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Experimental demonstration of composite stimulated Raman adiabatic passage
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We experimentally demonstrate composite stimulated Raman adiabatic passage (CSTIRAP), which combines
the concepts of composite pulse sequences and adiabatic passage. The technique is applied for population transfer
in a rare-earth doped solid. We compare the performance of CSTIRAP with conventional single and repeated
STIRAP, either in the resonant or the highly detuned regime. In the latter case, CSTIRAP improves the peak
transfer efficiency and robustness, boosting the transfer efficiency substantially compared to repeated STIRAP.
We also propose and demonstrate a universal version of CSTIRAP, which shows improved performance
compared to the originally proposed composite version. Our findings pave the way towards new STIRAP
applications, which require repeated excitation cycles, e.g., for momentum transfer in atom optics, or dynamical
decoupling to invert arbitrary superposition states in quantum memories.
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I. INTRODUCTION

Efficient techniques to coherently control quantum systems
are essential for evolving quantum technologies. A large vari-
ety of control techniques aim at efficient quantum state inver-
sion, e.g., for applications in physical chemistry [1], nuclear
magnetic resonance [2], or quantum information processing
[3,4]. The main requirements for efficient population transfer
are high fidelity and robustness against fluctuations in experi-
mental parameters, while maintaining short excitation times.

Resonant two-level techniques, such as resonant π pulses,
in principle permit high-fidelity population inversion at short
interaction times, but they usually suffer substantially from
inevitable variations in the experimental parameters. Adia-
batic processes, e.g., rapid adiabatic passage (RAP) [5] or
stimulated Raman adiabatic passage (STIRAP) [6], are robust
alternatives. STIRAP is among the most established adia-
batic control tools for coherent population transfer between
quantum states. STIRAP found a multitude of applications
in atomic physics, molecular physics, solid-state physics,
nonlinear optics, quantum information technology, and many
others [6]. Despite its robustness and high efficiency, STIRAP
usually requires rather long interaction times and/or high
intensities to reach the required adiabaticity for high-fidelity
population transfer. Moreover, STIRAP is very sensitive with
regard to the proper preparation of a pure initial state. This is a
severe obstacle, if repeated (cyclic) application of STIRAP is
required. The latter is essential, e.g., in atom optics, when re-
peated STIRAP is applied to obtain large momentum transfer
and beam deflection in real space. The fast drop in efficiency
limits the number of possible repetitions and the maximal
deflection angle [6]. Moreover, cyclic STIRAP processes also
offer potential to adiabatically drive logic operations [7] or to
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invert (or dynamically decouple) coherent superposition states
in quantum memories.

Various approaches can be employed to speed up adiabatic
techniques, e.g., optimal control [8] or single-shot shaped
pulses [9]. These usually rely on pulse shaping in the fre-
quency or time domain, or additional fields to compensate
for unwanted diabatic transitions [6]. Composite pulses are
another alternative to improve the fidelity and robustness of
coherent excitation processes with the advantage that they do
not require compensation of single pulse diabatic losses. They
were initially developed and are well established in nuclear
magnetic resonance [2]. In recent years, they also found their
way into quantum optics and quantum information processing
[10–12]. Composite pulses drive robust excitation pathways in
Hilbert space between an initial and a desired final state. The
relative phases of the pulses in a composite sequence serve
as control parameters, allowing for compensation against cer-
tain experimental imperfections. It is also possible to design
universal composite pulses, which compensate against any
arbitrary variation of experimental parameters in the excita-
tion process. We theoretically proposed and experimentally
demonstrated such universal pulse sequences in previous
work, which aimed in particular at dynamical decoupling
[13,14]. It is a promising idea to combine the concepts of
composite pulse sequences with adiabatic passage, in order
to improve arbitrary properties of the adiabatic excitation pro-
cesses, e.g., efficiency, bandwidth, or robustness. We already
implemented a composite version of RAP (termed composite
adiabatic passage), which permits efficient excitation in a
two-level system [15]. Recently, a combination of composite
pulse sequences with STIRAP (which we will term now
CSTIRAP), was theoretically proposed for population transfer
in a three-state system [16]. However, CSTIRAP has not yet
been implemented experimentally.

In the following, we report on the proof-of-principle exper-
imental demonstration and thorough systematic investigation
of CSTIRAP. Specifically, we apply it for population transfer

2469-9926/2018/98(5)/053413(10) 053413-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.053413&domain=pdf&date_stamp=2018-11-13
https://doi.org/10.1103/PhysRevA.98.053413
http://www.iap.tu-darmstadt.de/nlq


BRUNS, GENOV, HAIN, VITANOV, AND HALFMANN PHYSICAL REVIEW A 98, 053413 (2018)

in a rare-earth ion-doped crystal. In the latter medium, we
already implemented conventional STIRAP [17] and applied
cyclic STIRAP sequences for classical information process-
ing [7]. We measure the population transfer efficiency and
compare the performance of CSTIRAP with conventional and
repeated STIRAP in terms of fidelity and robustness. We in-
vestigate two versions of CSTIRAP for resonant and detuned
excitations, which were already theoretically proposed [16].
We also develop and experimentally demonstrate a universal
variant of detuned CSTIRAP, with improved performance
compared to the originally proposed composite version.

Our work paves the way for applications of CSTIRAP in all
fields where the widely used STIRAP is applicable, i.e., well
beyond the specific experimental implementation presented
below. CSTIRAP offers particular advantages when repeated
(cyclic) STIRAP is required, e.g., in atom optics to obtain
large momentum transfer and beam deflection in real space,
or for all-optical spin rephasing and dynamical decoupling
[18,19]. As CSTIRAP does not rely on pulse shaping, it
can also be combined with optimal control or shortcuts-to-
adiabaticity improved versions of STIRAP [20] and improve
their performance even further.

II. THEORETICAL BACKGROUND

A. STIRAP

We consider a three-state � system, e.g., as shown in
Fig. 1. We aim for coherent population transfer from the
initial state |1〉 to the final state |3〉, mediated via couplings
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FIG. 1. Coupling schemes and (C)STIRAP pulse sequences for
(a)–(c) resonant and (d)–(f) highly detuned excitation. Top row:
Basic coupling schemes. Middle row: (b) STIRAP pulse sequence for
both excitation regimes. (e) Effective two-photon Rabi frequency and
effective detuning in the Raman-type effective two-state system after
adiabatic elimination of the intermediate state. Bottom row: Tem-
poral evolution and phases of CSTIRAP sequences (with composite
sequences of three pulses as an example). ϕP and ϕS are the phases
of the single pump and Stokes pulses.

to an intermediate state |2〉 by two laser fields (pump and
Stokes). Initially all population of the system is assumed to be
in state |1〉. The single-photon detunings of the driving laser
fields from the corresponding resonances are defined as �P =
ωP − ω12 and �S = ωS − ω32, which also determine the two-
photon detuning δ = �P − �S. The coupling strengths are
given by the Rabi frequencies �P(t ) = −μ12EP(t )/h̄ and
�S(t ) = −μ23ES(t )/h̄ [21]. Here, μij are the transition dipole
moments and EP/S(t ) are the time-varying envelopes of the
electric fields. On two-photon resonance we have δ = 0,
hence �P = �S ≡ �, and the system dynamics are described
by the Hamiltonian in the rotating wave approximation

ĤRWA(t ) = h̄

2

⎛
⎝ 0 �P(t ) 0

�P(t ) 2� �S(t )
0 �S(t ) 0

⎞
⎠. (1)

The dynamics of STIRAP are best understood in the adiabatic
basis, defined by the instantaneous eigenstates [6]

|b+〉 = sin ϑ sin φ |1〉 + cos ϑ sin φ |3〉 + cos φ |2〉 , (2a)

|b−〉 = sin ϑ cos φ |1〉 + cos ϑ cos φ |3〉 − sin φ |2〉 , (2b)

|d〉 = cos ϑ |1〉 − sin ϑ |3〉 , (2c)

where the two mixing angles are given by

ϑ (t ) = arctan
�P(t )

�S(t )
, (3a)

φ(t ) = 1

2
arctan

�rms(t )

�
(3b)

with the root mean square Rabi frequency
�rms(t ) =

√
|�P(t )|2 + |�S(t )|2. STIRAP requires pump

and Stokes pulses in the so-called counterintuitive order, as
shown in Fig. 1(b), when the Stokes pulse precedes the pump
pulse by a time delay τ . We term this a SP pulse pair (We note,
that if the system is initially in state |3〉, adiabatic passage to
state |1〉 requires a reversed pulse order, i.e., a PS pulse pair).
STIRAP transfers the population completely from state |1〉 to
state |3〉 via the dark state |d〉, without (ideally) populating
state |2〉. The dynamics are mirrored by the evolution of
the mixing angle ϑ . As the SP pair changes the latter from
ϑ = 0 to ϑ = π/2, the dark state evolves from |d〉 = |1〉
to |d〉 = − |3〉. During the process, we must maintain
adiabaticity, i.e., the system must remain in the dark state at
all times. This requires �rms(t ) � |ϑ̇ |. For smooth pulses
(e.g., with Gaussian temporal shape) this adiabatic condition
transforms to the simpler form A = ∫

�rms(t )dt � 1, i.e.,
the pulse area A has to be sufficiently large [6]. The larger
A, the closer the transfer efficiency approaches unity. Hence,
under realistic conditions of limited pulse area (i.e., finite
interaction time and limited pulse intensity) the fidelity of
the transfer efficiency of STIRAP is always limited. This
becomes a particular obstacle, if repeated (cyclic) STIRAP
processes are required [7].

B. Composite pulses

Composite pulses replace a single excitation pulse by a
sequence of pulses with appropriately chosen relative phases.
The latter serve as control parameters to choose an optimized
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excitation path in Hilbert space, which increases fidelity and
robustness with respect to certain errors [2]. Composite pulses
were so far mainly applied in two-state systems. To explain the
basic concept in simple terms, we consider now a two-level
system rather than the general three-level system required
for STIRAP. Nevertheless, the composite approach can be
transferred straightforwardly to a three-level scheme [16].
As an example, we briefly summarize now the derivation
of universal composite pulses for population inversion (se-
quences termed U5a and U5b), which we also applied in
our experiments discussed below. The theoretical treatment
follows previous work, which gives a detailed derivation [13].

Our objective is to achieve complete population inversion
in a two-state quantum system even when the properties of
the driving pulses are unknown. We assume that the com-
posite pulse duration is shorter than the decoherence time
of the system, so its evolution due to a single pulse can
be characterized by the propagator U, which connects the
probability amplitudes at the initial and final times ti and tf:
c(tf ) = Uc(t i ). It is conveniently parameterized by

U =
(

ε eiα
√

1 − ε2 eiβ

−√
1 − ε2 e−iβ ε e−iα

)
, (4)

where the phases α and β and an error term ε ∈ [0, 1]
are unknown. Then, the transition probability of the single
pulse is P (1) = 1 − |U11|2 = 1 − ε2. A constant phase shift
ϕ in the Rabi frequency leads to β → β + ϕ in the propa-
gator U(ϕ). Then, the propagator of a composite sequence
of N identical pulses, each with a phase ϕk , reads U(N ) =
U(ϕn) · · · U(ϕ2)U(ϕ1). We make no assumptions about the
individual pulses in the composite sequence, i.e., how ε, α

and β depend on the interaction parameters. This justifies the
term universal for these composite pulses because they will
compensate imperfections in any interaction parameter. We
only assume that the constituent pulses are identical and that
we can control their phases ϕk .

In order to determine the phases ϕk , we analyze the prop-
agator element U

(N )
11 . It proves useful to choose ϕk = ϕN−k+1

and we take ϕ1 = 0 without loss of generality. Thus, in case
of a five-pulse sequence (N = 5), we obtain

U
(5)
11 = {[1 + 2 cos (2ϕ2 − ϕ3)] eiα

+ 2 cos (ϕ2 − ϕ3) e−iα}ε + O(ε3). (5)

The first-order error term vanishes for two distinct sets
of phases: (ϕ2 = 5π/6, ϕ3 = π/3) and (ϕ2 = 11π/6, ϕ3 =
π/3), corresponding to the U5a and U5b composite sequences
[13]. As the error term ε is typically small, the composite
pulse transition probability P (5) = 1 − O(ε6) is much closer
to unity than the transition probability of a single pulse P (1) =
1 − ε2.

In the following, we shift our attention back to the three-
state system, where we combine composite pulses and STI-
RAP to achieve efficient and robust population transfer. As
theoretically proposed in Ref. [16], we describe separately the
cases for resonant and highly detuned CSTIRAP.

C. Resonant CSTIRAP

We first consider the case of both lasers tuned to single-
photon resonance (�P/S = 0). Then, STIRAP is quite sensitive
with regard to a proper preparation of the initial state. If the
latter is not perfectly aligned with the dark state |d〉, the ob-
tained transfer efficiency varies strongly with the initial popu-
lation distribution between states |1〉 and |3〉. Specifically, if a
non-negligible fraction of the population is initially placed in
state |3〉, a resonant SP pulse pair will transfer this population
adiabatically via the bright states |b±〉. Then, the interference
between the two excitation paths (via |b+〉 and |b−〉) leads
to generalized Rabi oscillations and the transfer efficiency
becomes highly sensitive to the pulse area A [6]. This makes
resonant STIRAP unsuitable for robust inversion of unknown
states. Additionally, even if all population is initially in the
dark state |d〉, the efficiency of a single STIRAP suffers from
residual diabatic losses due to limited adiabaticity. Then, the
total efficiency for repeated STIRAP drops quickly as every
subsequent inversion is increasingly performed by (the highly
sensitive) population transfer via the bright states [7].

Perfect adiabaticity in STIRAP can only be reached
asymptotically in the limit of infinitely large pulse areas. In
order to improve the STIRAP efficiency and robustness also
for limited adiabaticity, Torosov et al. recently proposed a
composite version of STIRAP, i.e., CSTIRAP [16]. A se-
quence of N STIRAP pulse pairs is applied to transfer the
population back and forth between initial and target state. The
phases ϕP/S of the individual pump and Stokes pulses serve as
control parameters to reduce infidelities in the single STIRAP
transfer processes. In order to ensure that the initial state for
each STIRAP cycle remains closely aligned with the dark
state, the pulse ordering alternates for each pulse pair. Hence,
each cycle drives STIRAP with the pulse ordering matched
to the transfer direction. Figure 1(c) shows an example for
the pulse sequence and phases for resonant CSTIRAP with
three pulse pairs (termed resonant sequence R3). Phases of
resonant CSTIRAP with three (R3) and five (R5) STIRAP
pulse pairs are compared in Table I. An analytical expression

TABLE I. Calculated phases for different CSTIRAP sequences
with three and five pulse pairs. ϕP and ϕS are the phases of the
single pump and Stokes pulses. Sequences labeled “R” correspond
to resonant CSTIRAP. Sequences labeled “D” correspond to detuned
CSTIRAP, as originally proposed by Ref. [16]. Sequences with a
label “U” correspond to our universal version of detuned CSTIRAP.
The number attached to the labels denotes the number N of pulse
pairs in a sequence. U5a and U5b are two versions of universal
detuned CSTIRAP (see text).

Sequence ϕP ϕS

R3 (0, 3, 1)π/3 (1, 3, 0)π/3
R5 (0, 5, 3, 8, 4)π/5 (4, 8, 3, 5, 0)π/3

D3 (0, 1, 0)2π/3 (0,0,0)
D5 (0, 2, 1, 2, 0)2π/5 (0,0,0,0,0)

U3 (0, 1, 0)π/2 (0,0,0)
U5a (0, 5, 2, 5, 0)π/6 (0,0,0,0,0)
U5b (0, 11, 2, 11, 0)π/6 (0,0,0,0,0)
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for the individual pump and Stokes phases for any odd number
of pulse pairs is derived in Ref. [16]. The authors of the
theory proposal numerically investigated the performance of
resonant CSTIRAP and found that CSTIRAP is expected to
outperform conventional STIRAP in terms of peak transfer
efficiency and robustness.

D. Detuned CSTIRAP

We now consider the case of detuned STIRAP, i.e., when
the single-photon detuning � � �P/S is large, while two-
photon resonance δ = 0 is maintained. For the theoretical
description, we can adiabatically eliminate the excited state
|2〉 from the system [see Fig. 1(d)]. This transforms the
three-level system into an effective two-level scheme. The
pump and Stokes pulses couple the two remaining ground
states |1〉 and |3〉 with an effective two-photon Rabi fre-
quency �E(t ) = −�P(t )�S(t )/(2�) and an effective detun-
ing �E(t ) = (|�P(t )|2 − |�S(t )|2)/(2�). Figure 1(e) shows
the temporal behavior of the Rabi frequency and detuning
after adiabatic elimination for a SP pulse pair on two-photon
resonance. The symmetric temporal change of the detuning
�E(t ) over the resonance resembles rapid adiabatic passage
(RAP) in the effective two-state system [5].

While adiabatic population transfer in STIRAP (driven by
a SP pulse pair) goes via the dark state |d〉, in detuned STIRAP
also the reversed pulse ordering (i.e., a PS pulse pair) enables
smooth, adiabatic transfer. In the latter case, the transfer goes
via one of the bright states |b±〉, depending on the sign of the
detuning. Therefore, this version of detuned STIRAP, driven
by a PS pulse pair, is termed bright STIRAP (b-STIRAP)
[22]. In contrast to standard STIRAP via the dark state, the
(decaying) intermediate state |2〉 can be transiently populated
during b-STIRAP, and losses due to radiative decay may
occur. However, the amount of transient population in state |2〉
is negligible for large detuning. Then, a SP or a PS pulse pair
can induce a population transfer with (approximately) equal
efficiency. Thus, detuned STIRAP is insensitive to the initial
state, which makes the technique well suited for inversion of
unknown states.

Similarly to the resonant case, the performance of detuned
STIRAP depends on the fulfillment of the adiabaticity con-
dition. Perfect adiabaticity in the effective two-state system
[see Fig. 1(e)] can only be reached asymptotically in the limit
of infinitely large pulse areas AE = ∫ |�E(t )|dt [5]. In order
to improve the performance, Torosov et al. also theoretically
proposed a detuned CSTIRAP version [16] and derived an
analytical expression for the phases for any odd number of
pulse pairs. We note, that the solutions for the phases are very
different from the resonant version and the pulse pairs have a
nonalternating ordering in detuned CSTIRAP [see Fig. 1(f)].
The latter also ensures that the same pulse characteristics
are repeated (up to a phase shift) for every transfer process
in the effective two-state system after adiabatic elimination.
Then, only the relative phase ϕP − ϕS between the pump and
Stokes fields is important as it determines the phase of �E(t )
in the effective two-state system. Therefore we can choose
ϕS = 0 without loss of generality and only use ϕP as a control
parameter. Figure 1(f) shows an example for a pulse sequence
and phases for detuned CSTIRAP with three nonalternating

pulse pairs (termed detuned sequence D3), as proposed in
Ref. [16]. The phases of detuned CSTIRAP sequences with
three (D3) and five (D5) pulse pairs are given in Table I.
Torosov et al. numerically investigated the performance of
detuned CSTIRAP and confirmed its improved performance
compared to detuned conventional STIRAP.

We note, that the solutions for detuned CSTIRAP in
Ref. [16] are designed to improve the performance for limited
(weak) adiabaticity due to insufficiently large pulse areas.
However, the sequences do not compensate other errors or
variations, e.g., in the two-photon detuning δ. It is well known
that the efficiency of STIRAP is highly sensitive to the latter
(hence, to laser frequency changes or two-photon inhomo-
geneous broadening) [6]. Recently, we theoretically derived
and experimentally demonstrated universal composite pulse
sequences for excitations in two-level systems, which com-
pensate against any kind of pulse error and for any arbitrary
temporal pulse shape [13] (see also Sec. II B). As detuned
STIRAP effectively uses a two-level system [see Fig. 1(d)],
we propose now to further improve CSTIRAP by making use
of the phases of the universal composite pulses rather than
the original phases from Ref. [16]. We will term this variant
universal detuned CSTIRAP. It enables us to compensate any
(repeated) pulse error, e.g., also variation in the driving laser
frequencies. Examples for the phases of the pump and Stokes
fields for universal detuned CSTIRAP with three (U3) and five
(U5a and U5b) pulse pairs are given in Table I. Phases for
higher-order universal composite pulses were also derived in
our previous work [13].

In the following we will present the experimental im-
plementation of resonant CSTIRAP, detuned CSTIRAP, and
universal detuned CSTIRAP. We investigated the efficiency
and robustness of the composite sequences, and compared the
results with single and repeated STIRAP.

III. EXPERIMENTAL SETUP

We apply (C)STIRAP for population transfer between
two hyperfine ground states of praseodymium ions doped
into an yttrium orthosilicate crystal (Pr3+:Y2SiO5 , hereafter
termed Pr:YSO), with dimensions of 5 × 5 × 3 mm and a
dopant concentration of 0.05 at %. The Pr:YSO crystal is
mounted inside a continuous flow cryostat (Janis ST-100),
where it is cooled to temperatures below 4 K to suppress
phononic excitations. Figure 2(a) shows the relevant level
scheme of the Pr3+ ions. In the environment of the host
crystal, the two electronic states |3H4〉 and |1D2〉 each split
up into three hyperfine levels. The population lifetime of the
excited states is T

opt
1 ≈ 164 μs. The coherence lifetime of the

ground-state transitions is T HF
2 ≈ 500 μs. We note that the

coherence time can be increased up to the order of T HF
2 ≈ 1 s

by applying a static magnetic field to prepare appropriate,
less sensitive level splitting of the hyperfine ground states
[23]. However, this was not necessary in our experiment.
The ultimate limit is set by the spin relaxation time of the
hyperfine ground states in Pr:YSO, which is of the order
of T HF

1 ≈ 100 s. Inhomogeneities in the host crystals lattice
lead to different transition frequencies for different dopant
ions. This gives rise to an inhomogeneous broadening of the
optical transition (�opt

inh ≈ 7 GHz) and the hyperfine transitions
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FIG. 2. (a) Level scheme of the relevant transitions in Pr:YSO. (b) Temporal pulse sequence for preparation, STIRAP (or CSTIRAP) and
probing. As an example, we depict a CSTIRAP sequence of three pulse pairs with a nonalternating order. The Rabi frequencies of all applied
pulses have a temporal Gaussian shape with a duration (FWHM) of T� = 17 μs in the resonant and T� = 14 μs in the detuned case. We
truncate the pulses at 3T�. There is no delay between consecutive pulse pairs in a sequence, in order to minimize the duration of the total
sequence. The pulse delay τ between pump and Stokes pulses in each pair is systematically varied in the experiments.

(�HF
inh ≈ 30 kHz). We apply an optical pumping sequence prior

to all (C)STIRAP [24] measurements to isolate a � system
as shown in Fig. 2(a) from the inhomogeneous manifold. For
details on the preparation sequence see Ref. [25].

The required optical radiation at a wavelength of
λ = 605.98 nm is provided by a solid state laser system [26],
which is stabilized to a frequency jitter below 100 kHz on a
timescale of 100 ms. A small fraction <1 % of the light is
used as a probe beam, while the remaining radiation is equally
split into two beam lines to serve as pump and Stokes beams.
All three beams propagate through acousto-optical modula-
tors (AOMs) (Brimrose BRI-TEF-80-50-.606) in double pass
configuration, to provide laser pulses with appropriate center
frequency and temporal intensity pulse profile. The AOMs in
the pump and Stokes beam also control the relative phases of
the beams. Using an arbitrary waveform generator (Tektronix
AWG 5014B) to drive the AOMs, the setup achieves a phase
accuracy of <0.5◦ with a phase jitter of roughly 0.7◦ on a
timescale of 100 μs, which is the duration of a typical CSTI-
RAP sequence. The probe beam is focused inside the crystal to
a diameter (full width at half-maximum, FWHM) of 190 μm.
It is overlapped with the pump and Stokes beams, which
are collimated to slightly elliptical shapes with dimensions
(FWHM) 600 × 380 μm (pump) and 480 × 400 μm (Stokes),
resulting in peak Rabi frequencies of �max

P/S ≈ 2π × 700 kHz,
which we estimated by monitoring the transmission of a weak
probe field while simultaneously driving Rabi oscillations on
the same transition. The diameters of the pump and Stokes
beams are chosen much larger than the probe focus to assure
rather uniform pump and Stokes Rabi frequencies in the
probed volume.

Figure 2(b) shows a typical measurement sequence. We
prepare the system in state |1〉 while state |3〉 is fully emptied,
i.e., the initial populations are P ini

1 = 1 and P ini
3 = 0. We

apply a (C)STIRAP sequence, which transfers population
from state |1〉 to state |3〉. The sequence duration is well below
the coherence time T HF

2 to ensure a proper phase relationship
between the pulses and the single pulse FWHM duration T�

is shorter than T
opt

1 to minimize decay losses for resonant
(C)STIRAP [16]. After (C)STIRAP we determine the final

populations P final
1 and P final

3 by absorption measurements with
two weak probe pulses at the pump and the Stokes transi-
tion. The measured absorption coefficients αi2 are related to
the populations via αi2 ∝ fi2Pi , with the oscillator strengths
fij known from literature [27] (and also confirmed in our
own spectroscopic measurements). This permits determina-
tion of the transfer efficiency as η = P3 = (1 + x)−1 with
x = (α12/α32)(f32/f12). In principle it should be sufficient to
probe only the population transferred to the target state |3〉, as
losses outside our three-level system are negligible. However,
at large transfer efficiency the absorption on the Stokes tran-
sition is very strong. In this case, absorption measurements
suffer from a low signal-to-noise ratio. Probing both final
populations P final

1 and P final
3 overcomes this problem, as there

is always strong absorption on one and weak absorption on the
other transition. This yields a significantly improved accuracy
of the measured absorption coefficients and, hence, the trans-
fer efficiency. With the double-probe approach, we estimate
the uncertainty in the transfer efficiency well below 3% (for
the regime of large transfer efficiency). This is much im-
proved, e.g., compared to the first demonstration of STIRAP
in Pr:YSO with a single probe pulse, yielding uncertainties
up to 20% for large transfer efficiency [22]. We note, that the
probe pulses are delayed by more than 3 ms with respect to the
(C)STIRAP sequence, i.e., much longer than the lifetime T

opt
1

of the excited state. Thus, the small fraction of population left
due to residual diabatic couplings during (C)STIRAP in state
|2〉 decays back to the ground states. This slightly affects the
determination of the obtained transfer efficiency. For efficient
transfer by (C)STIRAP the residual population in state |2〉
will be very small and the error in the measured transfer
efficiency will be negligible. In the worst case of, e.g., intuitive
pulse ordering in the resonant regime, we estimate a maximal
error in the range of 16% compared to the measured transfer
efficiency. However, these high errors are present only for very
inefficient population transfer and high residual population
in state |2〉. Our numerical simulations, which do not take
incoherent decay after the pulses into account, nevertheless
fit very well to the experimental data. This confirms, that the
measured transfer efficiencies are accurate.
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IV. EXPERIMENTAL RESULTS

A. Resonant CSTIRAP

We start our investigations with the implementation of
resonant CSTIRAP, as theoretically proposed by Torosov et al.
[16]. Thus, the pump and Stokes frequencies are matched
to the corresponding transition frequencies. We apply the
measurement sequence shown in Fig. 2(b) and systematically
vary the time delay between the pump and Stokes pulses in
each pulse pair of the (C)STIRAP sequence.

Figure 3(a) shows the obtained transfer efficiencies for
single STIRAP (single pulse pair), three repeated STIRAPs
(with alternating pulse ordering), and the R3-CSTIRAP se-
quence (with alternating pulse ordering) vs. the pulse delay
τ between the pump and Stokes pulses. In the graph positive
delays τ > 0 correspond to the counterintuitive pulse order-
ing (Stokes preceding pump), while negative delays τ < 0
correspond to the intuitive pulse ordering (pump preceding
Stokes). The pulse areas are A ≈ 20π � 1 for a single pulse
pair, i.e., we fulfill the adiabatic condition well. Hence, for
counterintuitive pulse ordering τ > 0, STIRAP yields a broad
plateau of robust and efficient transfer with a peak efficiency
of 97%. Intuitive pulse ordering τ < 0 yields much smaller
peak efficiencies, as expected from theory. We note, that at
intuitive pulse ordering τ < 0 we might expect to observe
pronounced oscillations of the transfer efficiency due to in-
terference between the excitation paths via the two bright
states [6]. However, the fast oscillations are washed out due
to averaging over spatially varying Rabi frequencies across
the laser profiles. This averaging is irrelevant for STIRAP
(i.e., the excitation dynamics for τ > 0), as long as the adi-
abatic condition is fulfilled. The repeated resonant STIRAP
yields systematically reduced efficiencies in comparison to
single STIRAP, as the errors of the imperfect three STIRAP
processes accumulate, and each transfer process leaves the
system in a less pure initial state for the next STIRAP cycle.
When we apply R3-CSTIRAP, the composite version has a
lower efficiency than STIRAP, contrary to what we would
expect from simple theory. Moreover, the R3-CSTIRAP
sequence also does not show a measurable improvement
compared to repeated conventional STIRAP.

This lack of improvement by R3-CSTIRAP is mainly due
to optical inhomogeneous broadenings in Pr:YSO. Specifi-
cally, resonant CSTIRAP is designed to compensate weak
adiabaticity but remains sensitive to single-photon inhomo-
geneous broadening. This is due to its error compensating
mechanism, which relies on a symmetry of the Hamiltonian
that is present only when the pump and Stokes frequencies
are tuned to single photon resonance � = 0 [16]. However,
the Pr:YSO medium exhibits residual inhomogeneous broad-
enings of the optical transitions in the range of 200 kHz to
300 kHz after optical preparation. Moreover, also instanta-
neous spectral diffusion yields additional broadenings when-
ever the intermediate state is populated [28]. The pump and
Stokes Rabi frequencies in the CSTIRAP sequence have a
temporal Gaussian shape with a duration (FWHM) of T� =
17 μs. Hence, the pulse bandwidth is not sufficiently large
to cover the optical inhomogeneous broadening, which would
require 1/T� � � [16]. Hence, CSTIRAP also enables large
transfer efficiency, but does not exceed the performance of
STIRAP.
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FIG. 3. Experimental data (a) and numerical simulations (b) for
transfer efficiencies using resonant (C)STIRAP processes vs. varia-
tion of the pulse delay between the pump and Stokes pulses. The peak
Rabi frequencies are �P ≈ 2π × 635 kHz and �S ≈ 2π × 510 kHz.

We confirmed these arguments by numerical simulations
where we assumed Gaussian-shaped inhomogeneous broad-
enings of the optical [bandwidth �

opt
inh = 200 kHz (FWHM)]

and the hyperfine [bandwidth �HF
inh = 30 kHz (FWHM)] tran-

sition as well as excited-state decay time T
opt

1 and the hy-
perfine transitions decoherence time T HF

2 . We simulated the
dynamics of the three-level system with the density matrix
formalism by solving the Liouville-von Neumann equation,
where optical decay and spin decoherence rates are included
as imaginary elements of the Hamiltonian [29]. In order to
take into account optical and spin inhomogeneous broaden-
ing, we perform each simulation for 961 atoms with differ-
ent single-photon (optical) detunings in the range between
±300 kHz with a step of 20 kHz and two-photon (spin) de-
tunings in the range between ±60 kHz with a step of 4 kHz.
The density matrix of the atomic ensemble is then calculated
as a weighted average of the density matrices of the individual
atoms, taking into account the probability distribution of the
optical and spin inhomogeneous broadenings. We estimated
the effect of optical, spin inhomogeneous broadening, optical
decay, and spin decoherence by turning them on and off
in the simulation and calculating the effect of each factor
on the transfer efficiency of (C)STIRAP for the ensemble.
In the simulation we do not take into account decay after
(C)STIRAP in order to consider only the transfer efficiency
due to (C)STIRAP. The simulated transfer efficiencies are
shown in Fig. 3(b). As already mentioned, the fast oscil-
lations for τ < 0 mirror diabatic excitation dynamics. The
oscillations are washed out in the experiment due to spatial
averaging, which was also confirmed numerically. Neverthe-
less, the simulations involving inhomogeneous broadenings
fit very well with the experimental data, even with particular
details such as the maximal transfer efficiencies, the extension
of the plateaus, or the averaged efficiency for τ < 0, or the
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FIG. 4. Experimentally determined transfer efficiencies for detuned (C)STIRAP processes vs. variation of the pulse delay between the
pump and Stokes pulses. We apply (a) N = 3 or (b) N = 5 pulses in the repeated (C)STIRAP sequences. The single pulse duration is T� =
14 μs and the single-photon peak Rabi frequencies are �P = 2π × 640 kHz and �S = 2π × 550 kHz.

overall line shape. The simulations clearly confirm, that res-
onant CSTIRAP in the optically inhomogeneously broadened
medium reaches towards, but cannot exceed the efficiency or
robustness of STIRAP.

In order to overcome the optical inhomogeneous broad-
enings, we tried to increase the bandwidth of the resonant
(C)STIRAP pulses by reducing the pulse duration. The nu-
merical simulations indicate, that pulse durations below 1 μs
would be necessary to achieve a measurable improvement of
CSTIRAP over repeated STIRAP. This would be technically
possible, though at the limits of our optical setup. However,
at this much shorter pulse duration we also had to increase
the pulse intensity substantially in order to maintain a suffi-
ciently large pulse area. In this case, off-resonant couplings
to other transitions in our medium, outside the three-level
system start to play a role. This leads to perturbations in
the (C)STIRAP dynamics and severe pulse distortions during
propagation through the medium. Detuned (C)STIRAP offers
an alternative solution, as it is insensitive to inhomogeneous
broadenings, provided the applied detuning is sufficiently
large.

B. Detuned CSTIRAP

For detuned CSTIRAP, the frequencies of the pump and
Stokes fields are shifted by a single-photon detuning � �= 0
from the corresponding resonances. In principle, the sign of
the detuning does not matter. In our specific experiment the
pump and Stokes frequencies are both blue shifted, which
leads to only negligible off-resonant excitations to other states
outside our specific three-level system in Pr:YSO. The detun-
ing should be sufficiently large in order to convert the three-
level scheme into an effective two-level Raman-type system.
This requires � � �P/S. Experimentally, a useful indicator
for this case is the observation of equal transfer efficiencies
for excitation with a SP pulse pair or a PS pulse pair. At
sufficiently large detuning, the pulse ordering plays no role,
as the population is completely transferred either by STIRAP
or b-STIRAP. On the other hand, the detuning should not
be too large, as the two-photon Rabi frequency �E ∝ 1/�

decreases with larger detuning. The Rabi frequency must
remain sufficiently large to maintain adiabaticity and, hence,
permit efficient and robust transfer. We note that also longer

pulses improve adiabaticity. However, the pulse duration must
remain sufficiently short to cover the inhomogeneous broad-
ening �HF

inh ≈ 30 kHz of the two-photon hyperfine transition
|1〉 ↔ |3〉 between the ground states in Pr:YSO.

We performed systematic measurements of the transfer
efficiency for conventional STIRAP and b-STIRAP to de-
termine the optimal single-photon detuning to be �S =
1.75 MHz. Subsequently, we permitted also for a small
(∼10 kHz) variation in the two-photon detuning δ by changing
only the pump frequency �P = δ + 1.75 MHz. This served as
a simple control parameter to match the effective pump and
Stokes-Rabi frequencies, enabling equal transfer efficiencies
for STIRAP and b-STIRAP. Though equal Rabi frequencies
are no strong requirement for (C)STIRAP, it enables compar-
ison with the theory predictions for detuned CSTIRAP [16],
which assumed equal transfer efficiencies for SP and PS pulse
pairs. Subsequently, we used these optimized detunings for all
further experiments.

We performed systematic measurements to compare the
performance of detuned STIRAP and CSTIRAP. Figure 4(a)
shows the measured transfer efficiencies vs. the pulse delay
τ for detuned STIRAP (single pulse pair), repeated detuned
STIRAP (nonalternating pulse ordering), and two variants
of detuned CSTIRAP (nonalternating pulse ordering). Single
detuned STIRAP yields equal transfer efficiencies above 80%
for both intuitive (τ ≈ −5 μs) and counterintuitive pulse or-
dering (τ ≈ 5 μs). Compared to the resonant case (see Fig. 3),
the peak transfer efficiencies for single detuned STIRAP are
smaller, and also the extension of the regions with high
transfer efficiency is smaller. This is due to the lower coupling
strength for detuned excitation which yields an effective pulse
area of about AE ≈ 4π .

The transfer processes suffer substantially from accumu-
lated errors in repeated conventional STIRAP. Specifically,
repeated STIRAP with three SP pulse pairs reaches peak
efficiencies around 50% only, also showing pronounced vari-
ations of the transfer efficiency vs. pulse delay. When we
apply now the D3-CSTIRAP sequence, as proposed in [16],
the peak transfer efficiency substantially increases towards
70%. Moreover, also the high transfer region broadens com-
pared to repeated STIRAP. Hence, the choice of appropriate
phases in D3-CSTIRAP sequence already strongly improves
the robustness of the excitation process compared to repeated
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STIRAP. However, the D3-CSTIRAP sequence does not yet
reach the peak efficiency of 80% for single STIRAP, though
the robustness with regard to delay variations is already larger.
Our U3-CSTIRAP achieves further improvements: It reaches
the efficiency of single STIRAP and further increases the
width of the region of efficient transfer.

The advantages (in particular of the universal version)
of CSTIRAP become even more obvious, when we apply
longer pulse sequences. Figure 4(b) shows the transfer ef-
ficiency vs. the pulse delay τ for single STIRAP, as well
as repeated STIRAP, D5-CSTIRAP [16], and universal U5b-
CSTIRAP, the latter sequences with five pulse pairs (with
nonalternating ordering). In terms of composite pulses, the
ability for error correction increases with the number of
pulses in the sequence. Figure 4(b) confirms this expectation:
While repeated STIRAP with five pulse pairs remains at
transfer efficiencies well below 50%, D5-CSTIRAP reaches
the peak efficiency of single STIRAP at 80%, while si-
multaneously increasing the width of the efficient transfer
region. Finally, the universal sequence U5b-CSTIRAP out-
performs all other configurations. U5b-CSTIRAP combines
peak transfer efficiencies around 85%, with similarly large
robustness vs. delay variations as D5-CSTIRAP. We note that
U5a-CSTIRAP [not shown in Fig. 4(b)] and U5b-CSTIRAP
have very similar performance with a slightly better perfor-
mance for the U5b version for zero pulse delay. The strong
performance of the universal sequences is due to their ro-
bustness with regard to variations in any arbitrary experimen-
tal parameter, while the D3- and D5-CSTIRAP sequences
were designed to compensate for limited adiabaticity only

(e.g., induced by variations in the driving laser intensity)
[16]. We note that we also applied higher-order sequences of
seven and nine pulse pairs for detuned CSTIRAP but they did
not improve performance in comparison to U5b-CSTIRAP.
This can be explained by the smaller additional error com-
pensation of the higher-order sequences, which cannot make
up for the higher number of (low efficiency) STIRAPs and
the longer duration of the whole sequence. For example, a
sequence with N = 9 pulse pairs exhibits a total duration of
more than 500 μs, i.e., longer than the coherence time T HF

2 .
We conducted further systematic investigations on univer-

sal detuned CSTIRAP vs. variations in multiple experimental
parameters. Figures 5(a)–5(d) show measured transfer effi-
ciencies vs. variation of both the pulse delay τ and peak Rabi
frequencies. We took data for single detuned STIRAP, re-
peated detuned STIRAPs, and two universal variants U5a and
U5b of CSTIRAP [13]. Similar to Fig. 4, we also observe here,
that the efficiency of repeated STIRAP drops considerably all
over the parameter range compared to single STIRAP. Both
universal sequences U5a- and U5b-CSTIRAP fully recover
(and even exceed) the high efficiency of single STIRAP
also for a fivefold repeated transfer process. U5a- and U5b-
CSTIRAP outperform conventional STIRAP and repeated
STIRAP in terms of peak efficiency and broad bandwidth with
regard to variations in pulse delay and Rabi frequencies. The
peak transfer efficiency of the CSTIRAP sequences is 87%,
compared to 50% for repeated STIRAP. A detailed compar-
ison of the two universal CSTIRAP variants phases reveals
a slightly increased robustness for U5b-CSTIRAP compared
to the U5a version [compare, e.g., the extensions of the high-

FIG. 5. Transfer efficiencies for different detuned (C)STIRAP processes vs. variations of both pulse delay and peak Rabi frequency. [Top
row, (a)–(d)] Experimental data. [bottom row, (e)–(h)] Numerical simulations. The single pulse duration is T� = 14 μs and the single-photon
peak Rabi frequencies of the pump and Stokes pulses are �P = �0 and �S = 0.85�0, with �0 given in the plots. Note, that the peak Rabi
frequencies used in the simulation systematically differ by roughly 20% compared to the experimental values. This is due to spatial field
inhomogeneities in the experiment and, hence, averaging effects in the experimental Rabi frequencies. Such spatial averaging is neglected in
the simulation.
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efficiency regions, shaded in red/orange in Figs. 5(c), 5(d)].
This confirms previous work on universal sequences, show-
ing that U5b sequences compensate especially well against
detuning errors [13]. Maintaining the two-photon resonance
is crucial for STIRAP, and two-photon detunings are an issue
in our medium due to the inhomogeneous broadening of the
hyperfine transitions. Finally, we confirmed the experimental
findings by numerical simulations (see details given in Sec.
IV A). Figures 5(e)–5(h) shows the simulation results, which
reproduce the experimental behavior well.

V. CONCLUSION

We experimentally demonstrated and systematically stud-
ied several variants of composite STIRAP, i.e., a combi-
nation of the concepts of composite pulse sequences with
adiabatic passage in a three-level scheme. In particular, we
applied CSTIRAP sequences in a rare-earth ion-doped solid
for population transfer between hyperfine ground states. We
compared the transfer efficiency and robustness of CSTI-
RAP with conventional single and repeated STIRAP in the
resonant and highly detuned regime. In the resonant case,
inhomogeneous broadening of the optical transition perturbed
CSTIRAP, as the required single-photon resonance cannot
be maintained for all frequency ensembles of dopand ions.
Nevertheless, in the highly detuned regime CSTIRAP signifi-
cantly boosted the peak transfer efficiency by more than 70%
compared to repeated STIRAP, and also outperformed single
conventional STIRAP. Moreover, CSTIRAP offered much
higher robustness with regard to variations in certain exper-
imental parameters. We also compared CSTIRAP sequences

with three or five pulse pairs, proving that longer sequences
yield better error compensation and performance. Finally, we
developed and demonstrated universal detuned CSTIRAP
variants. The universal composite sequences are robust with
regard to fluctuations in any arbitrary experimental param-
eter, outperforming also the originally proposed CSTIRAP
sequences. We confirmed all experimental data by numerical
simulations, which reproduce the experimental data well.

Our findings are of relevance for any application, which
requires improved fidelity and robustness of STIRAP. They
are of particular relevance for applications of repeated STI-
RAP, where limited transfer efficiencies per cycle quickly
add up to perturb adiabatic passage in a highly nonlinear
fashion. Even small improvements in the transfer efficiency
enable many more STIRAP cycles. As a significant advantage
compared to conventional STIRAP, the detuned versions of
CSTIRAP effectively invert any arbitrary initial superposition
of two ground states. They maintain large efficiency also in
case of repeated application, e.g., for rephasing or dynamical
decoupling in quantum memories, or in atom optics to achieve
a larger momentum transfer and beam deflection.
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