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Coherence of three-body Förster resonances in Rydberg atoms
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We have observed recently the Stark-tuned three-body Förster resonances 3 × nP3/2(|M|) → nS1/2 + (n +
1)S1/2 + nP3/2(|M∗|) at long-range interactions of a few cold Rb Rydberg atoms [D. B. Tretyakov et al.,
Phys. Rev. Lett. 119, 173402 (2017)]. The three-body resonance appears at a different dc electric field
with respect to the ordinary two-body resonance 2 × nP3/2(|M|) → nS1/2 + (n + 1)S1/2 and corresponds to
a transition when the three interacting atoms change their states simultaneously (two atoms go to the S states,
and the third atom remains in the P state but changes its moment projection), with the negligible contribution of
the two-body resonance to the population transfer. It thus has a Borromean character and represents an effective
three-body operator, which can be used to directly control the three-body interactions in quantum simulations
and quantum gates implemented with Rydberg atoms. In this paper we theoretically investigate the coherence
of such three-body resonances and we show that high-contrast Rabi-like population oscillations are possible for
the localized Rydberg atoms in a certain spatial configuration. This paves the way to implementing three-qubit
quantum gates and quantum simulations based on three-body Rydberg interactions.
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I. INTRODUCTION

Highly excited Rydberg atoms [1] are attractive for the
development of quantum computers and simulators due to
their strong long-range interactions [2–13]. The interactions
are typically described by a two-body operator of dipole-
dipole interaction for each pair of atoms in the atom en-
semble [1]. Some quantum gates and simulations, however,
demand to simultaneously control the interactions of three
atoms [14–19]. This demands a three-body quantum operator
that changes the states of the three atoms simultaneously and
makes them all entangled.

Such an operator has been implemented recently by us as a
Borromean three-body Förster resonance 3 × nP3/2(|M|) →
nS1/2 + (n + 1)S1/2 + nP3/2(|M∗|) for N = 3−5 cold Rb
Rydberg atoms with the principal quantum number n = 36,
37 [20]. We have found clear evidence that there is no sig-
nature of the three-body Förster resonances for exactly two
interacting Rydberg atoms, while it is present for the larger
number of atoms.

The three-body resonances were first observed and ex-
plained in Ref. [21] for an ensemble of ∼105 cold Cs Ry-
dberg atoms. A three-body resonance corresponds to a tran-
sition when the three interacting atoms change their states
simultaneously (two atoms go to the neighboring S states,
and the third atom remains in the P state but changes its
moment projection). In these resonances, one of the atoms
carries away an energy excess preventing the two-body res-
onance, leading thus to a Borromean type of Förster energy
transfer. The Borromean character means that the ordinary
two-body resonance 2 × nP3/2(|M|) → nS1/2 + (n + 1)S1/2

*ryabtsev@isp.nsc.ru

gives a negligible contribution to the population transfer, as
the three-body resonance appears at a different dc electric field
with respect to the two-body resonance. It thus represents an
effective three-body operator, which can be used to directly
control the three-body interactions in quantum simulations
and quantum gates with Rydberg atoms.

In this paper we theoretically investigate the coherence
of the Borromean three-body Förster resonances. This issue
rises since in our experiment [20] the three-body resonances
were rather broad and partially overlapped with the two-body
resonances when the controlling dc electric field was scanned
[see Fig. 1(b)], because the three atoms were randomly placed
in a single interaction volume and their interaction energy
was not fixed. The observed broadening and overlapping
make it unclear if quantum gates and simulations are really
possible with our three-body resonances, as the coherence
should be conserved during the gate or simulation time. As
coherence is in fact represented by the contrast of Rabi-like
population oscillations, one needs to study if such oscillations
are possible for three well localized Rydberg atoms in various
spatial configurations, when the interaction energy is well
fixed. If we find that such oscillations are possible, they will
pave the way to developing the schemes of the three-qubit
quantum gates (e.g., the Toffoli or Fredkin quantum gates
[22,23]) and of the quantum simulators based on three-body
Rydberg interactions [14–19]. In this paper, however, we do
not analyze possible schemes and fidelity of three-qubit gates.
These are considered in detail in our recent paper [24].

II. EXPERIMENTAL OBSERVATIONS FOR DISORDERED
ATOMS IN A SINGLE INTERACTION VOLUME

Our experiment in Ref. [20] was performed with cold
85Rb atoms in a magneto-optical trap [4]. It featured
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FIG. 1. (a) Numerically calculated Stark structure of the Förster
resonance 3 × 37P3/2 → 37S1/2 + 38S1/2 + 37P ∗

3/2 for three Rb Ry-
dberg atoms. The energies W of various three-body collective states
are shown versus the controlling electric field. Intersections between
collective states (labeled by numbers) correspond to the Förster
resonances of various kinds. Intersections 2–7 are, in fact, two-body
resonances that do not require the third atom. Intersections 1 and 8
are three-body resonances occurring only in the presence of the third
atom that carries away an energy excess preventing the two-body
resonance. (b) Stark-tuned Förster resonances observed for various
numbers of atoms i = 1−5 and the initial states 37P3/2(|M| = 1/2)
and 37P3/2(|M| = 3/2). The two-body resonances are absent for
i = 1, evidencing their two-body nature. The three-body resonances
are absent for i = 1, 2, evidencing their three-body nature. The
circles are numerical simulations for i = 3 discussed in Sec. IV B.

atom-number-resolved measurement of the signals obtained
from N=1–5 Rydberg atoms detected by a selective field
ionization with a detection efficiency of T ≈ 70%. The nor-
malized N-atom signals SN were the fractions of atoms that
have undergone a transition to the final nS state. The recorded
Förster resonance spectra were additionally processed to ex-
tract the true multiatom spectra ρi (i = 1−5) taking into
account finite detection efficiency [25]. The excitation of Rb
atoms to the nP3/2 Rydberg states was realized via the three-
photon transition 5S1/2 → 5P3/2 → 6S1/2 → nP3/2 by means
of three cw lasers modulated to form 2 μs exciting pulses at a
repetition rate of 5 kHz. A small Rydberg excitation volume
of ∼15–20 μm in size was formed using the crossed tightly
focused laser beams.

Figure 1(a) presents the numerically calculated Stark
structure of the Förster resonance 3 × 37P3/2 → 37S1/2 +
38S1/2 + 37P ∗

3/2 for three Rb Rydberg atoms. The energies
W of various three-body collective states are shown versus
the controlling dc electric field. The intersections between
collective states (labeled by numbers) correspond to the
Förster resonances of various kinds. Intersections 2–7 are,
in fact, two-body resonances that do not require the third
atom and can be observed for two or more atoms. In such
resonances, the dipole-dipole interaction induces transitions
from the initial 37P3/2 state to the final 37S1/2 and 38S1/2

states in two of the three atoms, while the third atom remains
in its initial P state that does not change. Intersections 1 and
8 are three-body resonances occurring only in the presence of
the third atom that carries away an energy excess preventing
the two-body resonance [21]. The three-body resonances are
distinguished from the two-body ones by the fact that the third
atom does not remain in its initial P state as its initial moment
projection (|M| = 1/2 or |M| = 3/2) changes to the other one
(|M∗| = 3/2 or |M∗| = 1/2, correspondingly). Therefore, the
three-body resonance corresponds to the transition when the
three interacting atoms change their states simultaneously.

Figure 1(b) presents the Stark-tuned Förster resonances ρi

observed experimentally in Ref. [20] for various numbers of
the interacting atoms i = 1−5 and initial states 37P3/2(|M| =
1/2) or 37P3/2(|M| = 3/2). The signals with i = 1 show
neither two-body nor three-body resonances, since there is
no interaction at all. The signals with i = 2 show only the
peaks at 1.79 V/cm or 2.0 V/cm, which are the ordinary two-
body resonances that occur for all i = 2−5 and correspond
to intersections 3 or 6 in Fig. 1(a). The additional peaks
at 1.71 V/cm or 2.14 V/cm are the predicted three-body
resonances 1 and 8 of Fig. 1(a) that are absent for i = 2 and
appear only for i = 3−5. The two-body and three-body peak
positions well agree with those in Fig. 1(a). The circles are
numerical simulations for i = 3 discussed in Sec. IV B.

Figure 1(b) shows that the two-body and three-body res-
onances partially overlap. This overlapping increases as i

grows due to the increase of the total interaction energy and
broadening of the two-body resonance. The overlapping can
be reduced if a lower Rydberg state is used, and in our
paper [20] we demonstrated this for the initial state 36P3/2.
However, the dipole moments of Rydberg atoms scale as n2,
and the interaction becomes weaker for the lower states.

Therefore, in this paper we are aimed at finding theoreti-
cally the conditions when the three-body resonance is much
narrower and better separated from the two-body resonance.
This requires us to perform a theoretical analysis of three-
body resonances for well-localized Rydberg atoms in various
spatial configurations, as we did for two-body resonances in
our earlier theoretical paper [26].

III. ANALYTICAL MODEL FOR THREE FROZEN
RYDBERG ATOMS IN A TRIANGLE

SPATIAL CONFIGURATION

A. Three frozen Rydberg atoms in a
triangle spatial configuration

In our earlier experiments [4,27], we used only atoms in
the initial state 37P3/2(|M| = 1/2). Therefore, in the related
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FIG. 2. Simplified scheme of the three-body Förster resonance
3 × 37P3/2(|M| = 1/2) → 37S1/2 + 38S1/2 + 37P3/2(|M∗| = 3/2)
for three Rydberg atoms. The initially populated collective
state 1 is 3 × 37P3/2(|M| = 1/2). The final collective state 3 is
37S1/2 + 38S1/2 + 37P3/2(|M∗| = 3/2) with the changed moment
projection of the P state. The intermediate collective state 2 is
37S1/2 + 38S1/2 + 37P3/2(|M| = 1/2) with the initial moment
projection of the P state. The energy defects �1 and �2 are
controlled by the dc electric field. The value of �1 can be arbitrary,
while �2 is nonzero and nearly constant in the vicinity of the Förster
resonance. The three-body resonance occurs at �1 = �2, while the
two-body one occurs at �1 = 0.

theoretical analysis [26,27] we considered only the two-body
resonance 3 of Fig. 1(a) and ignored the possibility of the
three-body resonance 1. Our recent experiment [20] has re-
vealed that some atoms undergo a nonresonant transition from
the initial state 37P3/2(|M| = 1/2) to another Stark sublevel
37P3/2(|M∗| = 3/2) (see Fig. 1), but such a transition is not
described by the two-body operator of dipole-dipole interac-
tion. This requires a new theoretical model to be developed.
It is a rather complicated problem, since we should take into
account all Stark and magnetic sublevels of the interacting
Rydberg atoms. Therefore, we will first consider a simplified
analytical model for three frozen Rydberg atoms in an equi-
lateral triangle configuration, when the interaction energy for
each atom pair is equal.

For three Rydberg atoms in the initial state
37P3/2(|M| = 1/2), the two Förster resonances 1
and 3 of Fig. 1(a) are possible. The three-body
resonance 1 corresponds to the resonant transition
between collective states 3 × 37P3/2(|M| = 1/2) →
37S1/2 + 38S1/2 + 37P3/2(|M∗| = 3/2). This transition
is, in fact, composed of the two nonresonant two-body
relay transitions 3 × 37P3/2(|M| = 1/2) → 37S1/2 +
38S1/2 + 37P3/2(|M| = 1/2) → 37S1/2 + 38S1/2 + 37P3/2

(|M∗| = 3/2) occurring simultaneously. The latter
occurs due to the nonresonant exchange interaction
nP3/2(M ) + n′S → n′S + nP3/2(M∗) corresponding to
the excitation hopping between S and P Rydberg atoms
[21,26]. Despite the use of a relay, the transfer occurs in
a single step, implying a Borromean character of the relay
atom, which absorbs the energy of the finite Förster defect.

Figure 2 shows a simplified scheme of the Borromean
three-body Förster resonance 3 × 37P3/2(|M| = 1/2) →
37S1/2 + 38S1/2 + 37P3/2(|M∗| = 3/2) for three interacting
Rydberg atoms. The initially populated collective state 1
is 3 × 37P3/2(|M| = 1/2). The intermediate collective state
2 is 37S1/2 + 38S1/2 + 37P3/2(|M| = 1/2) with the initial

moment projection of the P state. The final collective state
3 is 37S1/2 + 38S1/2 + 37P3/2(|M∗| = 3/2) with the changed
moment projection of the P state. The energy defects �1 and
�2 are controlled by the dc electric field. The value of �1

can be arbitrary, while �2 is nonzero and nearly constant
in the vicinity of the Förster resonance (being just the Stark
splitting between the |M| = 1/2 and |M| = 3/2 sublevels).
The three-body resonance occurs at �1 = �2, while two-body
resonance occurs at �1 = 0.

For the simplicity, we consider an equilateral-triangle spa-
tial configuration of the three frozen Rydberg atoms spaced
by the equal distances R. The dipole-dipole matrix element
for the two-body transition 1 → 2 is given by

V1 = d1d2

4πε0

[
1

R3
− 3 Z2

R5

]
, (1)

where d1, d2 are the z components of the matrix elements
of dipole moments of transitions |37P3/2(M = 1/2)〉 →
|37S1/2(M = 1/2)〉 and |37P3/2(M = 1/2)〉 → |38S1/2

(M = 1/2)〉, Z is the z component of the vector connecting
the two atoms R (the z axis is chosen along the dc electric
field), and ε0 is the dielectric constant.

The dipole-dipole matrix element V2 for the
two-body transition 2 → 3 is given by an equation
similar to Eq. (1), but for the x and y components
of the connecting vector and dipole moments of
transitions |37P3/2(M = 3/2)〉 → |37S1/2(M = 1/2)〉 and
|37P3/2(M = 3/2)〉 → |38S1/2(M = 1/2)〉.

B. Analytical model

States 2 and 3 are actually sixfold degenerate with respect
to atom permutations. Therefore, there are totally six transi-
tions with the matrix element V1 from state 1 to state 2 and
12 allowed transitions with the matrix element V2 from state
2 to state 3. In addition, the degenerate sublevels of states
2 and 3 experience always-resonant exchange interactions
due to the excitation hopping between S and P Rydberg
atoms [21,26]. The Schrödinger equation then gives for the
probability amplitudes a1 − a3 of the degenerate sublevels of
states 1–3

iȧ1 = 6�1a2e−i�1t ,

iȧ2 = 2�1a2 + �1a1ei�1t + 2�2a3ei�2t ,

iȧ3 = 2�2a3 + 2�2a2e−i�2t .

(2)

Here �1 = V1/h̄ and �2 = V2/h̄. The terms without expo-
nents on the right-hand sides are responsible for the always-
resonant exchange interactions that just shift the energies of
states 2 and 3, while the terms with the exponents drive the
transitions between collective states.

Equations (2) can be solved analytically for the arbitrary
interaction energy, detunings, and t (see the Appendix). Tak-
ing into account the sixfold level degeneracy, the three-atom
resonance spectrum is then calculated as

ρ3 = (6|a2|2 + 6|a3|2)/3. (3)
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This value corresponds to the probability to find one of the
three atoms in the final 37S1/2 state, and it is the signal
measured in our experiments.

C. Weak dipole-dipole interaction

Exact analytical solutions for Eqs. (2) and (3) are rather
complex and cannot be presented in a clearly understandable
way. In this subsection we consider the case of the weak
dipole-dipole interaction with �1t,�2t � 1, when most of
the population remains in the initial state 1, and final states 2
and 3 are weakly populated. In this case, we can set a1 ≈ 1,
and the approximate analytical solution of Eqs. (2) and (3)
yields

ρ3 ≈ 8�2
1

�2
1

sin2

[
�1t

2

]
+ 32�2

1�
2
2

×
{

1

�1�2(�1 − �2)2
sin2

[
(�1 − �2)t

2

]

+ 1

�1�
2
2(�1 − �2)

sin2

[
�2t

2

]

− 1

�2
1�2(�1 − �2)

sin2

[
�1t

2

]}
. (4)

The first term in Eq. (4) is responsible for the two-body
resonance at �1 = 0. The resonance amplitude grows as
ρ3 → 2(�1t )2, while its width is given by the Fourier width of
the interaction pulse. Upon spatial averaging, this resonance
obtains the cusped line shape, while the Rabi-like population
oscillations are washed out, as discussed in Refs. [27–29].

The third and the fourth terms in Eq. (4) do not give any
resonance at �1 = �2 as they compensate for each other
with �2 being nonzero and almost constant near the Förster
resonance. At �1 = 0 the fourth term just reduces the first
two-body term, while the second and the third terms compen-
sate for each other as well.

It is the second term in Eq. (4) which is responsible for the
Borromean three-body resonance at �1 = �2. Its amplitude
grows as ρ3 → 8(�1�2t/�2)2. The relationship between
amplitudes of the three-body and two-body resonances is
(2�2/�2)2. Therefore, the three-body resonance is always
weaker than the two-body resonance for the weak dipole-
dipole interaction. For example, �2/(2π )=9.5 MHz for the
37P3/2(|M| = 1/2) and 37P3/2(|M| = 3/2) Stark sublevels
of Rb atoms in the electric field of 1.71 V/cm corresponding
to the three-body resonance, while the average dipole-dipole
interaction energy is on the order of 1 MHz in our experi-
ments.

However, when the three-body resonance is exactly tuned
(�1 = �2), its contribution to the population transfer gen-
erally exceeds the contribution from two-body interaction,
which is off-resonant in this case. From Eq. (4) we find that the
three-body contribution relates to the two-body contribution
as 2(�2t )2 and can be large for the long interaction times.
This is the main condition for the three-body resonance to be
of the Borromean type.

Equation (4) helps to understand which parameters are
responsible for the two- and three-body Förster resonances. It
also shows that coherent Rabi-like population oscillations are

possible at the exact three-body Förster resonance (�1 = �2)
in this simplified model considering equal interaction energies
for each atom pair.

D. Strong dipole-dipole interaction

Equation (4) is not valid to describe two- and three-body
Förster resonances at the strong dipole-dipole interaction or
long interaction time, since these resonances should satu-
rate and broaden. However, we can consider an approximate
solution for the case of three-body Förster resonance when
�1 is scanned in the vicinity of �2 (|�1 − �2| � |�2|)
and the interaction energies �1,�2 are less than �2. In this
case the intermediate state 2 of Fig. 2 is almost unpopulated,
and the calculated line shape of three-body resonance is given
by the formula

ρ3 ≈ �2
0/3

(� − �0)2 + �2
0

sin2

[
t

2

√
(� − �0)2 + �2

0

]
, (5)

where � = �1 − �2 is the detuning from the unperturbed
three-body resonance, �0 = −2�2 + (4�2

2 − 6�2
1)/(�2 +

2�1) is the interaction-induced shift of the three-body res-
onance, and �0 = 4

√
6�1�2/(�2 + 2�1) is the Rabi-like

oscillation frequency. Equation (5) reveals several important
features of the three-body Förster resonances.

First, the resonance experiences the shift �0, which is
composed of two parts: the part with −2�2 is due to the
always-resonant exchange interactions, and the other part is
the ac dynamic Stark shift induced by the off-resonant dipole-
dipole interactions. The three-body resonance position thus
depends on the interaction strength and on the relationship of
the dipole-dipole matrix elements at the transitions 1 → 2 and
2 → 3 of Fig. 2. In a real Rydberg atom there are the Stark and
Zeeman sublevels, which actually open up many interaction
channels with different dipole-dipole matrix elements. This
can lead to the formation of multiple three-body Förster res-
onances at different resonant electric fields. On the one hand,
this complicates the analysis of such resonances due to their
possible overlapping. On the other hand, the dynamic shift
can separate different interaction channels and provide their
maximum coherence for quantum information processing.

Second, Eq. (5) shows that coherent Rabi-like population
oscillations really take place also at the strong dipole-dipole
interaction regime. At the exact resonance (� = �0), the
Rabi-like oscillation frequency is �0, which depends on the
interaction strength and on the particular interaction chan-
nel. The maximum height of the resonance is 1/3 (one of
the three atoms is found to be in the final 37S1/2 state).
The resonance saturates and broadens when the interaction
strength increases. The resonance width is determined by a
combination of the Fourier width of the interaction pulse and
of the three-body interaction strength �0, as it takes place for
the two-body resonances analyzed in our paper [27].

Third, Eq. (5) demonstrates full analogy with a two-photon
transition in a three-level system with the far-detuned interme-
diate state. The intermediate state is not populated and Rabi-
like population oscillations occur only between the initial
and final states. The three-body oscillation frequency �0 is
much less than the oscillation frequency of the intermediate
two-body resonances (�1 and �2) due to large detuning �2.
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Therefore, the coherence time of the three-body resonance
can be much longer than the coherence time of the two-body
resonances for the same number of the population oscillations.

Fourth, each Rabi-like oscillation minimum corresponds
to a π phase shift of the collective wave function of the
three interacting Rydberg atoms [24]. As such oscillations are
controllable and reversible, they can be used to implement
three-qubit quantum gates with Rydberg atoms, for example,
the Toffoli or Fredkin gates [22,23]. For this purpose, the most
suitable spatial geometries and interaction channels should be
found. This requires us to perform numerical simulations in
order to account for the orientation of atomic dipoles and the
Stark or Zeeman sublevels of real Rydberg states, as described
in the next section. Numerical simulations can also provide
spatial averaging over fluctuating atom positions [26,27], as
this is the case in real experiments with optical-trap arrays of
neutral atoms.

IV. FULL THEORY AND NUMERICAL SIMULATIONS
OF THE DIPOLE-DIPOLE INTERACTION

IN A THREE-ATOM ENSEMBLE

A. Full three-atom operator of the dipole-dipole interaction

The electric dipole-dipole interaction between two atoms 1
and 2 is described by the operator

V̂dd = 1

4πε0R
3
12

[d̂1d̂2 − 3(d̂1n12)(d̂2n12)]. (6)

Here R12 is the interatomic distance, n12 =
(cos ϕ sin θ, sin ϕ sin θ, cos θ ) is a unit vector in the direction
connecting two atoms, and d̂1 and d̂2 are dipole-moment
operators for these two atoms. By introducing the components
of the dipole operators in the spherical basis [30] for each

atom k as d̂k,± = ∓(d̂k,x ± id̂k,y )/
√

2, we expand the operator
of dipole-dipole interaction as follows:

V̂dd = 1

4πε0R
3
12

× [A1(θ )(d̂1+d̂2− + d̂1−d̂2+ + 2d̂1zd̂2z)

+A2(θ, ϕ)(d̂1+d̂2z − d̂1−d̂2z + d̂1zd̂2+ − d̂1zd̂2−)

+A3(θ, ϕ)(d̂1+d̂2z + d̂1−d̂2z + d̂1zd̂2+ + d̂1zd̂2−)

+A4(θ, ϕ)(d̂1+d̂2+ + d̂1−d̂2−)

+A5(θ, ϕ)(d̂1+d̂2+ − d̂1−d̂2−)].

Here the angular prefactors are

A1(θ ) = 1 − 3 cos2(θ )

2
,

A2(θ, ϕ) = 3 sin (2θ ) cos (ϕ)

2
√

2
,

A3(θ, ϕ) = −i
3 sin (2θ ) sin (ϕ)

2
√

2
,

A4(θ, ϕ) = −3 sin2(θ ) cos (2ϕ)

2
,

A5(θ, ϕ) = 3 sin2(θ ) sin (2ϕ)

2
.

The operator V̂dd couples the states where the total mag-
netic quantum number M = M1 + M2 changes by �M =
0,±1,±2. The matrix element of the V̂dd operator for a
transition between the collective two-atom states |γa, γb〉 →
|γs, γt 〉, where for each atomic state |γ 〉 = |nLJM〉 n is the
principal quantum number, L is the orbital moment, J is the
total moment, and M is the projection of the total moment, is
expressed as [31,32]

〈nsMsLsJs ; ntMtLtJt |V̂dd |naMaLaJa; nbMbLbJb〉

= e2

4πε0R
3
12

{
A1(θ )

[
C

JsMs

JaMa11C
JtMt

JbMb1−1 + C
JsMs

JaMa1−1C
JtMt

JbMb11 + 2C
JsMs

JaMa10C
JtMt

JbMb10

]

+A2(θ, ϕ)
[(

C
JsMs

JaMa11 − C
JsMs

JaMa1−1

)
C

JtMt

JbMb10 + C
JsMs

JaMa10

(
C

JtMt

JbMb11 − C
JtMt

JbMb1−1

)]
+A3(θ, ϕ)

[(
C

JsMs

JaMa11 + C
JsMs

JaMa1−1

)
C

JtMt

JbMb10 + C
JsMs

JaMa10

(
C

JtMt

JbMb11 + C
JtMt

JbMb1−1

)]
+A4(θ, ϕ)

[
C

JsMs

JaMa11C
JtMt

JbMb11 + C
JsMs

JaMa1−1C
JtMt

JbMb1−1

] + A5(θ, ϕ)
[
C

JsMs

JaMa11C
JtMt

JbMb11 − C
JsMs

JaMa1−1C
JtMt

JbMb1−1

]}

×
√

max(La,Ls )
√

max(Lb,Lt )
√

(2Ja + 1)(2Jb + 1)

{
La 1/2 Ja

Js 1 Ls

}{
Lb 1/2 Jb

Jt 1 Lt

}
(−1)Ls+ La+Ls+1

2

× (−1)Lt+ Lb+Lt +1
2 (−1)Ja+JbR

nsLs

naLa
R

ntLt

nbLb
.

Here R
nsLs

naLa
and R

ntLt

nbLb
are radial matrix elements for

|naLa〉 → |nsLs〉 and |nbLb〉 → |ntLt 〉 transitions, respec-
tively. The radial matrix elements in Rydberg atoms are
calculated using the quasiclassical approximation [33].

In our numerical simulations we consider
collective states of the three atoms |γ1γ2γ3〉 =
|n1L1J1M1; n2L2J2M2; n3L3J3M3〉. For example, if the
atoms are initially excited to the 37P3/2 state, we take

into account the eight atomic states |37P3/2,M = ±1/2〉,
|37P3/2,M = ±3/2〉, |37S1/2,M = ±1/2〉, and |38S1/2,

M = ±1/2〉. The initial state of the three-atom system is
taken as the defined or random superposition of the eight
degenerate collective states where all three atoms are in the
|37P3/2,M = ±1/2〉 states (or in the |37P3/2,M = ±3/2〉
states, if the exciting laser is tuned to the excitation of the
37P3/2 atoms with |M| = 3/2), with the defined or equal
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FIG. 3. Geometry of the interaction of the three Rydberg atoms.
The atoms are positioned either randomly in a cubic volume to
perform numerical simulations with Monte Carlo averaging over the
atom positions, or are spatially fixed to provide Rabi-like population
oscillations.

statistical weights. For the random superposition, we assume
that after laser excitation the sign of M = M1 + M2 for the
initial state is undetermined. The Förster energy defect is the
difference between the energies of the final collective state
|γ1γ2γ3〉 and of the initial state.

To reduce the complexity of the calculations, we do not
take into account far-detuned collective states with Förster en-
ergy defect exceeding 2 GHz. There are totally 160 collective
Rydberg states involved in the calculations with 160 equations
describing all possible allowed interactions between collective
states.

B. Numerical simulations for three disordered Rydberg atoms
in a single interaction volume

In Ref. [20] we simulated the experimental data of
Fig. 1(b), using the method described in Ref. [26]. It is
based upon solving the Schrödinger equation with subsequent
Monte Carlo averaging over the random positions of the three
atoms in a single interaction volume. For this purpose, we
considered the three atoms, randomly located in a single cubic
interaction volume with the edge length d, as shown in Fig. 3.
The quantization axis z was chosen along the controlling
external electric field. For each random spatial configuration
we calculated the interatomic distances R12, R23, R13 and the
angles θ12, θ23, θ13, ϕ12, ϕ23, ϕ13 between the quantization axis
and the vectors connecting the atoms.

We then calculated the matrix of the Hamiltonian for
collective states |γ1γ2γ3〉 of the three-atom system, taking into
account the Stark shifts of the atomic energy levels in the
controlling dc electric field as the variation of the diagonal
terms of the Hamiltonian and the dipole-dipole interaction of
atoms (direct adding of the dc electric field to the Hamiltonial
is practically impossible, as it requires a huge increase of
the number of basis states). Then we solved numerically the
Schrödinger equation for the probability amplitudes of all
collective states. The probability ρ3 to find one of the atoms
in the final 37S state for initially excited 37P3/2 atoms was
calculated versus the controlling dc electric field. For each

field value we averaged the calculated probabilities over 1000
random spatial configurations.

The numerical results are presented as the circles in
Fig. 1(b). The theoretical spectra were calculated for the cubic
interaction volume of 15×15×15 μm3 and interaction time
of 3 μs which correspond to our experimental parameters.
The overall agreement of the full theory with the experiment
is satisfactory. The calculated line shapes of the two-body
resonances are close to the experimental ones. These are cusp-
shaped resonances that are formed upon spatial averaging in a
single interaction volume [27–29]. The three-body resonances
are also well reproduced by theory, in both their heights and
widths.

However, from Fig. 1(b) we see that for the disordered
atoms, the three-body resonances are much weaker than the
two-body ones, and their width is too large to provide coherent
population oscillations predicted by Eq. (5) for the frozen
atoms in an equilateral triangle configuration. We conclude
that one needs to localize the three atoms in space in order to
fix the interaction energies for each pair of atoms and provide
the coherence.

C. Numerical simulations for three spatially fixed
Rydberg atoms

Figure 4 presents the numerically calculated three-atom
Stark-tuned Förster resonances 3 × 37P3/2(M = +1/2) →
37S1/2 + 38S1/2 + 37P3/2(M = ±3/2) in Rb Rydberg atoms
for the three spatial configurations: (a) equilateral triangle in
the x-y plane; (b) one-dimensional chain along x axis; (c)
one-dimensional chain along z axis. The z axis is directed
along the controlling electric field. The three atoms are sup-
posed to be completely immobile and initially excited to the
defined state 37P3/2(M = +1/2). The left panels show the
corresponding spatial configurations with the micron-sized
grids. The total interaction energy for three atoms is nearly
the same in all configurations. The second from the left panels
are the spectra of three-atom Förster resonances calculated for
the interaction time of 7 μs. This time is near the maximum
of three-body population transfer at the interatomic spacing
used (R = 10 μm). The broad saturated two-body resonance
is centered near 1.79 V/cm, while there are several narrow
three-body resonances near 1.71 V/cm. These resonances cor-
respond to the different three-body interaction channels with
different dipole-dipole matrix elements �1 and �2 and differ-
ent dynamic shifts �0 = −2�2 + (4�2

2 − 6�2
1)/(�2 + 2�1),

as discussed in Sec. III. The third panels from the left show
the same three-body resonances zoomed in to demonstrate
the Rabi-like population oscillations at the wings and related
coherence. The right panels show the Rabi-like population
oscillations for the centers of the two-body resonance [green
(light gray) curves] and of the most intense three-body reso-
nance [blue (dark gray) curves]. The narrow three-body reso-
nance requires precise setting of the resonant electric field that
depends on the spatial configuration and interaction channel.

It is quite surprising that the symmetrical triangle con-
figuration of Fig. 4(a) with (presumably) equal interaction
energy for each atom pair delivers the most complicated
structure of the three-body resonance. There are about six
partially overlapped resonances, each representing a different
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FIG. 4. Numerically calculated three-atom Stark-tuned Förster resonances 3 × 37P3/2(M = +1/2) → 37S1/2 + 38S1/2 + 37P3/2(M =
±3/2) in Rb Rydberg atoms for the three spatial configurations: (a) equilateral triangle in the x-y plane; (b) one-dimensional chain along
the x axis; (c) one-dimensional chain along the z axis. The z axis is directed along the controlling electric field. The three atoms are supposed
to be completely immobile. The left panels show the corresponding spatial configurations with the micron-sized grids. The second from
the left panels are the spectra of three-atom Förster resonances calculated for the interaction time of 7 μs. The broad saturated two-body
resonance is centered near 1.79 V/cm, while there are several narrow three-body resonances near 1.71 V/cm. The third from the left panels
show the same three-body resonances zoomed in to demonstrate the Rabi-like population oscillations. The right panels show the Rabi-like
population oscillations for the centers of the two-body resonance [the green (light gray) curves] and of the most intense three-body resonance
[the blue (dark gray) curves]. The narrow three-body resonances require precise setting of the resonant electric field that depends on the spatial
configuration and interaction channel.

interaction channel with its own energy and dynamic shift.
All of these resonances occur as the dipole-dipole interaction
drives all allowed transitions with �M = 0,±1,±2. The
amplitudes of the three-body resonances do not reach their
maximum possible value of 1/3 due to population leaking
between these channels. Therefore, the three-body Rabi-like
population oscillations do not demonstrate full coherence in
this spatial configuration. The two-body population oscilla-
tions are also partially dephased and demonstrate irregular
character due to several interaction channels involved. The
Rabi frequencies are significantly different for the two- and
three-body resonances, because the three-body resonance is a
weaker second-order relay process occurring via an interme-
diate state, as discussed in Sec. III.

The linear chain along x axis delivers a simpler structure
of the three-body resonance in Fig. 4(b). There are three or
four peaks that are better resolved than in Fig. 4(a). The
linear spatial configuration is distinguished by the fact that
the central atom interacts with the two side atoms, while
each side atom interacts mainly with the central atom. This
weakens some of the possible interaction channels, because at
the beginning of the three-body interaction the central atom

turns out to be most likely in the final 37P3/2(M = ±3/2)
states, while the side atoms are mainly in the final 37S1/2

or 38S1/2 states. Nevertheless, at the end of the three-body
transition these states are mixed by the always-resonant ex-
change interaction, and we see again that the amplitudes of the
three-body resonances do not reach their maximum possible
value of 1/3, and the dephasing of the two-body population
oscillations is also present.

We have finally found that only the linear chain along z

axis of Fig. 4(c) provides full coherence of the three-body
resonances. Compared to Fig. 4(b), this linear chain closes
more interaction channels due to the specific selection rule
for the change of the moment projection �M = 0 in this
particular spatial configuration, with the dipole-dipole inter-
actions described by Eq. (1). As a result, there appear only
two well-resolved three-body resonances, although they do
not correspond to the single final collective states but rather
to the coherent superposition of several ones. Figure 4(c)
demonstrates high coherence of the population oscillations
at the three-body resonance, as their amplitude now reaches
1/3. The coherence of the two-body resonance also increases.
The left wing of the two-body resonance contributes only
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FIG. 5. Numerically calculated three-atom Stark-tuned Förster resonances 3 × 37P3/2(M = +1/2) → 37S1/2 + 38S1/2 + 37P3/2(M =
±3/2) in Rb Rydberg atoms for the spatial configuration of one-dimensional chain along z axis with the atom spacing R = 10 μm and
uncertainty in the position of each atom: (a) �R = 0 μm; (b) �R = 0.1 μm; (c) �R = 0.2 μm; (d) �R = 0.5 μm. The left panels show
the spectra of three-atom Förster resonances calculated for the interaction time of 7 μs. The middle panels show the three-body resonance
zoomed in to demonstrate the Rabi-like population oscillations. The right panels show the Rabi-like population oscillations for the centers of
the two-body resonance at 1.795 V/cm [the green (light gray) curves] and of the three-body resonance at 1.705 V/cm [the blue (dark gray)
curves].

about 5% to the amplitude of the three-body resonances. This
contribution can be made even smaller for longer interaction
times and larger atom separations. This means that the three-
body resonance is of the Borromean type and represents a
high-fidelity three-body operator that indeed can be used in
quantum simulations and quantum gates.

For the interaction time of 7 μs used in Fig. 4(c), the width
of the three-body resonances is extremely small (∼1 mV/cm,
or ∼0.13 MHz in the frequency scale) and is limited by the
Fourier-transform width of the interaction pulse, in agreement
with Eq. (5). At the same time, the two-body resonance is
saturated and broadened. Its width (∼40 mV/cm, or ∼5 MHz
in the frequency scale) corresponds mainly to the two-body
interaction energy, as discussed in our paper [27].

We note that numerical simulations in Fig. 4(c) have been
performed for immobile atoms, while in a realistic experiment
(e.g., with microscopic optical-trap arrays [34,35]) the atom
positions fluctuate, typically within 0.11 μm. Therefore, the
next issue to analyze is the effect of the atom-position fluc-
tuations on the coherence of three-body Rabi-like population
oscillations and their possible dephasing.

D. Effect of the spatial fluctuations of atoms

Figure 5 presents the numerically calculated three-atom
Stark-tuned Förster resonances 3 × 37P3/2(M = +1/2) →
37S1/2 + 38S1/2 + 37P3/2(M = ±3/2) in Rb Rydberg atoms
for the spatial configuration of the linear chain along z axis
with the atom spacing R = 10 μm and uncertainty in the
position of each atom: (a) �R = 0 μm; (b) �R = 0.1 μm; (c)
�R = 0.2 μm; (d) �R = 0.5 μm averaged over 100 random
atom positions. The left panels show the spectra of three-atom
Förster resonances calculated for the interaction time of 7 μs.
The middle panels show the three-body resonances zoomed
in to demonstrate the Rabi-like population oscillations at the
wings. The right panels show the Rabi-like population oscilla-
tions for the centers of the two-body resonance at 1.795 V/cm
[the green (light gray) curves] and of the three-body resonance
at 1.705 V/cm [the blue (dark gray) curves] over an extended
timescale of 30 μs.

We see that even the small uncertainty �R = 0.1 μm in
Fig. 5(b) noticeably affects the coherence of the two-body
resonance for times exceeding 5 μs, and its fast Rabi-like
population oscillations are partly dephased and washed out
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in the spectrum and in the time dependence. At the same
time, the dephasing of the three-body resonance is weaker due
to its slower time dynamics, according to Eq. (5). At 7 μs,
the height of the three-body resonance is nearly the same as
in Fig. 5(a) where the position fluctuations are absent. This
means that, in spite of the two-body decoherence, we still
have coherent three-body interactions at 7 μs and therefore
can perform three-qubit quantum gates and simulations on this
timescale.

However, for the longer interaction times in Fig. 5(b), the
three-body oscillations experience visible dephasing for the
first oscillation minimum at 13 μs. This dephasing seems
to have some coherent nature due to reversible population
transfer to the other collective states, since the second oscil-
lation minimum at 26 μs turns out to be deeper than the first
minimum. This observation is also true for Fig. 5(a) where the
three atoms are frozen. Therefore, the three-body oscillations
have much longer coherence time than the two-body ones.

The longer coherence time of the three-body resonances
does not necessarily imply that they are better suited to
quantum gates than the two-body resonances. We should
actually consider the relationship between the number of the
observed Rabi-like population oscillations and their period.
This relationship estimates the number of quantum gates,
which can be performed during the coherence time, and in
Figs. 5(a) and 5(b) it is better for the two-body resonances.
Nevertheless, the three-body resonances are of interest as they
provide a platform for the three-qubit quantum gates and
simulations, which are inaccessible with the two-body reso-
nances. In addition, three-qubit gates can be decomposed as a
sequence of six two-qubit gates, so that overall performance
of the two-qubit and three-qubit quantum computations with
Förster resonances can be similar.

For the larger atom position uncertainties of Figs. 5(c) and
5(d), the dephasing becomes significant. The heights of the
two- and three-body resonances decrease, and their coherence
becomes unacceptably low. The three-body resonance also
broadens in Fig. 5(d) due to fluctuations of the dynamic shift.

Therefore, when implementing the three-qubit quantum
gates with the three-body Förster resonances, one needs to
cool the atoms in the three optical dipole traps down to
their vibrational ground states and localize them with the
uncertainty of less than 1% with respect to the interatomic
separation. This can be challenging since additional laser
cooling stage is required (for example, sideband Raman
cooling to the vibrational ground state). On the other hand,
additional cooling is also desirable to improve the fidelity of
the two-qubit quantum gates, which still does not exceed 80%
in the experiments with Rydberg atoms, presumably due to
the residual Doppler effect and motional decoherence of the
atoms in optical dipole traps [5,36].

E. Effect of the finite Rydberg lifetimes

All numerical calculations presented above were done with
the Schrödinger equation, which does not take into account
finite radiative lifetimes of the Rydberg states. Although the
lifetimes are typically long and grow as n3 [1], they can con-
tribute to the dephasing of Rabi-like population oscillations
at Förster resonances. In addition, Rydberg lifetimes are also

reduced by the background blackbody radiation. For example,
at the ambient temperature of 300 K, the calculated lifetimes
of our Rydberg states 37P , 37S, and 38S are 41, 29, and
31 μs, correspondingly [37]. These values are comparable
with the period of three-body population oscillations in Fig. 5.

However, the radiative decay of Rydberg states occurs
mainly to the low-excited states [1,36], while the three-atom
signals, which we measure in experiments, are the fractions
of the atoms that have undergone a transition to the final 37S

state. Since these atoms decay nearly at the same rate as the
atoms in the initial 37P state, the signal is automatically nor-
malized on the total number of Rydberg atoms, and it is thus
insensitive to Rydberg lifetimes. Therefore, the population
oscillations of Fig. 5 should be observable experimentally in
spite of the finite Rydberg lifetimes, since we postselect the
signals with exactly three detected atoms.

In order to take the lifetimes into account in the numerical
simulations, we need to use the density-matrix equations,
as we did in Ref. [27] for the analysis of the two-body
resonance line shape. In the case of three atoms, however,
this is practically impossible for the full Zeeman and Stark
structures of the used Rydberg states due to the about 10-fold
increase in the number of equations to be solved numerically
(several thousand equations).

Finally, although the observed three-body population os-
cillations should not be affected by Rydberg lifetimes, the
finite lifetimes would certainly affect the fidelity of three-qubit
quantum gates, as some of the atoms can simply decay to low-
excited states and the whole gate will be destroyed. Therefore,
when considering the three-qubit gates based on three-body
Förster resonances, we should choose the interaction times
that are much shorter than the radiative lifetimes [24]. For
example, if the interaction time is ∼2 μs, the lifetimes should
be ∼200 μs, which correspond to the Rydberg states with
n ∼ 80 [37]. For such high Rydberg states the simple three-
body Förster resonances we have considered in this paper
are not available [38]. Nevertheless, the required three-body
resonances for the atoms with n ∼ 80 can be engineered
either by using the radiofrequency electric field that creates
Floquet sidebands of Rydberg states [38], or by using more
complicated Förster resonances with the three atoms initially
excited to different Rydberg states.

For example, in our recent paper [24] we con-
sider the Stark-tuned three-body Förster resonance for
the initial collective state |80P3/2(M = +3/2); 81P3/2(M =
+3/2); 81P3/2(M = −3/2)〉 and show that a three-qubit Tof-
foli gate can be implemented with a fidelity exceeding 98%.
We have also found that addition of a magnetic field (∼1 G)
reduces the complexity of the three-body Förster resonances
by lifting the Zeeman degeneracy and isolating the three-body
interaction channels.

V. CONCLUSIONS

In this paper we theoretically investigated the coherence of
the Borromean three-body Förster resonances. In particular,
we studied if the Rabi-like population oscillations are possible
for well-localized Rydberg atoms in various spatial configura-
tions, when the interaction energy is well fixed.
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We have first built a simple analytical model for an
equilateral-triangle spatial configuration of the three interact-
ing Rydberg atoms and found the approximate formulas for
the weak and strong dipole-dipole interaction. They both show
that coherent Rabi-like population oscillations are possible
at the exact three-body Förster resonance. We have found,
however, that the three-body resonance experiences a dynamic
shift and its position in the electric-field scale depends on
the interaction strength and on the relationship of the dipole-
dipole matrix elements involved in the particular three-body
interaction channel.

We have further built a numerical model in order to account
for the orientation of atomic dipoles and the Stark or Zeeman
sublevels of real Rydberg states. This model shows that, in
general, there appear multiple three-body Förster resonances,
which correspond to the different three-body interaction chan-
nels with different dipole-dipole matrix elements and dynamic
shifts.

It is quite surprising that the spatial configuration of an
equilateral triangle in the x-y plane (z axis is directed along the
controlling electric field) with (presumably) equal interaction
energy for each atom pair delivers the most complicated
structure of the three-body resonance. There are about six
partially overlapped resonances, each representing a different
interaction channel with its own energy and dynamic shift.
The amplitudes of the three-body resonances do not reach
their maximum possible value of 1/3 due to the population
leaking between these channels. Therefore, the three-body
Rabi-like population oscillations do not provide full coher-
ence in this spatial configuration.

The linear chain along x axis delivers a simpler structure
of the three-body resonance, because at the beginning of the
three-body interaction the central atom turns out to be most
likely in the final P state, while the side atoms are mainly
in the final S states. Nevertheless, at the end of the three-
body transition these states are mixed by the always-resonant
exchange interaction, and the amplitudes of the three-body
resonances do not reach their maximum possible value of 1/3.

We have finally revealed that the linear chain along z

axis provides full coherence of the three-body resonances.
This configuration closes some interaction channels due to
the specific selection rule for the change of the moment
projection in this particular spatial configuration. As a result,
there are only two well-resolved three-body resonances that
demonstrate high coherence of the population oscillations at
the three-body resonance, as their amplitude now reaches 1/3.
The two-body resonance has a small contribution (below 5%)
to these resonances. This means that the three-body resonance
is of the Borromean type and represents a high-fidelity three-
body operator that indeed can be used in quantum simulations
and quantum gates.

Numerical simulations also provided spatial averaging over
fluctuating atom positions, as this is the case in real exper-
iments with optical-trap arrays of neutral atoms. We have
found that, on the timescale of 10 μs, even small spatial
uncertainty noticeably affects the coherence of the two-body
resonance, but the dephasing of the three-body resonance is
much weaker due to its much slower time dynamics. This
means that, in spite of the two-body decoherence, we still have
coherent three-body interactions and therefore can perform

the three-qubit quantum gates and simulations. However, for
longer interaction times or larger position uncertainties, the
three-body oscillations experience noticeable dephasing even
at the first oscillation minimum. Therefore, when implement-
ing the three-qubit quantum gates with the three-body Förster
resonances, one needs to cool the atoms in the three optical
dipole traps down to their vibrational ground states and local-
ize them with an uncertainty of less than 1% with respect to
the interatomic separation.

Finally, although the observed three-body population oscil-
lations should not be affected by Rydberg lifetimes, since the
measured signals are normalized on the number of atoms, the
finite lifetimes would certainly affect the fidelity of three-qubit
quantum gates, as some of the atoms can simply decay to low-
excited states and the whole gate will be destroyed. Therefore,
when considering the three-qubit gates based on three-body
Förster resonances, we should choose the interaction times
that are much shorter than the radiative lifetimes [24].

In this respect we note that each Rabi-like oscillation
minimum corresponds to a π phase shift of collective wave
function of the three interacting Rydberg atoms [24]. If such
oscillations are controllable and reversible, they can be used
to implement three-qubit quantum gates with Rydberg atoms,
for example, the Toffoli or Fredkin gates, which provide
further speed up quantum computation and implementation of
quantum error-correction algorithms [22,23]. Coherent elec-
trically controlled three-body interactions can also be used
in quantum simulators, e.g., to implement the Bose-Hubbard
model, where the transition from a superfluid state to the
Mott insulator state is modified by such interaction [39],
in realization of the fractional quantum Hall effect based
on three-body interactions [40], or in implementation of the
topological insulators [41].
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APPENDIX: ANALYTICAL SOLUTION FOR A
BORROMEAN THREE-BODY FÖRSTER RESONANCE

For the simplified scheme of the Borromean three-
body Förster resonance 3 × nP3/2(|M| = 1/2) → nS1/2 +
(n + 1)S1/2 + nP3/2(|M∗| = 3/2) shown in Fig. 2, the
Schrödinger equation gives for the probability amplitudes
a1 − a3 of the degenerate sublevels of states 1–3:

iȧ1 = 6�1a2e−i�1t ,

iȧ2 = 2�1a2 + �1a1ei�1t + 2�2a3ei�2t ,

iȧ3 = 2�2a3 + 2�2a2e−i�2t .

(A1)
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Here �1 = V1/h̄ and �2 = V2/h̄ are the matrix elements
(in the frequency units) of dipole-dipole interactions at the
transitions 1 → 2 and 2 → 3. The terms without exponents
on the right-hand sides are responsible for the always-resonant
exchange interactions that just shift the energies of states 2
and 3, while the terms with the exponents drive the transitions
between collective states.

Equations (A1) can be solved analytically for the arbi-
trary interaction energy, detunings, and t . We first do the
replacements

a2 = α2e
−2i�1t ,

a3 = α3e
−2i�2t , (A2)

and obtain a modified Eq. (A1) as

iȧ1 = 6�1α2e−i(�1+2�1 )t ,

iα̇2 = �1a1ei(�1+2�1 )t + 2�2α3ei(�2+2�1−2�2 )t , (A3)

iα̇3 = 2�2α2e−i(�2+2�1−2�2 )t .

After several substitutions we come to a single differential
equation

...
α 3 + i(2�2 − �1 + 2�1 − 4�2)ä3

+ [
(�2 + 2�1 − 2�2)(�1 − �2 + 2�2)

+ 6�2
1 + 4�2

2

]
α̇3 − 4i(�1 − �2 + 2�2)�2

2 = 0. (A4)

Then we seek the solution as α3 ∼ eiμt and obtain the cubic
equation

μ3 + (2�2 − �1 + 2�1 − 4�2)μ2

− [
(�2 + 2�1 − 2�2)(�1 − �2 + 2�2)

+ 6�2
1 + 4�2

2

]
μ + 4(�1 − �2 + 2�2)�2

2 = 0. (A5)

This equation has three roots, which are found analytically
with the following sequence of equations taken from the
mathematical handbooks:

S = −[
(�2 + 2�1−2�2)(�1 − �2 + 2�2)+6�2

1 + 4�2
2

]
,

T = 4(�1 − �2 + 2�2)�2
2,

A = S − (2�2 − �1 + 2�1 − 4�2)2/3,

B = 2(2�2 − �1 + 2�1 − 4�2)3/27

− (2�2 − �1 + 2�1 − 4�2)S/3 + T ,

D = (A/3)3 + (B/2)2,

U = (−B/2 +
√

D)1/3,

U ∗ = −(B/2 +
√

D)1/3.

Finally, the three roots are

μ1 = U + U ∗ − (2�2 − �1 + 2�1 − 4�2)/3,

μ2 = −(U + U ∗)/2 + i
√

3(U − U ∗)/2,

μ3 = −(U + U ∗)/2 − i
√

3(U − U ∗)/2.

Then we seek α3 in the form

α3 = c1 eiμ1t + c2 eiμ2t + c3 eiμ3t

with the initial conditions α3(0) = 0; ȧ3(0) = 0; ä3(0) =
−2�1�2. These conditions give us the final exact analytical
solution for the coefficients,

c1 = 2�1�2

(μ2 − μ1)(μ1 − μ3)
,

c2 = 2�1�2

(μ2 − μ1)(μ3 − μ2)
,

c3 = 2�1�2

(μ1 − μ3)(μ3 − μ2)
.

These formulas allow us to find α3 analytically. We can
also find α2 using Eq. (A3):

α2 = iα̇3e
i(�2+2�1−2�2 )t /(2�2)

and thus find the exact analytical solution to Eqs. (A1)–(A3)
for arbitrary interaction energy, detunings, and t . Taking into
account the sixfold level degeneracy, the three-atom Forster
resonance spectrum is then calculated as

ρ3 = (6|a2|2 + 6|a3|2)/3

This value corresponds to the probability to find one of
the three atoms in the final 37S1/2 state, and it is the signal
measured in our experiments.
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