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Ionization dynamics through a Fano resonance: Time-domain interpretation of spectral amplitudes
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We investigate a conjecture used in recent experiments to reconstruct the complete dynamics of Fano
autoionization processes out of measured spectral amplitudes [Gruson et al., Science 354, 734 (2016); Beaulieu
et al., Science 358, 1288 (2017); Busto et al., J. Phys. B: At. Mol. Opt. Phys. 51, 044002 (2018)]. The validity of
the conjecture is established analytically within the formalism of Fano, and tested numerically on model atoms
displaying adjustable autoionizing states. A general condition for which the conjecture is valid, beyond the Fano
case, is then derived.
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I. INTRODUCTION

Amongst the variety of phenomena explored in the time
domain by attosecond (1 as = 10−18 s) time-resolved spec-
troscopy [1,2], a very fundamental one is photoemission itself.
In the late 2000s, cutting edge experiments performed in
atoms [3,4], molecules [5], and solids [6] evidenced for the
first time ultrashort “ionization delays.” These are equivalent
to Wigner-Smith group delays [7,8] applied to photoemission:
they reflect how the dynamics of a photoelectron is affected by
species- and channel-specific short-range interactions with the
composite parent ion, and are encoded in the scattering phase
of the associated wave functions. Photoemission group delays
are accessed experimentally through interferometric measure-
ments of photoemission amplitudes, and more specifically of
their phases [9–12].

The relevance of mere “delays” to accurately character-
ize the dynamics of photoemission is however restricted to
smooth continuua displaying no or little structure, where the
scattering phase varies linearly within the bandwidth of the
photoelectron wave packets. Reducing photoemission dynam-
ics to a single group delay no longer applies when the wave
packet builds up across a significantly structured continuum.
This is typically the case for a Fano resonance—a photoemis-
sion process taking place competitively through an autoioniz-
ing metastable state and directly to the continuum [13].

It is only recently that comprehensive ways of looking
at autoionization in the time domain have been proposed
[14–21], motivated by the perspectives of probing and control-
ling these dynamics experimentally with unprecedented, sub-
femtosecond, resolution [22–27]. Complete Fano resonance
buildups were monitored experimentally for the first time
using an original interferometric scheme dubbed Rainbow-
RABBIT [28] and with attosecond transient absorption spec-
troscopy [29], both on the He(2s2p) prototype [13]. An
extension of the Rainbow-RABBIT technique was used shortly
after to reconstruct the anisotropic, polarization sensitive,
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photoemission dynamics of chiral molecules in a flat contin-
uum as well as in the vicinity of an autoionizing state [30].

The present work addresses the reconstruction method
introduced in [28], based on a time-energy analysis of the
scattering amplitudes A(E) measured around a Fano res-
onance.1 In spite of being appreciably straightforward, the
experimental data treatment relies on a conjecture consisting
in giving sense to a “time-domain amplitude” defined as

a(t ) :=
∫ +∞

−∞
A(E)e−iEt dE. (1)

Switching between the spectral and time domains using
Fourier relations is almost a reflex inherited from wave me-
chanics. In quantum physics, it applies to wave functions
as prescribed by the time-dependent Schrödinger equation
(TDSE). However, when applied to amplitudes as in Eq. (1)
the validity of time-domain interpretations is not granted by
the first principles of quantum mechanics. In this context, the
aim of this work is to establish the conditions under which
a(t ) is a physically meaningful quantity, first in the specific
case of Fano autoionization and then in a broader perspective.

The paper is organized as follows. First, we specify in
Sec. II the above-mentioned conjecture within the formal-
ism established by Fano. Then, in Sec. III, we demonstrate
analytically that the conjecture is indeed valid for any Fano
autoionization process. In Sec. IV, we illustrate the analytical
result and test the main approximation used in their derivation
by means of numerical simulations performed on simple
model atoms. Finally, we derive a very general condition
under which the conjecture is valid, beyond the Fano case,
in Sec. V. The conclusions are given in Sec. VI. Technical
details on the analytical derivations and numerical simulations
are provided in the Appendixes.

1The possibility to measure the phase of a photoemission ampli-
tude using pump-probe interferometry has been thoroughly inves-
tigated over the past years [9,10,12,31–33]. It is still the subject
of open questions (see, e.g., Refs. [34–36]) that we do not address
in the present paper, which instead focuses on the time-domain
interpretation.
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Atomic units are used in Eq. (1) and all through the article
unless otherwise stated.

II. FANO SPECTRAL AMPLITUDES AND THEIR
CONJECTURED TIME-DOMAIN INTERPRETATIONS

In this section, we first provide a short account of the for-
malism developed by Fano to model autoionizing resonances
in the spectral domain, and then expose the conjectured time-
domain interpretation of spectral amplitudes discussed in this
paper.

A. Fano’s formalism: Autoionization in the spectral domain

The formalism established by Fano [13] to describe au-
toionization in the spectral domain uses a partitioning of
the system’s eigenstates (|�E〉) at energies E > 0 around
the resonance in terms of bound (|φb〉) and scattering (|φE〉)
contributions,2

|�E〉 = |φb〉 + |φE〉, (2)

each of them being assigned appropriate asymptotic behav-
iors.

The bound part typically corresponds to a doubly excited
state (such as the 2s2p configuration of He), while the scatter-
ing part is a relaxed singly ionized state with an electron in the
continuum [He(1s) + e−]. Any population of |φb〉 eventually
transfers into |φE〉 due to electron correlation, within a time
scale given by the resonance lifetime. It is the coherence of the
process which results in interferences between the two paths,
and shapes the early times of the correlation driven scattering
dynamics of the photoelectron.

The approach further consists in expanding the scattering
component |φE〉 in terms of reference continuum states |ϕE〉
virtually uncoupled from the bound component |φb〉. For a
resonance with characteristic energy ER and width �R, Fano
derived the following expression for the probability amplitude
A(E) to end up in state |ϕE〉 upon absorption of a photon with
frequency ω = E + Ip (Ip is the ionization potential):

A(E) = F (ω)VE

ε + q

ε + i
. (3)

In this compact formula, VE is the direct transition amplitude
from the initial bound state |φ0〉 towards |ϕE〉, ε = 2(E −
ER)/�R is the reduced energy, and the Fano parameter q is
proportional to the ratio VE/Vb, where Vb is the transition
amplitude from |φ0〉 towards |φb〉; see [13] for more details.
In order to take into account finite pulse effects, we have
included in this expression the driving field amplitude F (ω).
As evidenced by Eq. (3), the scattering phase arg A(E) un-
dergoes two π jumps within a spectral range of ∼�R around
ER: a sharp one occurs at ε = −q as the numerator of A(E)
vanishes and changes sign and another one, smoothed over
the resonance width, is centered on the resonance energy as
the real part of the denominator vanishes and changes sign.

2To keep the notations simple, we discard the additional parameters
that, besides the energy E, allow one to fully specify the considered
continuum states and therefore to distinguish the various possible
ionization channels.

The essential approximation made by Fano to derive
Eq. (3) is to consider the direct transition amplitude towards
the scattering continuum, VE , to be constant within a range of
a few �R in the vicinity of the resonance. This is a very reason-
able approximation, as highlighted by the remarkably broad
efficiency of the Fano profile to model with high accuracy
resonances in nuclear, atomic, molecular, and nanophysics,
and even classical oscillators; see, for example, the review in
[37]. As we will see in Sec. III, it is also the only approxi-
mation needed to validate the time-domain interpretation of
A(E) made in [21,28,30].

B. Conjecture: Autoionization in the time domain

In the time domain, the most straightforward characteristic
of a Fano resonance is its lifetime, which coincides with
half the photoemission delay at resonance [38,39]. It is,
however, only representative of the exponential decay of the
autoionizing state into the continuum, discarding the impact
of interferences on early time dynamics. More detailed tempo-
ral insight on resonances can be obtained by considering the
“survival probability” introduced by Krylov and Fock [40].
It notably displays deviations from the exponential law at
small and large times [41]. Still, it focuses on the resonance
decay, considering that only the bound part of the resonance is
initially populated. It may be suitable for describing an Auger
or a nuclear decay but excludes other processes such as Fano
resonances.

In contrast, the approaches based on the Rainbow-RABBIT

technique [21,28,30] mentioned in the Introduction provide a
whole picture of the Fano resonance as it builds up in time.
The conjecture it relies on consists in relating the temporal
amplitude a(t ), defined in Eq. (1), to two observables: the
ionization rate, I (t ), according to

I (t ) = 1

2π
|a(t )|2, (4)

and the photoelectron spectrum as it builds up in time during
the process, P (E, t ), according to

P (E, t ) = 1

4π2

∣∣∣∣
∫ t

−∞
a(t ′)eiEt ′ dt ′

∣∣∣∣2

. (5)

The latter is hereafter referred to as the transient photoelectron
spectrum (TPES).

The two quantities being related through

I (t ) = ∂

∂t

∫ +∞

−∞
P (E, t ) dE, (6)

it is easy to show that Eq. (5), when valid, implies Eq. (4)
(see Appendix A 1). We will thus focus on Eq. (5). This puts
forward the limited inverse Fourier transform (LIFT) of a(t ),
defined as

A(E, t ) := 1

2π

∫ t

−∞
a(t ′)eiEt ′ dt ′, (7)

which is the main tool inherited from time-frequency analysis
in the present study. The (2π )−1 normalization factor in
Eqs. (4) and (7), and squared in Eq. (5), is here to ensure
consistency between the Fourier transform and its inverse,
throughout the article.
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III. ANALYTICAL VALIDATION OF THE CONJECTURE

In this section, we demonstrate analytically that the con-
jectured interpretation of a(t ) is indeed valid for a Fano
resonance. To this end, we compare the dynamics inferred
from a(t ) to the actual Fano dynamics as initially derived by
Mercouris and co-workers [16,17].

A. Actual buildup of the continuum wave packet

In the framework provided by Fano’s approach, the evo-
lution of the continuum wave packet |ψsca(t )〉 during its
formation and propagation is obtained by expanding it on the
reference scattering states |ϕE〉,

|ψsca (t )〉 =
∫ +∞

−∞
cE (t )|ϕE〉e−iEt dE. (8)

In this notation, one must keep in mind that the actual support
of the coefficients cE (t ) = 〈ϕE|ψsca(t )〉 is restricted, by defi-
nition, to E > 0. The TPES is directly related to cE (t ) through

P (E, t ) = |cE (t )|2. (9)

Therefore, the conjecture (5) is verified if and only if the
modulii of A(E, t ) [defined in Eq. (7)] and of cE (t ) are equal.

A comprehensive derivation of the analytical expression
for cE (t ) is detailed in [16,17].3 It reads

cE (t ) = VE

i

[
G(E, t )

(q + ε)

(ε + i)
− G

(
ER − i

�R

2
, t

)

× (q − i)

(ε + i)
eiε

�R
2 t e− �R

2 t

]
, (10)

where

G(E, t ) := 1

2π

∫ t

−∞
E (t ′)ei(E+Ip )t ′ dt ′ (11)

is the LIFT of the field temporal amplitude

E (t ) =
∫ +∞

−∞
F (ω)e−iωt dω. (12)

One can easily verify with Eqs. (10) and (3) that the asymp-
totic value of cE (t ) is proportional to the transition amplitude
A(E),

lim
t→+∞ cE (t ) = 1

i
A(E), (13)

a result reminiscent of the perturbative treatment underlying
the Fano formalism.

B. Reconstruction of the continuum wave packet

We now derive the analytical expression of A(E, t ) for
a Fano resonance, that we will compare to the one of the
time-dependent coefficients cE (t ) given in Eq. (10). Assuming
that VE is constant (= VĒ) over the bandwidth of A(E), the
temporal amplitude [Eq. (3)] for a Fano resonance verifies4

1

VĒ

a(t ) = E (t )eIpt + (q − i)
�R

2

×
∫ +∞

−∞

F (ω′)
ω′ − ωR + i �R

2

e−i(ω′−Ip )t dω′. (14)

Therefore, the LIFT of a(t ), defined in Eq. (7), reads

1

VĒ

A(E, t ) = G(E, t ) + (q − i)
�R

2

∫ +∞

ω′=−∞

F (ω′)
ω′ − ωR + i �R

2

1

2π

∫ t

t ′=−∞
ei(ω−ω′ )t ′ dt ′ dω′

= G(E, t ) − (q − i)
�R

2

i

2π

∫ +∞

−∞

F (ω′)
ω′ − ωR + i �R

2

lim
t0→−∞

[ei(ω−ω′ )t − ei(ω−ω′ )t0 ]

ω′ − ω
dω′. (15)

In order to get a formula involving G functions in each term, as in Eq. (10), we reintroduce the pulse temporal profile E , where
F appears in the last equation. This gives

1

VĒ

A(E, t ) = G(E, t ) − (q − i)
�R

2

i

2π

∫ +∞

ω′=−∞

(2π )−1
∫ +∞
t ′=−∞ E (t ′)eiω′t ′ dt ′

ω′ − ωR + i �R
2

lim
t0→−∞

[ei(ω−ω′ )t − ei(ω−ω′ )t0 ]

ω′ − ω
dω′

= G(E, t ) − (q − i)
�R

2

i

(2π )2

∫ +∞

t ′=−∞
E (t ′)

[
eiωtJ (t ′ − t ) − lim

t0→−∞ eiωt0J (t ′ − t0)

]
dt ′, (16)

where we introduced

J (τ ) :=
∫ +∞

−∞

eiω′τ(
ω′ − ωR + i �R

2

)
(ω′ − ω)

dω′. (17)

Contour integrations give (see Appendix A 2)

eiωtJ (t ′ − t ) = −2πi eiωt [1 − �(t ′ − t )]

[
ei(ωR−i

�R
2 )(t ′−t )

ω − ωR + i �R
2

− eiω(t ′−t )

ω − ωR + i �R
2

]
, (18)

3A similar expression is derived in [18] for a Fano resonance triggered by a sudden pulse.
4The dynamics of atomic autoionization with a sudden pulse was also investigated theoretically in [14]. In this paper, the conjecture

corresponding to Eq. (4) is implicit [see Eq. (2) of that reference]. Their results are compatible with the present expression for a(t ) [Eq. (14)]
in the limit E (t ) → δ(t ).
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where � is the Heaviside function and

lim
t0→−∞ eiωt0J (t ′ − t0) = 0. (19)

Inserting this in Eq. (16) leads to

1

VĒ

A(E, t ) = G(E, t ) − (q − i)

(ε + i)

1

2π

⎡
⎢⎢⎢⎢⎣ei(ω−ωR+i

�R
2 )t

∫ t

t ′=−∞
E (t ′)ei(ωR−i

�R
2 )t ′ dt ′︸ ︷︷ ︸

2πG(ER−i
�R
2 ,t )

−
∫ t

t ′=−∞
E (t ′) eiωt ′ dt ′︸ ︷︷ ︸

2πG(E,t )

⎤
⎥⎥⎥⎥⎦ (20)

and we ultimately obtain the sought after expression for the
LIFT of a(t ),

A(E, t ) = VĒ

[
(ε + q )

(ε + i)
G(E, t ) − (q − i)

(ε + i)

× eiε
�R
2 t e− �R

2 tG
(

ER − i
�R

2
, t

)]
. (21)

By comparing Eq. (21) with Eq. (10), one immediately sees
that

A(E, t ) = icE (t ). (22)

This result shows that the LIFT-based analysis of A(E) gives
access to a most fundamental quantity: the time-dependent
spectral coefficients cE (t ) of the continuum wave packet de-
scribing the photoelectron. From there, using the definition of
P (E, t ) [Eq. (9)], we obtain Eq. (5). The conjecture according
to which the complete buildup dynamics of a Fano resonance
can be retrieved from its spectral ionization amplitude A(E)
is therefore indeed valid.

IV. NUMERICAL TESTS OF THE
“CONSTANT VE” APPROXIMATION

We have performed numerical simulations in order to
illustrate the analytical results derived in the previous section,
and to assess the validity of the “constant VE” approximation.

A. Coupled-channel model

We used a one-dimensional coupled-channel model de-
signed to display an autoionizing state with adjustable energy
ER, width �R, and q parameter. It is defined by a field-free
Hamiltonian H0 explicitly partitioned as two 1D Hamiltonians
h1 and h2 associated with each of the channels coupled by a
Vcpl term,

H0 =
(

h1 Vcpl

Vcpl h2

)
. (23)

Each of the channel-specific Hamiltonians hk (k = 1, 2) is
assigned a standard form

hk = −1

2

∂2

∂x2
+ Vk (x), (24)

where Vk (x) are potentials adapted to reproduce the desired
energy spectra. In the present case, V1(x) is a Gaussian po-
tential whose parameters (depth and width) set the ionization
potential Ip of the model atom. The continuum states of

h1 correspond to the reference scattering states |ϕE〉. The
potential V2(x) was adjusted for h2 to display a ground state
at the same energy as h1 and an excited bound state (with
odd symmetry) at an energy located close to ER, above the
ionization threshold of h1. This excited state corresponds to
|φb〉 in Eq. (2). The coupling term Vcpl(x) is a hyper-Gaussian
function optimized empirically to obtain the desired reso-
nance parameters, q and �R. This model reproduces very well
the features of Fano resonances [42], and is simple enough to
allow extensive time-dependent and time-independent numer-
ical simulations.

Here we present results obtained with two such “atoms,”
with relevent properties summarized in Table I. The first one
(atom A) has characteristics close to the ones of He and
its 2s2p resonance [13], which lies few tens of eV above
threshold. The second one (atom B) displays an autoionizing
state with comparable width and q parameter, but located very
close to the threshold. For each atom, we simulated a resonant
photoemission process by solving numerically the TDSE in
the presence of a light pulse with adapted central frequency
ωxuv and full duration τxuv. The pulses were assigned sin2

envelopes centered at t = 0, with intensities safely in the
perturbative regime.

B. Resonance far from threshold

We first detail our procedure and present the results ob-
tained for atom A. The density of states (DOS) above ioniza-
tion threshold [38] for this atom is displayed in Fig. 1(a) (see
Sec. B 1 for numerical details). It follows a typical decaying
law ∼(2E)−1/2 on top of which a sharp peak indicates the
position of the resonance slightly above 35 eV. We estimated
the relative variations of VE in the vicinity of the resonance
through

� = |VER+�R/2 − VER−�R/2|
VER�R

. (25)

TABLE I. Characteristic features of the model atoms used in the
simulations: ionization potential (Ip), resonance energy (ER), width
(�R), lifetime (τR = �−1

R ), and Fano parameter (q). The energy scale
refers to the ionization threshold for each atom.

Atom Ip (eV) ER (eV) �R (meV) τR (fs) q

A 24.59 35.62 39.2 16.67 −2.98
B 15.53 1.54 57.7 11.32 −2.66
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FIG. 1. (a) DOS above ionization threshold (arb. units) for the
atom A (gray full curve) and spectral profile of the pulse used in the
simulations (blue filled curve); (b) PES P (E) normalized to 1 at its
maximum (yellow filled curve); (c) phase arg A(E) in the vicinity
of the resonance (green full curve). The pulse parameters are ωxuv =
60.33 eV and τxuv = 2.67 fs.

For the atom A, it amounts to 4.3×10−2 eV−1. We also
displayed in Fig. 1(a) the profile of the pulse used in the simu-
lation (blue filled curve). Its central frequency ωxuv was set to
60.33 eV to reach the vicinity of the resonance, and its dura-
tion τxuv to 2.67 fs (39 optical cycles), which is significantly
smaller than the resonance lifetime τR = 16.67 fs. Figure 1(b)
shows the photoelectron spectrum (PES) P (E), computed
from the propagated wave function ψ (x, tend ) at the end of
the simulation (tend � 130 fs) using the window method [43]
detailed in Appendix B 2. Its asymmetric shape is consistent
with the resonance parameters, notably the maximum near
ER (ε = 0) and the minimum located at E = ER − q�R/2
(ε = −q), as well as with the pulse parameters (spectral width
∼4 eV).

The TPES P (E, t ) were computed using the same tech-
nique applied to the propagated wave function ψ (x, t ) at
various times during the process. The TPES at four illustrative
times are displayed in Fig. 2 (yellow filled curves). These
numerically exact spectra are representative of the actual
ionization dynamics. Their evolution is consistent with the
chronology of a Fano process [15] and notably with the
analytical formula for the coefficients cE (t ) [Eq. (10)], as
was already investigated in [16,18]. At the earliest displayed
time, in frame (a), the spectrum follows a smooth bell curve
reminiscent of the ionizing pulse profile: at such an early time
(1.75 fs ∼ 10% τR), the ionization process occurs dominantly
through the direct path. In frame (b), first signatures of the
autoionizing path are already visible. The main peak begins
to shrink around the resonance energy, on each side of which
satellite structures appear. In frame (c), as the central peak
continues to refine and to asymmetrize, it becomes clearer
that these satellite structures are oscillations, which result
from interferences between the direct and autoionizing paths.
Indeed, it is easy to see from the analytical expression of
the coefficients cE (t ) in the case of a sudden pulse [see,
e.g., Eq. (23) of [18]] that the TPES contain an interference
term proportional to sin[(E − ER)t + arctan q]—the spectral
frequency (phase) of which increases (decreases) linearly
with time—damped by an exp(−�Rt/2) factor. At the last
displayed time in frame (d), the oscillations tighten and the
spectrum converges to its final shape [see Fig. 1(b)].
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FIG. 2. Transient photoelectron spectra for atom A (pulse pa-
rameters specified in the caption of Fig. 1). (a)–(c) Actual TPES,
P (E, t ) (yellow filled curves), and reconstructed TPES, |A(E, t )|2
(orange full curves), at four different times t . The time origin t = 0
corresponds to the maximum of the pulse envelope. In frames (a) and
(b) the TPES reconstructed out of the analytical amplitudes A(E)
is also shown (brown dashed curves). The TPES are normalized
consistently with the PES displayed in Fig. 1(b).

Besides, still for atom A, we extracted the spectral am-
plitude A(E) out of the final wave function ψ (x, tend ). The
modulus is simply given as |A(E)| = √

P (E), while the
phase arg A(E) was computed using an adapted numerical
interferometric scheme detailed in Appendix B 3. The spectral
variations of A(E), displayed in Fig. 1(c), are typical of a
Fano resonance with the two consecutive ∼π jumps already
discussed in Sec. II A. From A(E), we computed the temporal
amplitude a(t ) [Eq. (1)] and its LIFT A(E, t ) [Eq. (7)]. The
reconstructed TPES, |A(E, t )|2, are shown in Fig. 2 (orange
full curves), at the same times as P (E, t ) for comparison.
Apart from a spurious narrow structure around ER visible at
the earlier times [frames (a) and (b), hardly in frame (c)], the
agreement between the actual and the reconstructed spectra is
excellent. We identified the spurious structure as a numerical
artifact due to an imperfect convergence of the “final” wave
function ψ (x, tend ) used to compute A(E). To verify this, we
also computed the reconstructed TPES using the analytical
expression for A(E) [Eq. (3)], with the Fano and pulse param-
eters adapted to our simulations, and displayed them in frames
(a) and (b) of Fig. 2 (brown dashed curves). The spurious
structure is indeed absent from these analytical reconstructed
TPES, which almost perfectly reproduce the actual TPES
(yellow filled curves). In conclusion, the results obtained with
atom A illustrate and confirm the validity of Eq. (5) when VE

is nearly constant.
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FIG. 3. (a) DOS above ionization threshold (arb. units) for the
atom B (gray full curve) and spectral profile of the pulse used in
the simulations (blue filled curve); (b) PES P (E) normalized to
1 at its maximum (yellow filled curve); (c) phase arg A(E) in the
vicinity of the resonance (green full curve). The pulse parameters are
ωxuv = 17.06 eV and τxuv = 0.97 fs.

C. Resonance near threshold

We repeated the procedure for atom B, which possesses
a resonance much closer to the ionization threshold and
for which considering VE as constant is questionable. Here
� = 2.1×10−1 eV−1 [Eq. (25)], i.e., one order of magnitude
larger than for atom A. The DOS above threshold is shown
in Fig. 3(a) together with the ionizing pulse profile (ωxuv =
17.06 eV and τxuv = 0.97 fs, i.e., four cycles). We used a
broader pulse than for atom A on purpose, in order to make
it significantly overlap the ionization threshold. This strongly
affects the final PES (computed here at tend � 250 fs), which
abruptly vanishes at E = 0; see Fig. 3(b). The phase arg A(E)
displayed in Fig. 3(c) is consistent with the resonance param-
eters.

The actual transient spectra P (E, t ) are displayed in Fig. 4
(yellow filled curves) at four times close to the ones chosen
for atom A. Their evolution is similar to the one in atom A,
notably the time-dependent spectral frequency of the transient
oscillations, which does not depend on the resonance param-
eters. The two main differences with respect to atom A are (i)
the main peak building up over a somehow different time scale
because of the different lifetime and (ii) a more pronounced
asymmetry even at the earliest times [frame (a)] due to the
nonconstant VE and to the above-mentioned cutoff at E = 0.

The reconstructed ones, |A(E, t )|2, are overlaid on the
same figure (orange full curves). As with atom A, they present
a spurious narrow structure near ER at early times [frames (a)
and (b)] resulting from an imperfectly converged ψ (x, tend )
used to compute them. Apart from this numerical artifact, it is
clear that the agreement between |A(E, t )|2 and P (E, t ) at the
earliest displayed time [frame (a)] is not as good as for atom
A. This is a direct manifestation of non-negligible variations
of VE within the wave-packet support, which reshape its
“direct continuum” components. Besides, the Fourier analysis
does not perfectly reproduce the sharp cutoff at E = 0. Thus
the reconstructed TPES in frames (a) and (b) slightly extend
below the ionization threshold. It is nevertheless noteworthy
that a qualitative agreement between the shape and magnitude
of P (E, t ) and |A(E, t )|2 remains in spite of particularly
unfavorable conditions. Moreover, the excellent quantitative
agreement between the reconstructed and actual TPES is
recovered quickly, as can be seen already in frame (b) and
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FIG. 4. Transient photoelectron spectra for atom B (pulse pa-
rameters specified in the caption of Fig. 3). (a)–(c) Actual TPES,
P (E, t ) (yellow filled curves), and reconstructed TPES, |A(E, t )|2
(orange full curves), at four different times t . The time origin t = 0
corresponds to the maximum of the pulse envelope. The TPES are
normalized consistently with the PES displayed in Fig. 3(b).

confirmed in frames (c) and (d). Therefore, the results ob-
tained with atom B seem to indicate that the “constant VE”
approximation, needed to validate the conjectured Eq. (5), is
robust even for Fano resonances near threshold.

V. TIME-DOMAIN INTERPRETATION OF SPECTRAL
AMPLITUDES: GENERAL DOMAIN OF VALIDITY

The analytical and numerical results presented and dis-
cussed above suggest to seek further for general conditions
under which the temporal amplitude a(t ) and its LIFT are
physically relevent quantities. To address this, we now step
away from the Fano paradigm and simply consider a wave
packet expressed as in Eq. (8), where each |ϕE〉 is the pro-
jection of an eigenstate of energy E on a given reference
partition or set. We also assume that the time-dependent
coefficients of this wave packet, cE (t ), and AE are related
through Eq. (13). The spectral amplitude A(E) is in turn used
to define the temporal amplitude a(t ) according to Eq. (1).
The wave packet has a finite norm; therefore, A(E) and its
Fourier transform a(t ) are square integrable functions. From
there, we want to establish the condition(s) under which the
LIFT of a(t ), A(E, t ), and the time-dependent coefficients,
cE (t ), verify Eq. (22).

First, taking the time derivative of Eq. (22) with the defini-
tion of A(E, t ) [Eq. (7)] gives

a(t )eiEt = iċE (t ), (26)

where we used the notation ċE (t ) = ∂cE (t )/∂t . A necessary
condition for Eq. (26) [and therefore Eq. (22)] to be fulfilled is
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that ċE (t )e−iEt is independent of E, since a(t ) is by definition
independent of E.

We can moreover show that it is a sufficient condition,
using the connections of A(E) with a(t ) on the one hand, and
with cE (t ) on the other hand. Indeed, Eq. (1) implies

A(E) = 1

2π

∫ +∞

−∞
a(t )eiEt dt (27)

and Eq. (13) implies

A(E) = i

2π
lim

τ→+∞

∫ τ

−∞
ċE (t ) dt (28)

= 1

2π

∫ +∞

−∞
[iċE (t )e−iEt ]eiEt dt. (29)

With that last expression, we see that if iċE (t )e−iEt does not
depend on E, then it is the Fourier transform of A(E)—just as
a(t ) is according to Eq. (27). Unicity of the Fourier transform
then implies Eq. (26).

Hence Eq. (22) is exactly fulfilled if and only if

∂

∂E

[
∂cE (t )

∂t
e−iEt

]
= 0. (30)

A physical interpretation of that condition is that the spectral
components of the wave packet are homogeneously “fed”
over time. Any structuring of the resulting wave packet is
the consequence of interferences occurring during the buildup
process. It is noteworthy that we made here very little assump-
tions on the nature of the wave packet,5 on the nature of the
process populating the continuum states |ϕE〉, nor on the way
the spectral amplitude is potentially measured experimentally.
This is therefore a very general result.

VI. CONCLUSIONS

In this article, we have established that the complete dy-
namics of a Fano autoionization process could be retrieved out
of the Fourier transform a(t ) of the associated transition am-
plitude A(E)—a quantity that can be accessed experimentally
under conditions discussed elsewhere (see [28] and references
therein). The demonstration relies on a single approximation
(a direct transition amplitude towards the continuum, VE ,
which is spectrally constant), which is inherent to the Fano
formalism and the validity of which is warranted by the
broad applicability of the latter. It turns out that the limited
inverse Fourier transform of a(t ), A(E, t ), exactly coincides,
up to a i factor, to the time-dependent coefficient cE (t ) of
the quantum wave packet describing the photoelectron. The
analytical demonstration was illustrated with simulations per-
formed on simple model atoms displaying autoionizing states,
the results of which highlight the robustness of the “constant
VE” approximation.

Eventually, we have identified a general condition under
which A(E, t ) is equal to icE (t ) beyond the particular case of
Fano resonances. This provides a unified framework within

5It is nonetheless easy to verify that the coefficients cE (t ) for a Fano
resonance [Eq. (10)] fulfill condition (30).

which the dynamics of a quantum wave packet can be re-
trieved out of its spectral scattering amplitudes A(E) through
simple Fourier analysis. Our reasoning makes little assump-
tion on the nature of the wave packet and none on the way
the spectral amplitudes are measured. It may therefore have
broad implications ranging further than the particular case of
a Fano resonance monitored in time by photoelectron interfer-
ometry [21,28,30]—in a context where theoretical inputs are
required not only to support experimental measurements, but
most importantly for processing the measured data towards
meaningful time-domain interpretations.
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APPENDIX A: ANALYTICS

1. How Eq. (5) implies Eq. (4)

According to the conjectured Eq. (5), the spectrally inte-
grated ionization probability at a given time t reads

∫ +∞

−∞
P (E, t ) dE = 1

(2π )2

∫ +∞

−∞

∣∣∣∣
∫ t

−∞
a(t ′)eiEt ′ dt ′

∣∣∣∣2

dE

(A1)

= 1

(2π )2

∫ t

−∞

∫ t

−∞
[a(t ′)]�a(t ′′)

×
∫ +∞

−∞
[eiE(t ′′−t ′ )] dE︸ ︷︷ ︸
2πδ(t ′′−t ′ )

dt ′′ dt ′ (A2)

= 1

2π

∫ t

−∞
|a(t ′)|2 dt ′. (A3)

Therefore,

∂

∂t

∫ +∞

−∞
P (E, t ) dE = 1

2π
|a(t )|2. (A4)

Since the left-hand side of this last equation corresponds to the
ionization rate I (t ), we do obtain Eq. (4) as a consequence of
Eq. (5).

2. Computation of the integral J (τ )

Equation (16) involves the integral

J (τ ) =
∫ ∞

ω′=−∞
K (ω′, τ ) dω′, (A5)

with

K (ω′, τ ) = eiω′τ(
ω′ − ωR + i �R

2

)
(ω′ − ω)

. (A6)
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It displays two poles at ω and ωR − i �R
2 respectively associ-

ated with the residues

R(τ ) = eiωτ

ω − ωR + i �R
2

, (A7)

RR(τ ) = ei(ωR−i
�R
2 )τ

ωR − i �R
2 − ω

. (A8)

It can be evaluated in the complex plane as

J (τ ) =
∫
C

K (ω′, τ ) dω′ −
∫

γ

K (ω′, τ ) dω′, (A9)

where C is a contour consisting of the real axis indented
clockwise around the pole at ω, and closed by an arc γ at
infinity, either in the upper (↑) or lower (↓) half plane. The
contours are such that the arc in the upper (lower) half plane
is followed counterclockwise (clockwise). Choosing the most
appropriate contour for the evaluation of J (τ ) depends on the
sign of τ .

The full contour integrals are given by the residue theorem:∫
C↑

K (ω′, τ ) dω′ = 0 (A10)

because there is no pole in the upper half plane, and∫
C↓

K (ω′, τ ) dω′ = −2iπ [R(τ ) + RR(τ )], (A11)

since the C↓ contour encompasses the two poles, which are
circled clockwise. The integrals along the arcs depend on the
sign of τ as follows.

(i) When τ > 0, the integral along the arc γ↑ vanishes.
Relations (A9) and (A10) immediately give

J (τ ) = 0. (A12)

(ii) When τ = 0, the integrals along both γ↑ and γ↓ vanish.
Both contours can thus be used to show that

J (0) = 0. (A13)

(iii) When τ < 0, the integral along the arc γ↓ vanishes and
we obtain

J (τ ) =−2iπ

[
ei(ωR−i

�R
2 )τ

ω − ωR − i �R
2

− eiωτ

ω − ωR + i �R
2

]
. (A14)

APPENDIX B: NUMERICS

1. Evaluation of the densities of states

In the numerical simulations, the positive-energy contin-
uum is replaced by a dense discrete spectrum, with a very
narrow spacing �E between adjacent levels—such that it can
be considered as continuous in practice. The DOS [38] was
computed at each discretized Ek > 0 of interest as

ρ(Ek ) = 2

Ek+1 − Ek−1
, (B1)

where Ek+1 and Ek−1 are the neighboring eigenenergies. The
analysis was restricted to the subspace reached by one-photon
absorption, consisting of the states with odd parity. The norm

of the DOS computed as such depends on the simulation
parameters (box size and grid spacing), without consequence
for the present purpose.

2. Evaluation of the photoelectron spectra

We computed numerically the TPES with the window
technique [43] adapted to the present two-channel model. The
spectrum at a given time t is computed as

P (E, t ) =
∫ +∞

−∞
|χE (x, t )|2 dx, (B2)

where

χE (x, t ) = WEψ (x, t ) (B3)

is the propagated wave function filtered with a narrow spectral
window operator

WE = γ 2

(h1 − E)2 + iγ 2
. (B4)

The width of the window, γ , sets the numerical resolution of
the spectra. Note that the expression of WE [Eq. (B4)] involves
the field free Hamiltonian h1, the positive-energy spectrum
of which consists in the uncoupled continuum states |ϕE〉
[see the partitioned Hamiltonian H0 given in Eq. (23)]. At a
sufficiently large time tend, the TPES converges numerically
to the PES:

P (E) = P (E, tend ). (B5)

3. Evaluation of the Fano phase

We retrieved the phase arg A(E) [displayed in Fig. 1(c) and
Fig. 3(c) for atoms A and B, respectively] out of the final wave
function ψ (x, tend ), using an interferometric scheme based on
the same numerical tool as in Appendix B 2. Consistent with
the formalism of Fano and with the definition of A(E), the lat-
ter scheme takes for reference the wave function ψ (ref)(x, tend )
propagated under the same conditions as ψ (x, tend ), but
without the coupling term in the Hamiltonian H0 [Vcpl = 0
in Eq. (23)]. It describes the direct ionization path only.
The spectral phase we are interested in is therefore the
phase difference between the filtered wave functions χE (x) =
WEψ (x, tend ) and χ

(ref)
E (x) = WEψ (ref)(x, tend ), where WE is

the spectral filter defined in Eq. (B4). We thus coherently
added them as

ξE (x; θ ) = χE (x) + χ
(ref)
E (x)eiθ , (B6)

where θ is an arbitrary phase set manually, and fitted the signal
|ξE (x; θ )|2 obtained for various values of θ with the generic
function

g(θ ) = A + B cos(θ + η). (B7)

For sufficiently large distances, the fitting parameter η be-
comes independent of x and converges to arg A(E).
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