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Rovibrational excitation of rare-gas dimers by electron impact
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Electron scattering by rare-gas dimers is studied for very low incident energies using the zero range
potential (ZRP) method. Beyond the traditional ZRP, we consider an alternative formulation accounting for the
atomic polarization, inspired in the modified effective range theory. The scattering calculations are reported
in fixed nuclei, rigid rotor, and rovibrational approximations, the first two being analytical. An expression
for the electron-molecule scattering length is obtained. We find that short-range interactions are the dominant
mechanism for rotational transitions in electron scattering by rare-gas dimers, while the long-range interactions
may be neglected. Our results show how the elastic, rotational, and rovibrational cross sections depend on the
electron-atom scattering length, on the molecular parameters, and also on the inclusion of polarization effects.
The principle of detailed balance is discussed in the context of the ZRP method. Finally, we show that the
rovibrational coupling considerably affects the rotational cross sections when the rotational constant becomes
comparable to the vibrational constant.
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I. INTRODUCTION

When an environment composed by noble gas atoms finds
proper thermodynamic conditions, there exists a probability
that these atoms interact between themselves through van
der Waals forces, forming dimers [1,2]. The rare-gas dimers
have been the subject of a broad spectroscopic investigation
performed by Tanaka and Yoshino for He2, Ne2, and Ar2

[3–5], by Tanaka et al. for Kr2 [6], and by Freeman et al.
for Xe2 [7]. Since then, such dimers have been extensively
studied in order to establish potentials that properly describe
the molecular properties (see, for example, Slavíček et al. [8]
and Tang and Toennies [9]). Such a task has shown to be a
difficult one. For He2, for instance, Cybulski and Toczylowski
reported an ab initio potential that is not even deep enough to
support a vibrational bound state [10], while it does exist for
the potential calculated by Janzen and Aziz [11].

As far as we could verify, very few explicit studies about
electron scattering by neutral van der Waals dimers have been
reported in literature so far. Sweeping the 8.0–8.9 energy-
loss range and paying attention to the Feshbach resonances
associated to the Xe 3P 2 and 3P 1 atomic lines, Allan measured
the electron impact spectra of Xe2 and Xen (n ∼ 3, 4) [12]
and observed that such structures are practically absent in
the dimers. More recently, Blanco and Garcia [13] computed
electron-Ar2 scattering cross sections between 1 and 500 eV
using the screening corrected additivity rule combined with
the independent atom representation. This technique is able to
generate elastic, inelastic, and total cross sections but does not
take into account the rotational and vibrational dynamics of
the target. On the other side, through the years, more attention
has been given to the problem of electron scattering by
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rare-gas ionized dimers, the so-called dissociative recombi-
nation: e− + R2

+ → R + R + kinetic energy [14–18].
Investigations on e− + X2 (X = He, Ne, Ar, Kr, and Xe)

dimers are, in fact, scarce. In principle, the associated cross
sections could be calculated with well-established methods
like the R matrix [19] or the complex Kohn [20]. The com-
putation of electron-molecule cross sections is specially hard
for very low incident electron energies, mainly about what
concerns the incorporation of the target-projectile correlation-
polarization effects and the proper evaluation of the vibra-
tional and rotational couplings.

Considering the very-low-energy regime, we find a suitable
method known as the zero range potential (ZRP) [21]. In this
approach the effect of the scattering potential is reduced to a
boundary condition. The greatest advantage of using the ZRP
is that the calculation is strongly simplified when compared to
more sophisticated treatments, and analytical solutions may
be found for some particular cases. It works as a semiempiri-
cal method because the working expressions for the cross sec-
tions depend on parameters like the electron-atom scattering
length or the atomic dipole polarizability in such a way that
it is possible to investigate how the cross sections vary with
different values for each atomic and molecular parameter.

ZRP is a successful methodology that has been applied
to the electron-molecule scattering problem. Drukarev and
Yurova used it combined with the adiabatic approximation to
calculate rotational and vibrational cross sections for electron-
H2, Li2, Na2, and K2 impact [22]. In a similar way, Ostrovsky
and Ustimov obtained the exact solution of the particle-rigid-
rotor scattering problem [23], based on the ZRP formulation.
Later, Gribakin demonstrated, using the ZRP, that positron
annihilation with molecules can be enhanced due to Feshbach
vibrational resonances [24]. Finally, Leble and Yalunin ap-
plied the ZRP to calculate the X1�g

+ → a3�g
+ electronic

and vibrational excitation cross sections of H2 by electron
impact [25,26].
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For this work, we consider the traditional ZRP prescrip-
tion and a modified one in which the effect of the atomic
polarizability is explicitly accounted, inspired in the modified
effective range theory (MERT) [27], originally conceived to
treat electron-atom scattering. The scattering cross sections
are calculated in the fixed nuclei, the rigid rotor (RRA) and the
rovibrational (RVA) approximations, taking the rotational and
vibrational dynamics explicitly. This formulation permits a
direct identification of an electron-molecule scattering length,
from the equilibrium internuclear distances and the electron-
atom scattering lengths.

This paper is organized as follows: Section II presents the
theory developed for this work. Section III brings the atomic
and molecular parameters used in the calculations. Section IV
shows the results and discussion. Finally, we present our
conclusions at the end, in Sec. V. Atomic units are used
throughout the paper.

II. THEORY

The ZRP approximation becomes physically interesting
when the particle de Broglie wavelength is much greater than
the potential range. In other words, it is a good approximation
for very small incident momentum particles. Considering
the potential field of order ∼8 a0 (the largest internuclear
equilibrium distance corresponding to Xe2 [9]), we apply such
methodology to incident electron energies up to 100 meV.

The application of the ZRP method to van der Waals
homonuclear rare-gas dimers is very convenient. This is be-
cause each rare-gas atom in the dimer causes only a small
perturbation in the second one. As a consequence, it is pos-
sible to model the dimer as two “individual” atoms under
an internuclear distance constraint �R = �R1 − �R2, where �Ri

locates the ith nucleus [24,28].

A. ZRP to electron – Atom

Following Gribakin [24], it is important to understand how
ZRP works for electron-atom scattering. For small momenta,
the electron-atom interaction is described in ZRP approxima-
tion by the boundary condition [21]

1

rψ (r )

d[rψ (r )]

dr

∣∣∣∣
r→0

= −κ0 , (1)

where κ0 is a parameter and the atom, represented by the ZRP,
is placed at the origin. In order to determine κ0, we use the fact
that, except at the scattering center, the electron is described
as a free particle and its wave function is

ψ (r ) = N (k)
sin(kr + δ0)

r
, (2)

where k is the electron momentum, N (k) is a normalization
factor which depends on k, and δ0 is the s-wave phase shift.
From boundary condition (1), one gets

k cot δ0 = −κ0. (3)

In the limit k → 0, it is known from effective range theory
(ERT) [29,30] that

κ0 = −k cot δ0 � 1

A
, (4)

where A is identified as the electron-atom scattering length.
One may observe that the original ERT was generalized
taking account terms related to the long-range polarization
potential (−αd/2r4), where αd is the dipole polarizability of
the atom ([31], Sec. 12.2), introducing the modified effective
range theory (MERT) [27,32]. The results provided by MERT
have shown to be more accurate for electron-atom scatter-
ing than the ERT results. It leads us to conjecture that the
inclusion of such terms in Eq. (4) may improve the results
for both individual atoms and dimer molecules in the ZRP
method as well. For these reasons, we propose a ZRP param-
eter dependent on momentum κ0(k), inspired in the MERT
expansion [32]:

κ0(k) = −k cot δ0 � 1

A
− παd

3A2
k − 4αd

3A
k2 ln(k). (5)

We would like to emphasize this is not the first time that a
ZRP parameter dependent on k is found in literature. Fedorov
and Jensen, for example, have considered the ERT expansion
with a similar strategy [33].

In order to make the discussion easier throughout the
paper, we shall denominate the prescription that considers
the target polarizability through Eq. (5) zero range potential
with polarization as ZRPP, while the original one represented
by Eq. (4) simply as ZRP. Figure 1 shows the s-wave phase
shifts for electrons scattered by Ne and Xe atoms considering
the ZRP and ZRPP models. The results are compared to
the best MERT fitting reported by Shigemura et al. [34] for
Ne and Kurokawa et al. [35] for Xe able to reproduce their
experimental cross sections. As expected for atoms, the ZRPP
method improves the s-wave phase shifts when compared
to the ZRP ones. The s-wave cross section is calculated
using

σ (k) = 4π

k2 + κ2
0 (k)

≈ 4πA2

(
1 + 2παd

3A
k + 8παd ln k

3
k2 + · · ·

)
, (6)

which works for both ZRP and ZRPP formulations, for small
momenta [21,24]. This equation is similar to the ones reported
by O’Malley [36] and later by Mitroy [37], which supports
the hypothesis that the ZRPP model improves the results for
electron-atom cross sections and brings it closer to the MERT
ones.

We would like to call attention to a subtlety found in
the electron-Ne investigation. There is a vanishing of the
ZRPP parameter κ0(k) at παdk/3A2 ≈ 1/A [see Eq. (5)].
This effect becomes considerable at energies above ∼15 meV,
and, because of that, we focus on energies up to 10 meV
for this system. No such problem occurred with the other
atoms.

B. Electron – Rare-gas dimers

In this section, we denote the rare-gas dimer simply as a
molecule. According to ZRP, the electron-molecule scattering
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FIG. 1. s-Wave phase shifts as a function of incident energy for e− + Ne with A (electron-atom scattering length)=0.206 (panel a) and e− +
Xe with A = −5.13 (panel b). The polarizability value used for each atom is presented in Table III. Dashed line with triangles up: calculated
with zero range potential (ZRP) [Eq. (4)]; solid line with squares: calculated with zero range potential with polarization (ZRPP) [Eq. (5)];
dashed-dot line with circles: MERT fitting from experimental measurement at small energies [34,35].

wave function outside the atoms [24,28] is written as

ψ (�r ) = ei�kνi
·�r�νi

( �R) +
∑
ν ′

Aν ′
eikν′ |�r− �R1|

|�r − �R1|
�ν ′ ( �R)

+
∑
ν ′

Bν ′
eikν′ |�r− �R2|

|�r − �R2|
�ν ′ ( �R), (7)

where �ν ′ ( �R) is the molecular wave function. The label ν ′ de-
notes the quantum state configuration of the molecule, while
�R is the relative internuclear distance ( �R = �R2 − �R1). The

first term on the right-hand side (RHS) of Eq. (7) represents an
electron with incident momentum �kνi

, which is fixed in the ẑ

direction, plus a molecule in the initial state �νi
( �R). The sums

in the RHS of this equation are scattering events which leave
the molecule in the ν ′th final state.

Due to the boundary condition given in Eq. (9) below, only
isotropic scattering is described by Eq. (7). This character may
be visualized comparing the Eq. (7) above with Eq. (12) of
Ref. [38], where the theory for the scattering by a rigid rotor is
presented. One may observe that both equations become iden-
tical, in the asymptotic limit, if l′ = 0 in the laboratory frame
close-coupling formulation. A second point to observe is that
the exact solution of Ostrovsky and Ustimov [23] for the rigid
rotor homonuclear scattering problem contains a correction
term for the scattering wave function (see Eq. (3.13) of [23]).
However, as we show in Sec. II B 3, the ZRP model developed
here provides results with similar energy dependence and,
once coupled to the adiabatic treatment, it gives similar cross
sections as the ones obtained with the exact model, at least for
the dimers studied in this work.

The final momentum is calculated through energy conser-
vation,

k2
νi

2
+ Eνi

= k2
ν ′

2
+ Eν ′ , (8)

where Eνi
and Eν ′ are the initial and final molecular energies,

respectively. The momentum kν ′ is real for open channels and

imaginary for the closed ones. The ZRP boundary condition,
in the multiple-scattering center formulation, becomes

1

rψ (�r )

d[rψ (�r )]

dr

∣∣∣∣
�r→ �Rj

= −κ0j (kν ), (9)

in which �Rj locates the j th nucleus and κ0j (kν ) is the param-
eter for the j th target in the ZRP prescription [Eq. (4)] or the
ZRPP one [Eq. (5)]. When applying ZRPP, the argument of
κ0 in the equation above refers to the lower value between
kνi

and kν for a given transition [see Eq. (8)]. The reason for
such choice is connected to the principle of detailed balance
and is discussed in Sec. II B 4. Throughout this article we
consider νi → ν an excitation process such that kν < kνi

.
In diatomic homonuclear molecules, κ0j (kν ) is the same for
both scattering centers. As discussed before, the van der
Waals molecules considered in this work may be modeled
by two individual atoms under a nuclear distance constraint.
This means that by improving the description of the electron
scattering by the single atom, it also improves the electron
scattering by the corresponding dimer. This motivates the use
of Eq. (5) in the RHS of the boundary condition (9) and it
allow us to study the results provided by both ZRP and ZRPP
methods.

By inserting Eq. (7) in Eq. (9), and using the orthonormal-
ity property of the molecular wave functions, a set of linear
equations is obtained for the coefficients Aνi

ν and Bνi
ν :

Aνi

ν (κ0(kν ) + ikν ) +
∑
ν ′

B
νi

ν ′ 〈ν | eikν′R

R
|ν ′〉

= − 〈ν|ei�kνi
· �R/2|νi〉 , (10)

Bνi

ν (κ0(kν ) + ikν ) +
∑
ν ′

A
νi

ν ′ 〈ν | eikν′R

R
|ν ′〉

= − 〈ν|e−i�kνi
· �R/2|νi〉 , (11)
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where the matrix elements are

〈ν | eikν′ R

R
|ν ′〉 =

∫
�∗

ν ( �R)
eikνR

R
�ν ′ ( �R)R2dRdR̂, (12)

〈ν|ei�kνi
. �R/2|νi〉 =

∫
�∗

ν ( �R)ei�kνi
. �R/2�νi

( �R)R2dRdR̂. (13)

The calculation of such matrix elements depends on the
explicit form of the molecular wave functions.

Taking the limit r → ∞ in Eq. (7), the scattering amplitude
is obtained:

f (k̂′) = Aνi

ν e−ikν k̂′· �R0/2 + Bνi

ν eikν k̂′ · �R0/2, (14)

where k̂′ is a unit vector describing the direction of the
scattered electron. Noting that kνR0 � 1, the cross section for
the transition νi → ν is then calculated using

σνi→ν = kν

kνi

∫
|f (k̂′)|2dk̂′ ≈ 4π

kν

kνi

∣∣Aνi

ν + Bνi

ν

∣∣2
. (15)

1. Elastic cross section in the fixed nuclei approximation

In order to calculate the elastic cross section, the effective
molecular wave function product that reduces the matrix ele-
ments [Eqs. (12) and (13)] to the fixed nuclei approximation
matrix elements is written as

�ν ′ ( �R)�∗
νi

( �R) = δ(R − R0)

R2
δ(R̂)δν ′νi

, (16)

where δ(x) is the Dirac δ function and δαβ is Kronecker’s δ.
The Dirac δ functions in Eq. (16) accounts for the fact that
in the fixed nuclei approximation, the target does not vibrate
nor rotate. Therefore, the molecule remains in its internuclear
equilibrium geometry R0 and in its original space orientation
R̂. The Kronecker delta translates the physical scenario where
excitations associated to the nuclear degrees of freedom are
fully disregarded. From energy conservation kν ′ = kνi

.
The calculation of matrix elements given by Eqs. (12) and

(13) using (16) are straightforward and the set of Eqs. (10)
and (11) becomes trivial. In fact, one obtains two equations
for two variables (A and B), which results in

A = − cos (�kνi
· �R0/2)

(κ0(kνi
) + ikνi

) + eikνi
R0/R0

− i
sin ( �kνi

· �R0/2)

(κ0(kνi
) + ikνi

) − eikνi
R0/R0

, (17)

and B = Re(A) − iIm(A). As one can inspect, the cross sec-
tion, calculated using Eq. (15), depends on the Re(A)2 value
and, therefore, it is proportional to cos2 (�kνi

· �R0/2) ≈ 1, for
kνi

R0/2 � 1. Analogous development is achieved by taking
the average over the molecular orientations. Hence, the cross
section is

σ elas (kνi
) = 16π

(3 − κ0(kνi
)R0)k2

νi
+ (κ0(kνi

) + 1/R0)2 . (18)

Taking the limit kνi
→ 0 in Eq. (18), we immediately recog-

nize the molecular scattering length Am:

Am = 2R0
R0
A

+ 1
. (19)

The value of Am has some interesting implications. Its alge-
braic sign may be either positive or negative, depending on the
value of the electron-atom scattering length A. If A > 0, then
Am > 0; if −R0 < A < 0, then Am < 0; and if A < −R0,
then Am > 0. This last result shows that the composition of
two negative electron-atom scattering lengths may provide a
positive value for Am, and, in such a situation, a bound state
may exist.

For a better understanding of the cross section’s depen-
dence on kνi

, we use Eq. (5) and expand Eq. (18) up to order
k2
νi

. For sufficiently small momenta,

σ elas (kνi
) ≈ 4πA2

m

(
1+παd

3A2
Amkνi

+
[

4αd ln kνi

3AmA
+1

3

(
παd

2A2

)2

+ R0

2Am

− 1

]
A2

mk2
νi

)
. (20)

This equation reduces to the usual ZRP method with a con-
stant parameter κ0 if the dipole polarizability αd is set equal
to zero. In this case, the elastic cross section depends only
on k2

νi
. In the same way observed in the electron-atom cross

section, Eq. (6), the ZRPP model generates an elastic cross
section with a linear dependence on kνi

.

2. Rigid rotor approximation

In the RRA only the rotational degrees of freedom of
the molecule are considered. For a diatomic molecule, the
rotational wave functions are taken as spherical harmonics
YJM (R̂), J and M being the rotational quantum numbers
(see Chap. 9 of [39]). In this case, the effective molecular
wave-function product is written as

�ν=JM ( �R)�∗
ν ′=J ′M ′ ( �R) = δ(R − R0)

R2
YJM (R̂)Y ∗

J ′M ′ (R̂).

(21)

In such an approximation, the target may be excited to another
rotational quantum level: νi = JiMi → ν = JM . Setting the
initial rotational state of the molecule as the ground state
(Ji = 0, Mi = 0), the matrix element (13) is calculated mak-
ing use of the standard plane-wave expansion in spherical
coordinates:

〈JM|ei�kJi
· �R/2|00〉 =

√
4πiJ jJ

(
kJi

R0

2

)
Y ∗

JM (k̂Ji
), (22)

where ja (x) are the spherical Bessel functions of order a.
The matrix element of Eq. (12) is easily obtained using the
orthonormality property of the spherical harmonics:

〈JM | eikJ ′ R

R
|J ′M ′〉 = eikJ ′ R0

R0
δJ ′J δM ′M. (23)

The deltas present in Eq. (23) get rid of the sums present in
the set of linear equations (10) and (11). In such situation,
analogous to what happened in the fixed nuclei case, we obtain
two sets of equations for two variables (AJiMi

JM and B
JiMi

JM ),
which couple the rotational quantum numbers Ji,Mi and
J,M . Taking the average on the initial rotational projections
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Mi and summing over M in Eq. (15), we obtain

σJi→J (kJi
) = σ0→J (kJi

)
J+Ji∑

L=J−Ji

[(
kJi

R

2

)(L−J )

× (2J + 1)!! 〈J0Ji0|L0〉
(2L + 1)!!

]2

, (24)

where 〈J1M1J2M2|JM〉 are Clebsch-Gordan coefficients and,
for small momenta, the 0 → J cross section is

σ0→J (k0) = kJ

k0

[
(k0R0)J

2J (2J + 1)!!

]2

× 16π (2J + 1)

(3 − κ0(kJ )R0)k2
J + (κ0(kJ ) + 1/R0)2 . (25)

From selection rules, only even values of J are allowed in
the equation above. One may notice that for J = 0 the elastic
cross section in Eq. (18) is recovered.

3. Comparison with other rigid rotor models

In this section we compare our results to similar ones that
can be accessed with other formulations found in literature
for the scattering of a particle by a rigid rotor. More specif-
ically, we pay attention to the exact solution presented by
Ostrovsky and Ustimov [23] and the more familiar adiabatic
approximation. In the past, Drukarev and Yurova [22] studied
the rovibrational excitation of ordinary diatomic molecules by
electron impact by applying the adiabatic approximation to
the ZRP scattering amplitude.

The adiabatic scattering amplitude is calculated using [22]

f
(AD)
JiMi→JM (�kνi

, �kν ) =
∫

Y ∗
JM (R̂)f (�kνi

, �kν, �R)YJiMi
(R̂)dR̂,

(26)

where f (�kνi
, �kν, �R) is the fixed nuclei ZRP scattering ampli-

tude.
Inserting Eq. (14) into Eq. (26), and considering coeffi-

cients A and B as given by Eq. (17), we find

σX
Ji→J (kJi

)=16π
kJ

kJi

(2J + 1)

×
∞∑
l=0

l+Ji∑
L=|l−Ji |

L+J∑
l′=|L−J |

∣∣∣∣jl (kJi
R0/2)jl′ (kJ R0/2)

κ0 + βX
Ll

∣∣∣∣
2

× (2l + 1)(2l′ + 1)

2L + 1
〈J0l′0|L0〉2 〈Ji0l0|L0〉2 .

(27)

One may recognize that the same expression for the rotational
transition cross section is provided by the exact model [23].
The main difference between them is found in the β factor
and, for this reason, we attach a label X to it. In what follows

X=EX refers to the exact solution, while X=AD to the
adiabatic one.

For the adiabatic approximation, one obtains

βAD
Ll = ikJ + (−1)l

eikJ R0

R0
. (28)

Within the exact model, Ostrovsky and Ustimov [23] calcu-
lated a correction factor given by

βEX
Ll = βAD

Ll + 2i

∞∑
m>0

L+m∑
n=|L−m|

(2n + 1)(2m + 1)

2L + 1

× 〈m0n0|L0〉2

(
1 + 2me

μ

)

×
[
kmjn

(
kmR0

2

)
h(1)

n

(
kmR0

2

)

− kJi
jn

(
kJi

R0

2

)
h(1)

n

(
kJi

R0

2

)]
, (29)

where the index m respects the parity of the initial rotational
quantum number Ji and the index n runs over the integers
of parity L + Ji . The h(1)

n (x) stands for the spherical Hankel
function of the first kind. We may consider (1 + 2me/μ) ≈ 1,
since the electron mass me is much smaller than the mass of
the rigid rotor μ. Such an equation reveals that if km/kJ ≈ 1,
the exact solution becomes identical to the adiabatic approxi-
mation.

The values of the rotational constants are small for the
dimers studied in this work, as one can notice in Table IV. Due
to this, the differences between βAD

Ll and the leading order of
βEX

Ll become prominent in the very-low-energy regime (E <

0.1 meV). The most important feature provided by the exact
model, when compared to the adiabatic one, is that a rotational
resonance exists if the condition κ0 = Re(βEX

Ll ) is obeyed.
Nevertheless, as discussed in [23], this condition is only
fulfilled if the electron-atom scattering length A is very close
to the equilibrium position R0 of the homonuclear molecule.
This makes the rotational resonance behavior unlikely, and, in
fact, it is not observed for the rare-gas dimers, according to
our work.

In order to compare the RRA proposed in this article to the
adiabatic one, we consider Ji = 0 in Eq. (27):

σAD
0→J (k0) = 16π

kJ

k0
(2J + 1)

×
∞∑
l=0

l+J∑
l′=|l−J |

∣∣∣∣jl (k0R0/2)jl′ (kJ R0/2)

κ0(kJ ) + βAD
ll

∣∣∣∣
2

× (2l′ + 1) 〈J0l′0|l0〉2
, (30)

where we assumed that the κ0 parameter may depend on the
electron momentum. Noticing that kJ R0 ≈ k0R0 � 1, and,
for x � 1, j 2

a (x) � j 2
b (x) for any b > a, we obtain

σAD
0→J (k0) ≈ σ0→J (k0) g0J , (31)
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where σ0→J (k0) is given by Eq. (25), and

g0J =
J∑

l=0

[√
2(J − l) + 1(2J + 1)!! 〈J0(J − l)0|l0〉 (R0 + A)

(2l + 1)!!(2[J − l] + 1)!!(R0 + (−1)lA)

]2

. (32)

Equations (31) and (32) reveal that the rotational transition
cross sections [Eq. (25)], based on an approximated wave
function [Eq. (7)], furnish results smaller in magnitude but
with a similar dependence on the incident electron momen-
tum when compared to the adiabatic model. The term g0J

[Eq. (32)] works as a scale factor and, as we can see, it
does not depend on the electron energy in the energy range
studied in this work. It comes from the fact that, in the
adiabatic approximation, partial waves beyond the spherical
wave are taken into account in the scattering wave function.
Table I brings the numerical values for g0J for the rare-gas
dimers.

Figure 2 presents results to the 0 → 2 rotational cross
section regarding the Ar2 dimer. A crucial point is that the
exact model (squares) provides results alike to the adia-
batic model (triangles). Since this feature is observed for
all dimers studied, we find out that the correction factor
βEX

Ll calculated by Ostrovsky and Ustimov [23], presented
in Eq. (29), is small and its impact in the final cross section
is unnoticeable, at least for the scattering of electrons by
rare-gas dimers case. The results obtained with our model
(dashed line), Eq. (25), are, as discussed in this section,
smaller in magnitude with respect to the exact and adia-
batic models. Notwithstanding, Eq. (25) combined with the
scale factor g02, calculated through Eq. (32), gives outcomes
(full line) in good agreement with both exact and adiabatic
models.

4. Considerations regarding the principle of detailed balance

The principle of detailed balance (PDB) establishes a well-
defined relation between excitation and deexcitation cross
sections for given initial and final states. Mathematically, it
is embodied in the T matrix for a given a ↔ b transition. The
relation between the excitation and deexcitation cross sections
is obtained fixing Ta→b = Tb→a . Physically, it translates the
microscopical reversibility of physical reactions (see Chap. 16
of [40]). Its relevance for practical applications lies in the fact
that the deexcitation cross sections can be readily obtained by
the PDB, instead of repeating a laborious calculation from the
theory.

In this section the PDB is analyzed in the context to the
RRA. It is so chosen because it permits a straightforward

TABLE I. Numerical values of g0J for J = 2 (first line) and
J = 4 (second line) for the rare-gas dimers. The parameters used in
Eq. (32) are presented in Tables III and IV. The values for Xe2 were
calculated with A = −5.13 and A = −6.09, respectively.

He2 Ne2 Ar2 Kr2 Xe2

g02 9.90 5.83 3.53 2.60 2.18/2.07
g04 84.0 54.8 38.2 31.5 28.5/27.6

comparison to the theory of scattering by a rigid rotor of
Arthurs and Dalgarno [38]. From this reference, we find that
if the PDB is rigorously respected, the following relation
holds:

k2
Ji

(2Ji + 1)σJi→J = k2
J (2J + 1)σJ→Ji

. (33)

Within the ZRPP prescription, by taking Eq. (25) for the 0 →
J transition and considering the respective cross section for
the J → 0 process, we obtain

k2
0σ0→J = (2J + 1)k2

J σJ→0f (k0, kJ ), (34)

where

f (k0, kJ )=
(

k0

kJ

)2J (3−κ0(kJ )R0)k2
J +(κ0(kJ )+1/R0)2

(3−κ0(kJ )R0)k2
0 +(κ0(kJ )+1/R0)2 .

(35)

In order for the principle of detailed balance to be strictly
obeyed we should have that f (k0, kJ ) = 1. Analyzing
Eq. (35) we are led to conclude that the PDB is not respected
in both ZRP and ZRPP models, since in any inelastic transi-
tion we necessarily have kJ �= k0. Working in a more flexible
scenario, we find that the PDB is numerically respected as
long as k0 ≈ kJ , a situation which is found for energies far
from the rotational thresholds.

If the PDB does not hold in the ZRPP model, it
sounds reasonable to investigate how it behaves in the
adiabatic model. In this model, the explicit expressions

FIG. 2. Rotational 0 → 2 cross section for Ar2 with the parame-
ters given in Tables III and IV. Legends are as follows: Dashed line is
the results provided by the model of this work [Eq. (25)], which we
call ZRP; full line is the ZRP results multiplied by the scale factor g02

present in Table I, this model is called “rescaled-ZRP”; the triangles
are the results from the adiabatic model, called ZRP-AD; squares
are results given by the exact model of Ostrovsky and Ustimov [23],
called ZRP-EX.
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obtained are

σAD
0→J = 16π

kJ

k0

∞∑
l=0

∞∑
l′=0

j 2
l (k0R0/2)j ′2

l (kJ R0/2)(2l + 1)(2l′ + 1) 〈l0l′0|J0〉2

k2
J [1 + (−1)l (2 − κ0(kJ )R0)] + (κ0(kJ ) + (−1)l/R0)2

, (36)

σAD
J→0 = 16πk0

(2J + 1)kJ

∞∑
l=0

∞∑
l′=0

j ′2
l (k0R0/2)j 2

l (kJ R0/2)(2l + 1)(2l′ + 1) 〈l0l′0|J0〉2

k2
0[1 + (−1)l′ (2 − κ0(kJ )R0)] + (κ0(kJ ) + (−1)l′/R0)2 . (37)

Comparing both equations, we are led to conclude that the
PDB is satisfied if

k2
J [1 + (−1)l (2 − κ0(kJ )R0)] + (κ0(kJ ) + (−1)l/R0)2

= k2
0[1 + (−1)l (2 − κ0(kJ )R0)] + (κ0(kJ ) + (−1)l/R0)2.

(38)

As ascertained in the analysis for the ZRP and ZRPP models,
the PDB is numerically respected for energies far from the
threshold (k0 ≈ kJ ).

The adiabatic prescription, on the other side, offer us
another interesting point of view. In the physical scenario
where kJ �= k0, we find that kJ , k0 � 1 such that kn

J and kn
0

are practically equal to zero for n � 2. Due to that, the first
terms in the left-hand side and right-hand side of Eq. (38)
are negligible for the rare-gas dimers. Then, we find why it
is interesting to choose to work with the lower value between
kJ and k0 for the argument of the κ0 parameter [as discussed
above Eq. (9)]: such a prescription enhances the agreement
between the ZRP and ZRPP models for energies closer to
the threshold and improves the application of the numerical
version of the PDB in the AD model.

As an illustrative example of the previous discussion, we
present in Fig. 3 the deexcitation cross section of the 2→0
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FIG. 3. Deexcitation cross section for the 2 → 0 transition for
electron-Kr2 computed from the ZRPP compared to those pro-
vided by the principle of detailed balance (PDB) for very low
electron momenta (where k2 �= k0). Solid line: ZRPP cross section;
double-dashed-dotted line: ZRPP calculated using the PDB relation
[Eq. (33)]; dashed line: ZRPP + AD (adiabatic approximation) cross
section; dotted line: ZRPP+AD calculated using the PDB relation
[Eq. (33)]. For the sake of completeness, the energy range covered in
this figure goes from ∼2.0×10−4 meV (k2/k0 = 0.1) to ∼0.08 meV
(k2/k0 = 0.9).

transition for electron-Kr2. Only the very-low-electron-
momenta range is considered (where k2 �= k0). We perceive
that the ZRPP (solid line) cross section is strongly different
from that obtained from the PDB (double-dashed-dotted line),
as predicted by Eqs. (34) and (35). As stated above, when the
adiabatic approximation is regarded, the deexcitation cross
sections computed by the pure method or from the PDB
become indistinguishable (see dashed and dotted lines in the
figure).

The failure of the ZRP model to respect the strict form
of the PDB can also be seen as a consequence of the fact
that only spherical waves are produced in the final scattering
channel. The improvement in the PDB, observed when the
cross sections are computed in the adiabatic approach, comes
from the fact that the partial waves present in the exponentials
of Eq. (14) are no longer neglected.

5. Short-range versus long-range effects

It is known that rotational excitation of homonuclear
molecules by low-energy electrons is often well modeled
by the long-range electron interaction with the quadrupole
moment of the molecule. The theory that recognizedly deals
with this hypothesis is described in the Gerjuoy-Stein (GS)
article [41]. In this approach, the rotational excitation cross
section is given by

σGS
J→J+2 = kJ+2

kJ

8π

15
Q2 (J + 2)(J + 1)

(2J + 3)(2J + 1)
, (39)

which strongly depends on the magnitude of the molecular
quadrupole moment Q.

In order to compare the GS model (long-range quadrupole)
to the ZRP models (short-range effects), we have taken the
numerical value for the quadrupole moment Q of each rare-
gas dimer, except Xe2, from the ab initio calculation (MP2)
of Ref. [42]. For Xe2 the Q value was calculated with the
GAMESS software [43] using the basis set aug-cc-pVTZ [44].
This basis set was chosen inspired in the theoretical article
devoted to the study of the interaction potential between the
atoms that form the respective dimer. The quadrupole values
are listed in Table II.

From the values of Table II, one can notice that, from
He2 to Kr2, the long-range quadrupole potential, given by the

TABLE II. Quadrupole moments for the dimers in atomic units.
All values are taken from [42], except Xe2, as discussed in the text.

He2 Ne2 Ar2 Kr2 Xe2

Q −0.0012 −0.0022 −0.0186 −0.0332 16.67
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FIG. 4. Rotational excitation cross section for 0 → 2 transition
in electron-Kr2 scattering. Dashed line: ZRP cross section [Eq. (25)];
solid line: rescaled-ZRP [Eq. (25) combined with Eq. (32)]; dashed-
dotted line: Gerjuoy-Stein model (GS) [Eq. (39)]. All results were
obtained in the RRA, and the parameters used are in Table II for the
GS and Tables III and IV for the ZRP.

asymptotic expression V → QP2(cos θ )/r3, is weak when
compared to the respective quantity in typical diatomics like
H2 (Q ≈ 0.5 a.u.) and N2 (Q ≈ −1.0 a.u.).

In Fig. 4 we show the cross section provided by the GS
model compared to the ZRP and rescaled-ZRP for the Kr2

dimer. Due to the value of the quadrupole moment of Kr2, the
GS cross section is significantly smaller than those provided
by the ZRP models (except for energies very close to the
threshold). It strongly suggests that, in spite of the existence
of the long-range quadrupole effect, the short-range potential
may be the dominant mechanism for the rotational excitation
dynamics in electron-rare-gas dimers. Similar results as the
ones reported in Fig. 4 are found for He2, Ne2, and Ar2.
Clearly, Xe2 can be an exception to the statement above,
once its Q value is much larger than the others, but we still
report the results for this system for future reference in related
investigations.

6. Rovibrational model

The inclusion of the vibrational states of the molecule is
very important in order to properly describe the phenomenol-
ogy of the scattering process. The RRA, for example, fails to
respect the uncertainty principle, once the zero-point energy
associated to the nuclear vibrational motion is not taken into
account. The molecular wave function, with both vibrational
and rotational degrees of freedom, is written as

�ν=nJM ( �R) = �n(R)

R
YJM (R̂). (40)

As a preliminary application of ZRP to the electron-dimer
scattering problem, we consider the vibrational states of the
molecule in the harmonic approximation, such that �n(R) are
the solutions of the quantum harmonic oscillator. It is assumed
that the molecule is in its vibrational ground state in the initial
scattering state.

TABLE III. Parameters for the noble gas atoms. The scattering
length A is given in units of a0 and the dipole polarizability αd

is reported in units of a3
0 . The scattering lengths are taken from

beam experiments. For He and Ne, they are taken from the work
of Shigemura et al. [34]; for Ar, Kr, and Xe the values of A are
taken from the experiment of Kurokawa et al. [35]. For Xe, we also
considered the scattering length reported in the swarm experiment of
Hunter et al. [45]. All the atomic polarizabilities were taken from the
article of Miller and Benderson [46].

He Ne Ar Kr Xe

A 1.194a 0.206a − 1.365b − 3.06b −5.13b/−6.09c

αd 1.383 2.67 11.1 16.8 27.3

aBeam experiment Ref. [34].
bBeam experiment Ref. [35].
cSwarm experiment Ref. [45].

The matrix element (12) for such a molecular wave func-
tion becomes

〈ν|e
ikν′ R

R
|ν ′〉 = 〈n|e

ikn′J R

R
|n′〉δJ ′J δM ′M. (41)

Observe that the RHS of Eq. (41) depends only on the
molecular vibrational wave functions. Such a matrix element
is provided in leading order by Gribakin [24] and, for the sake
of completeness, is presented in Appendix.

The matrix element (13) becomes an integral which de-
pends on the internuclear distance and the spatial orientation.
The analytical development is shown in Appendix. It is impor-
tant to notice that the coupling of the vibrational and rotational
states of the molecule is incorporated in this matrix element.

The cross section is calculated through Eq. (15), setting
νi = |0JiMi〉 → ν = |nJM〉, averaging over Mi , and sum-
ming over M . In the RVA, we were not able to obtain
analytical expressions for the cross sections, as it was done
in the prior approximations. This is a consequence of the
sum over the vibrational states n′, which formally goes from
n′ = 0 to n′ → ∞. For numerical calculation purposes, the
sum must be truncated at n′

max. We fixed n′
max = 20, because

we verified that the value of the coefficients A
0JiMi

nJM and
B

0JiMi

nJM are practically equal to zero. If we take n′
max ≡ 0, the

RVA is reduced to the RRA as expected. From Eq. (10), the
final electron momentum, considering the harmonic potential
approximation for the vibrational wave function, is

knJ =
√

k2
0Ji

− 2nωv − 2Br [J (J − 1) − Ji (Ji − 1)], (42)

where ωv and Br are the vibrational and rotational constants,
respectively.

III. PARAMETERS OF THE MODEL

In this section, we present the parameters required for
the calculation of elastic and rovibrational cross sections.
Regarding the noble gas atoms, there are two parameters
that must be known to calculate the κ0(kν ) as in Eq. (5):
the electron-atom scattering length A and the atomic dipole
polarizability αd . These are shown in Table III.

Concerning the dimer molecules, there are three molecular
parameters required by the model. These are the reduced
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TABLE IV. van der Waals dimer parameters in atomic units:
reduced mass μ/103; equilibrium position R0, taken from Cybulski
and Toczylowski [10] for He2 and Ne2, from Haley and Cybulski
[47] for Ar2 and Kr2, and from Jerabek et al. [48] for Xe2; vibrational
constant ωv/10−5, calculated through potential fittings [see Eqs. (43)
and (44)]; and rotational constants Br/10−7.

μ/103 R0 ωv/10−5 Br/10−7

He2 3.67 5.62a 14.86 43.3
Ne2 18.4 5.86a 12.97 7.93
Ar2 33.0 7.10b 14.73 3.00
Kr2 76.4 7.60b 10.74 1.14
Xe2 99.1 8.24c 10.40 0.731

aReference [10].
bReference [47].
cReference [48].

mass μ, the equilibrium internuclear distance R0, and the
vibrational constant ωv . The rotational constant Br is also
required, but it can be calculated using the reduced mass and
equilibrium configuration through the relation Br = 1/2μR2

0 .
All the molecular parameters are presented in Table IV.

Since the harmonic approximation is used throughout
this paper, the vibrational constant is calculated by ωv =√

U ′′(R0)/μ, where the potential was represented for all
dimers, except for Xe2, by the fitting [10,47]

U (R) = Ape−αR+βR2 +
8∑

n=3

f2n(R, b)
C2n

R2n
. (43)

For Xe2, the following fitting used was [48]:

U (R) = e−αR

3∑
p=−1

ApRp +
8∑

n=3

f2n(R, b)
C2n

R2n
, (44)

TABLE V. Electron-molecule scattering lengths Am in atomic
units, calculated by Eq. (19) for all rare-gas dimers.

He2 Ne2 Ar2 Kr2 Xe2

Am 1.97 0.398 –3.38 –10.24 –27.18/–46.68

where Ap, α, β, and b are adjustable parameters, C2n are the
dispersion coefficients, and f2n(R, b) is the damping function,

f2n(R, b) = 1 − e−bR

2n∑
k=0

(bR)k

k!
. (45)

The fitting parameters and the dispersion coefficients can be
found in the respective references.

The He2 dimer configures a special case since its potential
is very shallow, and some ab initio potentials are not even
deep enough to support a bound vibrational state [10]. More
accurate potentials [11], nonetheless, reveal that a vibrational
state is possible, and the zero-point energy is very close
to the dissociation threshold (De ≈ 10−4 meV). This fact
leads to only one rovibrational bound state possible for such
dimer [49], and, therefore, the calculation of rovibrational
excitation cross sections would not make any sense. For
Ne2, two vibrational bound states are found [10]. For this
reason, only the transitions ni = 0 → n = 1 and Ji = 0 →
J = 2 are considered. For the remaining dimers, Ar2, Kr2,
and Xe2, the potentials support several rovibrational bound
states [47,48].

For illustrating purposes, Fig. 5 shows the potential sur-
faces fitted from Eq. (43) for Ne2 and Eq. (44) for Xe2,
compared to its harmonic potential approximation. The zero-
point energies calculated for both potentials are also shown.
For Ne2, such energy in harmonic approximation is larger
than the reference value, but it still works as a reasonable
approximation. For Xe2, on the other hand, the zero-point
energy is nearly the same for both potentials. Given the atomic
and molecular parameters, we then proceed to analyze the
results obtained within this model.
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FIG. 5. Panel (a): solid line is Ne2 potential fitting; horizontal solid line represents the zero-point energy; dashed line is the Ne2 harmonic
potential approximation; horizontal dashed line represents the zero-point energy in harmonic potential approximation. Panel (b): same as panel
(a), but for Xe2.
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FIG. 6. Elastic cross section for e− + Ne2 calculated in the RVA.
The results provided by fixed nuclei and RRA furnish similar results.
Dashed line with triangles: ZRP model; solid line with squares:
ZRPP model.

IV. GENERAL RESULTS FOR ELASTIC, ROTATIONAL,
AND ROVIBRATIONAL TRANSITIONS

Results for argon dimer were reported to compare those
produced by the ZRP and ZRP rescaled to the exact solution
of Ostrovsky and Ustimov [23], and the adiabatic approxi-
mation in the RRA in Sec. II B 3. Meanwhile, the krypton
dimer was considered to discuss the connection between the
ZRP and the principle of detailed balance (see Sec. II B 4).
We also used this system to compare the ZRP results with
those provided by the long-range quadrupolar model of
Gerjuoy-Stein [41].

In this section, we present results for elastic, rotational, and
rovibrational transitions for selected dimers. We have chosen
Ne2 and Xe2 as representative systems to illustrate the results
provided by the ZRP and the ZRPP prescriptions. Argon,
krypton, and xenon have negative electron-atom scattering
lengths (see Table III). For this reason, we decided to report
and to discuss mainly the xenon atom. Another motivation to
focus on Xe2 among others is the discrepancy of the electron-
atom scattering length reported in literature. This also occurs
for other dimers but is not as considerable as in the Xe case.
Finally, in Sec. IV C, the mass of the krypton dimer was
varied in order to visualize how the oscillator mass affects the
vibrational cross sections.

Table V brings the electron-molecule scattering lengths Am

for all dimers calculated by Eq. (19). Although such values
are calculated by a simple equation which is a consequence
of the ZRP approximation, we believe these would be close to
the ones provided by an ab initio method or an experiment, if
possible.

A. Electron – Neon dimer

Figure 6 shows the elastic cross section for e− + Ne2 in the
RVA, considering the ZRP and ZRPP prescriptions. The inclu-
sion of the polarizability term rises the elastic cross section,
while the result in the pure ZRP is flat (as also observed for
e− + He2, not shown here). This may be understood through
Eq. (20), which shows that the cross section depends on kνi

when the polarizability αd is considered. Similar results are

FIG. 7. Excitation cross sections for e− + Ne2. Solid line with
triangles and solid line with squares are the results for vibrational
excitation 00 → 10 cross section provided by ZRP and ZRPP mod-
els, respectively. Dashed line with triangles and dashed line with
squares are the results for rotational excitation 00 → 02 cross section
provided by ZRP and ZRPP models, respectively. Dashed-dot line
with triangles and dashed line with squares are the results for
rovibrational excitation 00 → 12 cross section provided by ZRP and
ZRPP models, respectively.

obtained in the fixed nuclei approximation and RRA. The
fact that Ne atom has a positive scattering length makes the
linear term in kνi

always positive and, hence, the contribution
to the cross section is also always positive. Such behavior is
also seen in the elastic cross section for electron-Ne atoms
[34] for small energies. This is no coincidence once there is a
similarity between the linear term in molecular [Eq. (20)] and
atomic cross-section expansion [Eq. (6)].

Figure 7 presents the vibrational 00 → 10 (solid line),
the rotational 00 → 02 (dashed line), and the rovibrational
00 → 12 cross sections. As observed in the elastic transition
(see Fig. 6), the vibrational and rotational excitation cross
sections rise faster with energy when polarizability terms
are considered in expansion (5). Nonetheless, the vibrational
cross section is more sensitive to the polarizability term, once
a saturation is seen for ZRP results of about 6 meV, and such
behavior does not happen in ZRPP results in the reported
energies. As we can see, the rovibrational cross section is
identical to the rotational one, except for being shifted toward
higher energies and with smaller magnitude.

One could notice that the vibrational excitation energy
does not exceed ∼2 meV if the true anharmonic potential
is considered, while this energy is greater than 3 meV in
the harmonic approximation. These issues may affect the
validity of the results for this dimer. The level of reliability
of the harmonic approximation remains as a point for further
investigations, and we presented the results here for future
reference in related works.

B. Electron – Xenon dimer

The results for the elastic cross sections of Xe2 are pre-
sented in Fig. 8. Due to a discrepancy in the electron-atom
scattering length given by Kurokawa et al. [35] and Hunter
et al. [45], we have calculated the cross sections for both
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FIG. 8. Elastic cross section for e− + Xe2 within the RVA. Solid
line with triangles and solid line with squares are results provided by
ZRP and ZRPP models considering Kurokawa et al. electron-atom
scattering length A = −5.13 [35]. Dashed line with triangles and
dashed line with squares are results provided by ZRP and ZRPP
models considering Hunter et al. electron-atom scattering length
A = −6.09 [45].

values in order to visualize how these vary with such pa-
rameters. We see that the elastic cross section is sensitive
to the value of A, especially for energies below 10 meV.
To understand this, one may look to Eq. (19). From this,
we conclude that when the electron-atom scattering length is
negative and its absolute value gets closer to the equilibrium
position, the magnitude of the electron-molecule scattering
length Am increases rapidly. This is the case of Xe2 once
the reported values for A are −5.13 a0 and −6.09a0, which
provides Am of −27.18 a0 and −46.68 a0, respectively, as we
can see in Table V.

Figure 8 also shows that the inclusion of the polarization
terms makes the elastic cross section decrease in magnitude
when compared to the results for constant κ0. This is expected,
since the linear term in kνi

in Eq. (20) is negative, which
is a consequence of negative values of electron-molecule
scattering length. The same behavior is also observed for Ar2

and Kr2 when the polarizability is considered.

In Fig. 9 the vibrational 00 → 10, the rotational 00 → 02,
and the rovibrational 00 → 12 excitation cross sections are
shown for both reported electron-atom scattering lengths. As
shown in Fig. 9, the cross sections provided by the ZRPP
model are always lower than the ZRP model, as noticed in
the elastic cross-section behavior. The greatest difference be-
tween the results for different scattering lengths is seen in the
00 → 10 transition, mainly in energies closer to the threshold.

The rovibrational transition 00 → 12 cross section is
shown to be small when compared to others, as also seen in
Ne2 (see Fig. 7). These results suggest that the probability of
the target to suffer a rovibrational excitation is lower than the
probability of suffering a pure vibrational or a pure rotational
excitation.

C. Rotational and rovibrational models compared

An advantage of our model is that it allows us to study
how the cross sections depend on the molecular parame-
ters. From Eq. (18), for example, we realize that the elastic
cross section does not depend on the mass of the dimer at
all. On the other hand, Eq. (25) reveals that the rotational
transition cross section has a nonexplicit dependence on the
mass of the rigid rotor in kJ , once the rotational constant
varies with the dimer mass. The impact of such dependence
in the cross section is mainly in the position in which the
rotational channel opens. Far from the threshold, nevertheless,
the rotational cross section is insensitive to the mass, since
kJ ≈ k0. Figure 10 presents cross sections for the vibrational
transition 00 → 10 in the ZRP model considering several
masses for the Kr2 dimer (the mass values used are indicated
in the figure). As the vibrational constant ωv depends on the
mass (see Sec. III), the position where the vibrational channel
opens is different for each mass value. Differently from the
rotational case, the mass of the dimer has an expressive
impact in the vibrational transition cross section, as one may
observe in Fig. 10. These results may be understood through
the matrix elements calculated in the Appendix, where we
notice that Eqs. (A2) and (A16) explicitly depend on the
mass of the dimer μ, and, owing to that, the vibrational
transition cross section also presents a dependence on the
μ parameter. Figure 10 shows that the smaller the value of

FIG. 9. Panel (a): Same as Fig. 7, but for e− + Xe2 considering the electron-atom scattering length A = −5.13. Panel (b): same as panel
(a), but for electron-atom scattering length A = −6.09.
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FIG. 10. Vibrational transition 00 → 10 cross sections consider-
ing different masses for the Kr2 dimer calculated in the ZRP prescrip-
tion. Dashed-dotted line: mass 0.1μ ≈ 7.64×103; dashed line: mass
0.5μ ≈ 3.82×104; solid line: results considering the original mass
μ of the Kr2 dimer; dotted line: mass 2.0μ ≈ 1.53×105; dashed-
double-dotted line: mass 10μ ≈ 7.64×105.

the mass, the larger the magnitude of the 00 → 10 cross
section.

As we developed models considering different levels of
sophistication, with special focus in the RRA and the RVA,
we are able to study when such models give identical results
for the rotational transition cross section. In other words, when
should the vibrational couplings not be ignored in the calcu-
lation of the rotational cross sections? In fact, it is expected
that the coupling between the rotational and vibrational states
of the dimer affects the rotational transitions. For the dimers
studied in this work, however, the difference between the
results obtained within the RRA and RVA are smaller than
∼0.5%.

In order to visualize when the rovibrational coupling may
considerably affect the results, we performed a calculation
regarding a model molecular dimer for the pure rotational
transition 00 → 02. The internuclear equilibrium distance R0,
and, therefore, the rotational constant Br , has been varied.
Meanwhile, the values considered are 1.0×104 for the dimer
mass μ, 1.0×10−4 for the vibrational constant ωv , and 5.0 for
the electron-atom scattering length A. One can verify from
Tables III and IV that these are typical values for the rare-gas
dimers studied here.

The first value of internuclear distance considered was
R0 = 4.0, which gives Br = 3.31×10−6, a value 2 orders of
magnitude smaller than ωv . From Fig. 11 it is seen that the
results are practically indistinguishable. After, we performed
calculations with lower values of R0 in order to test what
happens when values of Br approach ωv . We also show in
Fig. 11 results for R0 = 2.0, 3.0, corresponding to Br =
1.25×10−5, 5.56×10−6, respectively, calculated within the
RRA and RVA. From this, one may notice that the dif-
ference between the outcomes produced by the RRA and
RVA increases when the equilibrium distance decreases. This
strongly suggests that the rovibrational coupling becomes
more important as Br approaches ωv . In this case, the RVA
shall provide results with greater accuracy.
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FIG. 11. Results for the 00 → 02 cross sections calculated in
the RRA (lines with circles) and RVA (lines with diamonds) with
different R0 for a model dimer within the ZRP prescription. The
parameters used are: mass μ = 1.0×104, vibrational constant ωv =
1.0×10−4, and electron-atom scattering length A = 5.0. Solid lines:
results for R0 = 2.0; dashed lines: results for R0 = 3.0; dotted lines:
results for R0 = 4.0.

V. SUMMARY AND CONCLUSIONS

The ZRP approximation has been used to investigate elas-
tic and rovibrational excitation cross sections for electron
scattering by van der Waals rare-gas dimers. The dimers
are described as two rare-gas atoms under an internuclear
constraint characterized by its molecular parameters. The
electron-molecule interaction is described by a simple bound-
ary condition, which, in its original prescription, depends on
a parameter κ0.

In order to go beyond the original ZRP prescription, the
polarization effects have been included in the model inspired
by the MERT. This new prescription has been called ZRPP,
and it improves the results for electron-atom scattering when
compared to those found in literature. This is an important
improvement, once the quality of the electron-dimer results
depends on the quality of the electron-atom results.

Considering the nuclear degrees of freedom of the target,
three approximations have been considered. The simplest one
is the fixed nuclei approximation. This enables us to calculate
the elastic cross section for the electron dimer analytically.
Interesting implications have been observed in this scenario,
such as an equation for the molecular scattering length Am,
and also a linear dependence of the elastic cross section on
the electron incident momentum in the ZRPP model, which is
not registered in the pure ZRP.

The rigid rotor approximation was the second case consid-
ered. As in the fixed nuclei case, the cross section also can
be calculated analytically. The direct comparison to the exact
model of Ostrovsky and Ustimov [23] and with the adiabatic
approximation led us to conclude that, in spite of using an
approximated scattering wave function, the results provided
by the ZRP give cross sections with lower magnitude but
with similar energy dependence compared to the more so-
phisticated models. However, as we have shown, an analytical
expression that accounts for the missing partial waves in the
ZRP can be evaluated, generating a rescaled ZRP model. We
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find that the scale factor, in the energy regime studied, does
not depend on the energy of the incident electron.

Still working in the rigid rotor approximation, we have
found that the ZRP and ZRPP models do not respect the
principle of detailed balance (PDB) due to the approximated
character of the scattering wave function. Nonetheless, the
PDB is numerically respected once the adiabatic approxima-
tion is considered. Analyzing it, we have figured out it is
interesting to chose the lower value between kJ and k0 for
the argument of the κ0 parameter, since such a prescription
enhances the agreement between the ZRP and ZRPP models
for energies closer to the threshold.

The usual prescription to calculate electron-diatomic
molecule rotational cross sections is the quadrupole Gerjuoy-
Stein model (GS) [41]. Comparing the results obtained
through ZRP to the GS results, we have observed that the
rotational cross sections of the ZRP are larger in magnitude
than the corresponding GS cross sections (except for the Xe2

dimer). As the ZRP describes only short-range interactions,
the results suggest that, different from the usual studied
molecules such as H2 and N2, these are the preponderant ones
in the rotational transitions for the electron-dimer collisions.

Following, we have developed calculations in the rovi-
brational approximation. Although we have not been able to
present an analytical form for these, the matrix elements, in
which the rovibrational coupling is present, are calculated
analytically and the 0Ji → nJ excitation cross section is com-
puted numerically. The analytical nature of the ZRP method
permitted us to investigate how the cross sections vary with
the molecular parameters. We have found that the vibrational
cross sections are affected by the dimer mass: the larger the
mass, the lower the cross section. Nonetheless, the elastic and
the rotational cross sections are insensitive to the oscillator
mass.

Comparing the results calculated in the rigid rotor and
rovibrational approximations for all dimers, we have found
that the differences between the results for the rotational cross
sections, evaluated in each approximation, are smaller than
0.5%. Using a model dimer with typical parameters, we have
figured out that rovibrational couplings become important as
long as the rotational constant Br gets closer to the vibrational
constant ωv .

Finally, we have presented here an article addressing the
electron scattering by van der Waals rare-gas dimers. Due
to the improvement of the electron-single atom scattering
description, we conclude that the ZRPP model shall provide
more realistic elastic and inelastic cross sections.
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APPENDIX: MATRIX ELEMENTS

The matrix element present in Eq. (41) is

〈n|e
ikn′J R

R
|n′〉 =

∫
�∗

n(R)
eikn′J R

R
�n′ (R)dR. (A1)

In the harmonic approximation, the vibrational wave function
�n(R) is given by the eigenstates of the quantum harmonic
oscillator

�n(R) = 1√
2nn!

(μωv

π

) 1
4
e−μωvx

2/2Hn(
√

μωvx), (A2)

where x = R − R0, and the other variables are defined in
the text. The matrix element of Eq. (A1) considering the
eigenstates (A2) has been calculated by Gribakin up to leading
order [24]:

〈n|e
ikn′J R

R
|n′〉 = eikn′J R0 (−1)|n−n′ |

R0(R0
√

2μωv )|n−n′|

√
max(n, n′)!
min(n, n′)!

×
|n−n′ |∑
l=0

(−ikn′J )l

l!
. (A3)

The matrix element given by Eq. (13) with Eq. (41) as
molecular wave functions becomes

〈nJM|ei�k0Ji
· �R/2|0JiMi〉

=
∫

�∗
n(R)Y ∗

JM (R̂)ei�k0Ji
· �R/2�0(R)YJiMi

(R̂)dRdR̂. (A4)

In order to uncouple the radial and angular part of the integral,
we write ei�k0Ji

·R̂R/2 = ei�k0Ji
·R̂R0/2ei�k0Ji

·R̂(R−R0 )/2. Both expo-
nentials are, then, expanded using the well-known plane-wave
expansion. In the spherical basis, this leads to

〈nJM|ei�k0Ji
· �R/2|0JiMi〉

= (4π )2
∞∑

c=0

c∑
d=−c

∞∑
γ=0

γ∑
ν=−γ

ic+γ jγ

(
k0Ji

R0

2

)

×Y ∗
cd (k̂0Ji

)Yγν (k̂0Ji
)GJiMicd

JMγν I 0c
n , (A5)

where the angular and radial integrals, respectively, are

G
JiMicd
JMγν =

∫
Y ∗

JM (R̂)Y ∗
γ ν (R̂)Ycd (R̂)YJiMi

(R̂)dR̂, (A6)

I 0c
n =

∫ ∞

−∞
�∗

n(x)jc

(
k0Ji

x

2

)
�0(x)dx, (A7)

where x = R − R0, and jc(y) is the spherical Bessel function
of order c. To calculate the angular integral (A6), we invoke
the relation

Yab(R̂)Yαβ (R̂) =
a+α∑

A=|a−α|

A∑
B=−A

[
(2a + 1)(2α + 1)

4π (2A + 1)

] 1
2

×〈a0α0|A0〉 〈abαβ|AB〉 YAB (R̂), (A8)
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and the solution of such an integral is

G
JiMicd
JMγν =

min(J+γ,Ji+c)∑
A=max(|J−γ |,|Ji−c|)

×
A∑

B=−A

[
(2J + 1)(2γ + 1)(2Ji + 1)(2c + 1)

(4π )2(2A + 1)2

] 1
2

× 〈J0γ 0|A0〉 〈JMγμ|AB〉
× 〈Ji0c0|A0〉 〈JiMicd|AB〉 . (A9)

Using Eq. (A2) in (A7), the radial integral becomes

I 0c
n =

(
μωv

2nπn!

) 1
2
∫ ∞

−∞
jc

(
k0Ji

x

2

)
e−μωvx

2
Hn(

√
μωvx)dx.

(A10)

In order to solve this integral, the first step is to write the
Hermite polynomials as [50]

Hn(
√

μωvx) = n!

n−ξn
2∑

l=0

(−1)
n−ξn

2 −l (2
√

μωv )2l+ξn

(2l + ξn)!
(

n−ξn

2 − l
)
!

x2l+ξn ,

(A11)

where

ξn =
{

0, for n even;
1, for n odd. (A12)

The radial integral, using Eq. (A11) and writing the spher-
ical Bessel function in terms of the Bessel function Ja (y),
becomes

I 0c
n =

n+ξn
2∑

l=0

Fn
l

∫ ∞

−∞
Jc+ 1

2

(
k0Ji

x

2

)
e−μωvx

2
x2l− (−1)n

2 dx, (A13)

with

Fn
l =

(
μωvn!

2nk0Ji

) 1
2 (−1)

n−ξn
2 −l (2

√
μωv )2l+ξn

(2l + ξn)!
(

n−ξn

2 − l
)
!

. (A14)

Following next, we use the identity Ja+1/2(−x) =
(−1)aiJa+1/2(x) in Eq. (A13) to get

I 0c
n =

n+ξn
2∑

l=0

Fn
l [1 + (−1)n+c]

×
∫ ∞

0
Jc+ 1

2

(
k0Ji

x

2

)
e−μωvx

2
x2l− (−1)n

2 dx. (A15)

The integral present in Eq. (A15) has an analytical solution
[51]: ∫ ∞

0
Jc+ 1

2

(
k0Ji

x

2

)
e−μωvx

2
x2l− (−1)n

2 dx

= 2�
(

1
2

[
c + 1

2 + 2l − (−1)n

2 + 1
])

k0Ji
(
√

μωv )(2l− (−1)n

2 )�(c + 1
2 + 1)

× e
−

k2
0Ji

32μωv M 1
2 (2l− (−1)n

2 ), 1
2 (c+ 1

2 )

(
k2

0Ji

16μωv

)
, (A16)

where Mμ,ν (y) is the Whittaker function of the first kind, and
�(y) is the Gamma function. This integral can be simplified
using the asymptotic form of the spherical Bessel function for
k0Ji

� 1 in Eq. (A7), once the problem is dealt with in the
low-momentum regime. The expression obtained is

I 0c
n =

(
k0Ji

2
√

μωv

)c
√

k0Ji
/π

(2c + 1)!!

n−ξn
2∑

l=0

Fn
l√

μωv
2l+ξn+1 I lc

n , (A17)

where

I lc
n =

∫ +∞

−∞
x2l+ξn+ce−x2

dx

= 1

2
[1 + (−1)c+n]�

(
2l + c + ξn + 1

2

)
. (A18)
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