansion of the motion equation in order to
find the closed orbit of the detached electron. In addition, the
photodetachment cross section will oscillate with time. So we
can adopt the perturbation theory and calculate the average
photodetachment cross section. A study of the case in which
the wall moves oscillating with time is in progress and will
be reported in our future studies. We hope that our paper will
provide a useful guide for the future experimental study of the
photodetachment dynamics of the negative ion near a moving
surface.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grant No.11374133) and the
Taishan scholars project of Shandong province (Grant No.
ts2015110055). We especially thank the referee for his good
suggestions about our work. In addition, we thank Fei Ding,
Xin-yue Sun, and Tong Shi for some useful discussions.

[1] P. J. Rou, Phys. Rev. Lett 83, 5086 (1999).
[2] D. M. Hartley and P. J. Rou, Chem. Phys. 201, 427 (1995).
[3] D. M. Hartley and P. J. Rou, Surf. Sci. 341, 213 (1995).

[4] G. C. Yang, Y. Z. Zheng, and X. X. Chi, J. Phys. B 39, 1855
(2006).

[5] M. L. Du, Phys. Rev. A 70, 055402 (2004).

053419-6

https://doi.org/10.1103/PhysRevLett.83.5086
https://doi.org/10.1103/PhysRevLett.83.5086
https://doi.org/10.1103/PhysRevLett.83.5086
https://doi.org/10.1103/PhysRevLett.83.5086
https://doi.org/10.1016/0301-0104(95)00342-8
https://doi.org/10.1016/0301-0104(95)00342-8
https://doi.org/10.1016/0301-0104(95)00342-8
https://doi.org/10.1016/0301-0104(95)00342-8
https://doi.org/10.1016/0039-6028(95)00726-1
https://doi.org/10.1016/0039-6028(95)00726-1
https://doi.org/10.1016/0039-6028(95)00726-1
https://doi.org/10.1016/0039-6028(95)00726-1
https://doi.org/10.1088/0953-4075/39/8/004
https://doi.org/10.1088/0953-4075/39/8/004
https://doi.org/10.1088/0953-4075/39/8/004
https://doi.org/10.1088/0953-4075/39/8/004
https://doi.org/10.1103/PhysRevA.70.055402
https://doi.org/10.1103/PhysRevA.70.055402
https://doi.org/10.1103/PhysRevA.70.055402
https://doi.org/10.1103/PhysRevA.70.055402


PHOTODETACHMENT OF THE H− ION IN A QUANTUM … PHYSICAL REVIEW A 98, 053419 (2018)

[6] A. Afaq and M. L. Du, J. Phys. B 40, 1309 (2007).
[7] G. C. Yang, Y. Z. Zheng, and X. X. Chi, J. Theor. Comput.

Chem. 6, 353 (2007).
[8] P. Hansen, K. A. Mitchell, and J. B. Delos, Phys. Rev. E 73,

066226 (2006).
[9] J. Novick, M. L. Keeler, J. Giefer, and J. B. Delos,

Phys. Rev. E 85, 016205 (2012).
[10] J. Novick and J. B. Delos, Phys. Rev. E 85, 016206

(2012).
[11] G. C. Yang, K. K. Rui, and Y. Z. Zheng, Physica B: Condens.

Matter 404, 1576 (2009).
[12] H. J. Zhao, Z. J. Ma, and M. L. Du, Physica B: Condens. Matter

54, 466 (2015).
[13] H. J. Zhao and M. L. Du, Phys. Rev. E, 84, 016217 (2011).
[14] D. H. Wang, S. S. Li, Y. H. Wang, and H. F. Mu, J. Phys. Soc.

Jpn. 81, 114301 (2012).
[15] D. H. Wang, Chin. J. Phys. 52, 138 (2014).

[16] H. J. Zhao and M. L. Du, Physica B: Condens. Matter 530, 121
(2017).

[17] D. H. Wang, Z. H. Pang, K. Z. Zhuang, Y. F. Li, and L. Xie,
Prama. J. Phys. 89, 71 (2017).

[18] E. Fermi, Phys. Rev. 75, 1169 (1949).
[19] S. M. Ulam, Proceedings of the Fourth Berkeley Symposium on

Mathematical Statistics and Probability (University of Califor-
nia, Berkeley, CA, 1961), Chap. 3, p. 315.

[20] S. W. Dosecher and M. H. Rice, Am. J. Phys. 37, 1246 (1969).
[21] M. G. E. da Luz and B. K. Cheng, J. Phys. A: Math. Gen. 25,

L1043 (1992).
[22] S. Di Martino, F. Anza, P. Facchi, A. Kossakowski, G. Marmo,

A. Messina, B. Militello, and S. Pascazio, J. Phys. A: Math.
Theor. 46, 365301 (2013).

[23] A. Matzkin, J. Phys. A: Math. Theor. 51, 095303 (2018).
[24] B. C. Yang, J. B. Delos, and M. L. Du, Phys. Rev. A 89, 013417

(2014).

053419-7

https://doi.org/10.1088/0953-4075/40/6/020
https://doi.org/10.1088/0953-4075/40/6/020
https://doi.org/10.1088/0953-4075/40/6/020
https://doi.org/10.1088/0953-4075/40/6/020
https://doi.org/10.1142/S0219633607002939
https://doi.org/10.1142/S0219633607002939
https://doi.org/10.1142/S0219633607002939
https://doi.org/10.1142/S0219633607002939
https://doi.org/10.1103/PhysRevE.73.066226
https://doi.org/10.1103/PhysRevE.73.066226
https://doi.org/10.1103/PhysRevE.73.066226
https://doi.org/10.1103/PhysRevE.73.066226
https://doi.org/10.1103/PhysRevE.85.016205
https://doi.org/10.1103/PhysRevE.85.016205
https://doi.org/10.1103/PhysRevE.85.016205
https://doi.org/10.1103/PhysRevE.85.016205
https://doi.org/10.1103/PhysRevE.85.016206
https://doi.org/10.1103/PhysRevE.85.016206
https://doi.org/10.1103/PhysRevE.85.016206
https://doi.org/10.1103/PhysRevE.85.016206
https://doi.org/10.1016/j.physb.2009.01.030
https://doi.org/10.1016/j.physb.2009.01.030
https://doi.org/10.1016/j.physb.2009.01.030
https://doi.org/10.1016/j.physb.2009.01.030
https://doi.org/10.1103/PhysRevE.84.016217
https://doi.org/10.1103/PhysRevE.84.016217
https://doi.org/10.1103/PhysRevE.84.016217
https://doi.org/10.1103/PhysRevE.84.016217
https://doi.org/10.1143/JPSJ.81.114301
https://doi.org/10.1143/JPSJ.81.114301
https://doi.org/10.1143/JPSJ.81.114301
https://doi.org/10.1143/JPSJ.81.114301
https://doi.org/10.1016/j.physb.2017.10.109
https://doi.org/10.1016/j.physb.2017.10.109
https://doi.org/10.1016/j.physb.2017.10.109
https://doi.org/10.1016/j.physb.2017.10.109
https://doi.org/10.1007/s12043-017-1468-y
https://doi.org/10.1007/s12043-017-1468-y
https://doi.org/10.1007/s12043-017-1468-y
https://doi.org/10.1007/s12043-017-1468-y
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1119/1.1975291
https://doi.org/10.1119/1.1975291
https://doi.org/10.1119/1.1975291
https://doi.org/10.1119/1.1975291
https://doi.org/10.1088/0305-4470/25/17/005
https://doi.org/10.1088/0305-4470/25/17/005
https://doi.org/10.1088/0305-4470/25/17/005
https://doi.org/10.1088/0305-4470/25/17/005
https://doi.org/10.1088/1751-8113/46/36/365301
https://doi.org/10.1088/1751-8113/46/36/365301
https://doi.org/10.1088/1751-8113/46/36/365301
https://doi.org/10.1088/1751-8113/46/36/365301
https://doi.org/10.1088/1751-8121/aaa902
https://doi.org/10.1088/1751-8121/aaa902
https://doi.org/10.1088/1751-8121/aaa902
https://doi.org/10.1088/1751-8121/aaa902
https://doi.org/10.1103/PhysRevA.89.013417
https://doi.org/10.1103/PhysRevA.89.013417
https://doi.org/10.1103/PhysRevA.89.013417
https://doi.org/10.1103/PhysRevA.89.013417

