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Inspired by Wannier’s threshold law, we recognize that collision-complex decay meets the requirements
of quantum-classical correspondence in sufficiently exothermic ultracold reactions. We make use of this
correspondence to elucidate the classical foundations of ultracold reactions and to help bring calculations
currently beyond the capabilities of quantum mechanics within reach. A classical method with a simplified
model of many-body interactions is provided for the determination of the collision-complex lifetime and
demonstrated for a reduced-dimensional system, as preliminary to the calculation of collision-complex lifetimes

in the full-dimensional system.
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I. INTRODUCTION

With temperatures below a milliKelvin, ultracold chemical
reactions are under investigation as the means to form product
molecules with unprecedented specificity [1]. This provides
opportunities to investigate the mechanisms behind chemical
reactions [1] and to “tune” reactions to produce desired prod-
ucts with coherent control [2,3]. The formation of products
from a collision complex in the ultracold potassium-rubidium
KRb dimer reaction is the subject of ongoing experimental
and theoretical work [1,4-8],

2KRb — [K>Rbs]* — Kj + Rbs. (1)

One of the first ultracold chemical reactions to be carried out
experimentally [1,4—6], the ultracold KRb dimer reaction is
interesting to study due to the extreme energy differences
involved. In the reaction, two ultracold KRb dimers meet
at approximately 300 nK to form a transition-state collision
complex [K;Rb,]*. The collision complex, which we refer
to as a “cauldron,” is energetically favorable by 4000 K [9].
The atoms in the cauldron experience four-body interactions
and are expected to move chaotically. Ultimately, the collision
complex breaks apart to form cold potassium K, and rubidium
Rb, dimers. The equivalent of 14K! is expected to be released
[1,4,10,11]. The reaction therefore has an ultracold approach
followed by a hot cauldron and a cold departure. This is
key because the lifetime of the collision complex remains
unknown. The hot cauldron and the cold departure depicted in
Fig. 1 raises the following question: will classical or quantum
effects dominate the breakup of the collision complex?

This paper involves a simplified two-dimensional model
of the ultracold KRb dimer reaction in which product dimers
are considered to be structureless point particles. This two-
dimensional system retains the essence of much of the full
four-atom case: the hot cauldron of the transition state and

'The ultracold KRb reaction occurs without coupling to a bath,
such that the product ensemble is expected to be near microcanonical
and the products are not suspected to be distributed thermally.
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the cold departure of the products. While the 300 nK tem-
perature of the reactants is ultracold, having a temperature
below 1 mK, the 14K released in formation of the products
is well above the ultracold regime. Surprisingly, whereas the
ultracold temperature of the reaction would typically indi-
cate a need for quantum mechanics, semiclassical arguments
suggest that given the exothermicity of the reaction, for the
two-dimensional case, the classical rate will be nearly exact.
Furthermore, this correspondence is not specific to collision-
complex decay in the ultracold KRb dimer reaction, but
holds more generally for sufficiently exothermic bimolecular
ultracold reactions. In these cases, classical mechanics can be
substituted where quantum mechanics becomes intractable.
By determining the collision-complex decay rate for the
two-dimensional system classically, we solve a key problem
encountered in the calculation of the collision-complex decay
rate for the ultracold KRb dimer reaction.

Even in the two-dimensional case, it is difficult to simulate
collision-complex decay in the ultracold KRb dimer reaction
quantum mechanically. The collision complex supports a large
number of states, which requires a large basis-set expansion.
The collision complex also breaks apart into cold products
with long de Broglie wavelengths, which require grid tech-
niques that take into account a wide expanse of position space.
The vast, sudden change in scale between representation of
the hot collision-complex cauldron and the cold products is
a well-known danger signal for quantum mechanical calcula-
tions. These concerns, as well as the exponential growth of
the Hilbert space with system size, impede rigorous quantum
mechanics from being used to simulate ultracold reactions of
four heavy atoms. In contrast, classical methods are available
for simulations of systems of many heavy atoms, given de
Broglie wavelengths in the classical regime.

Studies of the ultracold KRb dimer reaction have fo-
cused on the prediction and analysis of the experimental
reactant loss rate. These studies have employed the quan-
tum threshold model [12—15], the quantum Langevin model
[16], the statistical adiabatic channel model [17], quantum
defect theory [18,19], multichannel quantum defect theory
[16,20,21], and other time-independent quantum mechanical
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FIG. 1. Extreme energy differences in the ultracold KRb dimer
reaction collision complex raise the question of whether classical
or quantum effects dominate in the decay process. Magnification
of the circle diameter and energy lines are shown to scale with 10x
magnification.

formalisms [22,23]. The quantum Rice-Ramsperger-Kassel-
Marcus (RRKM) decay rate has also been calculated for the
collision complex as a step towards the calculation of the
scattering cross sections using time-independent multichannel
quantum defect theory and random matrix theory [24]. It is
fair to say that studies of the collision-complex decay are still
at the qualitative level. To produce quantitative results, new
methods are needed that can circumvent the difficulties posed
by quantum mechanics.

We introduce the concept of quantum-classical correspon-
dence to collision-complex decay in sufficiently exothermic
ultracold reactions and present a classical method based on
Wannier’s threshold law [25]. In his seminal paper on elec-
trical discharge from gases, Wannier was concerned with the
double escape of electrons from an ion. Recognizing that
the de Broglie wavelengths at long range were in the clas-
sical regime, Wannier calculated the energy dependence of
the collision-complex decay rate classically. Integration over
the phase-space configurations leading to product formation
yielded the threshold law E'-'?7, This threshold law was sub-
sequently confirmed semiclassically [26], quantum mechan-
ically [27], and experimentally [28]. The two-dimensional
model of collision-complex decay in the ultracold KRb dimer
reaction, which we are presenting here, is a similarly special
system.

First, in both Wannier’s system and the KRb system pre-
sented here, only one classical pathway leads to each final
state along the reaction coordinate. When there is only one
path, the sum of the square root of the classical probability

density for each contributing classical path in the semiclassi-
cal amplitude reduces to one term. There is then no semiclas-
sical interference and the semiclassical and classical probabil-
ities agree. Second, there is no quantum reflection, a quantum
mechanical effect in which particles are reflected from attrac-
tive potentials at low energies. In Wannier’s system, there is
no quantum reflection threshold at any energy [25,29,30], as
the Coulomb potential is a special case for which the Wentzel-
Kramers-Brillouin (WKB) criterion is always satisfied (i.e.,
the particle wavelength is small in comparison to the rate
of change of the potential-energy surface and, equivalently,
the wavelength changes little in the length of a wavelength)
[31-36]. In the KRb system, enough energy is released that
the system is in what we term the “post-threshold” regime
above the quantum reflection threshold for the potential
[30,36,37], which implies that at the exothermicity of the
reaction, the WKB criterion is satisfied at all positions along
the reaction coordinate. The semiclassical approximation then
holds such that the semiclassical wave functions closely
approximate the quantum wave functions, as illustrated in
Fig. 2(c) for a ramp potential. In tandem, these two conditions
make it such that the classical probabilities are nearly equal to
the quantum probabilities.

The quantum-classical correspondence allows us to make a
classical interpretation of how collision-complex decay occurs
in the two-dimensional model. From a classical perspective,
product formation from the collision complex is a rare event.
Although the decay process is barrierless and exothermic,
relatively few phase-space configurations lead to product for-
mation. In the collision-complex cauldron, particles form a
near-ergodic distribution at short range. The cauldron is very
deep, supporting a huge number of possible configurations
and implying a long, snarled trajectory through phase space.
In contrast, the exothermicity is small, leaving outgoing prod-
ucts with low kinetic energy and yielding only a small window
of possible momenta with escape velocity. Almost all of the
energy must then be spent on sending the particle in the radial
direction in order to form products. Any energy spent on mo-
tion perpendicular to the radial direction threatens to rob the
particle of escape velocity and to doom the particle to return
to make another long, snarled pass through the cauldron. This
momentum window is a narrow “angle of acceptance” arising
from the low exothermicity of the reaction (see Fig. 1). The
momentum-space angle of acceptance and the position-space
boundary of the short-range interaction region together define
a phase-space bottleneck. As the flux of products escaping
through the bottleneck is much lower than the volume of phase
space in the collision complex, a long time is required for
product formation from the collision complex.

Calculation of the collision-complex decay rate in the
reduced-dimensional system presented here is complicated
by the type of interactions in the cauldron and the barrierless
potential experienced by the products. The method of
“Gaussian bumps,” previously applied in the field of quantum
chaos [38—40], can be used to mimic the many-body
interactions in the full-dimensional reaction, but leads to
numerical problems, as the same exponential protrusions in
the potential that induce chaos in the system also lead to
numerical instability upon integration of the equations of
motion. Degradation of energy conservation likewise occurs
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FIG. 2. (a),(b) Representative quantum eigenstates (thin solid line) differ from WKB semiclassical amplitudes (thin dashed line) in the
threshold region, but (c) agree in the post-threshold regime, as shown for the potential-energy surface V(g) = 2tanh[q /5] — 2 (thick solid
line) [38]. WKB amplitudes give classical probabilities, such that classical results are also nearly equal to quantum results in the post-threshold
regime. Energies E are given in atomic units and the potential is rescaled between frames to highlight details.

in alternative methods to induce chaos or randomness such
as the kicked rotor [41-44], Fokker-Planck-Kolmogoroff
equation [45-47], and Langevin equation [48]. Additionally,
reactions are typically considered to proceed through a narrow
range of position-space configurations in forming products.
Investigation of an activated complex or a position-space
bottleneck is required to determine the reaction rate with
traditional methods such as the van’t Hoff-Arrhenius law
[49-51], the Lindemann-Hinshelwood mechanism [52,53],
Rice-Ramsperger-Kassel-Marcus (RRKM) theory [54-57],
transition-state theory (TST) [58-62], and phase-space
theory [63-68]. Even in theories that consider phase-space
bottlenecks, saddle points are often required [69-71]. The
phase-space bottleneck in the barrierless system presented
here therefore necessitates a different method of analysis.
This paper presents a method of momentum kicks that
addresses both of these concerns. First, to remedy the com-
putational difficulties involved in modeling the short-range
interactions, a method of energy-preserving momentum kicks
is introduced in the two-dimensional system. The method of
momentum kicks yields a near-ergodic distribution while en-
suring energy conservation by employing “momentum kicks”
in which the momentum vector is rotated by a random angle
at regular time intervals in an inner deflection region within
the potential. In the two-dimensional system, the momentum
kicks (momentum vector rotations) yield the same types of
deflections expected in multiatom collisions in the cauldron,
and are expected to produce the same near-ergodic distribu-
tions. Second, to determine the collision-complex decay rate
for the barrierless system analytically, inspiration is taken
from Wannier’s method of phase-space counting [25]. As in
Wannier’s method, the first step is to locate the configurations
that lead to product formation. The ratio of the flux through
the bottleneck to the phase-space volume of the cauldron then
yields the analytical rate of collision-complex decay.
Poincaré surfaces of section provide a way to illustrate both
the type of distribution arising from the momentum kicks and
the existence of the phase-space bottleneck to product forma-
tion. Birkhoff coordinates are ideal for illustrating the phase-
space bottleneck. Originally formulated for billiard problems
[72], the momentum in Birkhoff coordinates relates the angle
between a particle’s position and momentum vectors, and is

therefore directly proportional to the angle of acceptance.
Additionally, the numerical rate of collision-complex decay
is determined by monitoring the rate of product formation in
numerical simulations of the two-dimensional system. This
rate can then be directly compared to the analytical rate.
We compare the analytical and numerical rates to verify the
classical method for collision-complex decay in the reduced-
dimensional model of the ultracold KRb dimer reaction as
a forerunner to its application to full-dimensional ultracold
systems.

II. METHODS

A. Post-threshold regime

To establish whether classical mechanics is applicable, we
assess whether the two requirements of quantum-classical
correspondence are met for collision-complex decay in the
two-dimensional model of the ultracold KRb dimer reaction
in which product dimers are taken to be structureless point
particles.

First, we consider whether the semiclassical and classi-
cal probabilities agree. Application of the stationary phase
approximation to Feynman’s path-integral formulation of
quantum mechanics yields the van Vleck—Morette-Gutzwiller
propagator, which expresses the semiclassical probability as a
sum over classical paths [38,73-75]. When there is only one
classical path between initial and final states, the sum has only
one term and the semiclassical amplitude correctly reproduces
the classical amplitude. The van Vleck—Morette-Gutzwiller
propagator is

exp(iS;/h),  (2)

, 028 (x, x', 1)
(x'|x (1)) o Z 'W
J

where /i is the reduced Planck’s constant, S; is the classical
action of pathway j, and the term under the square root is
related to the classical probability that a particle with sharp
initial position x evolves to overlap with a sharp final state
at x” within time 7, assuming no focal points are met along
the way (i.e., where the accumulated phase and the Maslov
index is zero v; = 0). For the long-range interaction between
the products of the ultracold KRb dimer reaction, the initial
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momentum and position uniquely define the path of a parti-
cle, as only one path satisfies the Euler-Lagrange equations
connecting initial and final positions. There is therefore only
one classical path along the reaction coordinate connecting
the collision complex to the products in the ultracold KRb
dimer reaction, such that the above semiclassical sum contains
only a single term, i.e., the amplitude of the classical path.
The semiclassical amplitude then corresponds to the classical
amplitude.

Second, we consider whether the semiclassical and quan-
tum wave functions agree. We term the regime above the
threshold regime the “post-threshold” regime [30,36,37]. The
post-threshold regime is defined by satisfaction of the crite-
rion for the WKB approximation [31-36],

1> L|2® 3)
27| dx |
}Ldp(x) @
px) dx |
mh |dV(x)
5
[p()P| dx ©)

where A(x) =2mh/p(x) is the de Broglie wavelength of
the particle at position x with momentum p(x) in potential
V(x). As the energy released in the ultracold KRb dimer
reaction is 14 K and the potential is given by the long-range
interaction potential along the reaction coordinate described
in Sec. II B, the WKB condition is satisfied at any position
along the potential. The semiclassical wave function then
closely approximates the quantum wave function [30,36,37].

As the collision-complex decay satisfies both conditions,
classical results are expected to agree with the quantum me-
chanical results.

B. Model Hamiltonian

Since the interacting product dimers in the ultracold KRb
reaction collision complex are treated as structureless point
particles, the system is equivalent to a single particle in a
two-dimensional central force potential. The two-dimensional
KRb dimer reaction was chosen as the means to validate
the classical method as it retains the technical difficulties
posed by the hot collision-complex cauldron and the cold
products of the ultracold KRb dimer reaction. The model does
not account for quantization of the energy of the outgoing
products that would be required for simulation of the full
four-atom reaction. We chose to study the two-dimensional
problem because it faces one of the main obstacles of the
ultracold KRb dimer reaction: the contrast between the depth
of the collision-complex cauldron and the shallowness of
the low exothermicity. The other goal of quantization of the
transitions of the outgoing products remains.

The Hamiltonian is then

p; | pi
H(r:pr.po) = 7 + = + V), (6)
2m  2mr

where r is the radius, p, is the radial momentum, py is
the angular momentum, m is the reduced mass of the prod-
ucts, and V(r) is the potential energy along the reaction
coordinate r.

The potential energy is given by the long-range interaction
between the outgoing products. Since the products are consid-
ered to be structureless point particles and since the products
are nonpolar homonuclear molecules, the asymptotic interac-
tion is isotropic and given by the inverse sixth-order van der
Waals potential [1,6,76-78]. The potential is parametrized to
remove the singularity at the origin, match the potential well
depth to the transition-state well depth, and ensure the po-
tential reaches its asymptote at a physically realistic distance,
which yields the long-range interaction potential

_ G
Br2 +a)’

where Cg is the van der Waals dispersion coefficient and o
and B are parametrization constants. The long-range potential
is shown in Fig. 1. For the well minimum to correspond to
the energetic favorability of the transition state at the bottom
of the cauldron, the origin r = 0 is defined as the equilibrium
transition-state distance between the forming products. Parti-
cles confined to the inner regions of the central force potential
are defined as nonproducts and particles able to pass to infinity
r — oo are defined as products. The short-range attractive
and repulsive multicenter interactions between the dimers
are represented by the simplified model of energy-preserving
momentum kicks.

To employ the energy-preserving momentum kicks in the
cauldron, the momentum vector is rotated by a random angle
at regular time intervals for particles within a distance R along
the reaction coordinate. The values of the maximum angle
of the kick, the time interval between kicks, and the limit
of the deflection region boundary were chosen to model the
response of the particle to protrusions in the potential given
by Eq. (7) arising from short-range interactions, as depicted
in two dimensions in Fig. 3 with an analogy to the Gaussian
protrusions of the Gaussian bump method [38—40].

Since the energy-preserving momentum kicks rotate the
momentum vector in the cauldron and the Hamiltonian has no
explicit dependence on the angle, the angular momentum py
varies inside and is conserved outside the deflection region. As
the energy-preserving momentum kicks are energy conserving
and the Hamiltonian # is independent of the time ¢, the total
energy E is always conserved. As the energy of the incoming
reactants is negligible compared to the exothermicity, the total
energy of the system E is approximately equal to the energy
released in the reaction (E = 14 K), the asymptotic value of
the kinetic energy of the outgoing products.

Vir)=— @)

C. Determination of phase-space bottleneck
1. Critical momenta in polar coordinates

To determine the location of the bottleneck through which
all outgoing products must pass, we determine which trajec-
tories will reach infinite radius r — oo. To find these trajecto-
ries, the critical radii and momenta are determined for passage
over an extremum in the effective potential energy V., where
the effective potential V. is composed of the sum of the
centrifugal term and the potential energy. The critical radii
and momenta can then be determined in the same way that
the maximum impact parameter for scattering is determined
in classical capture theory [79-81], i.e., via location of the
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FIG. 3. (a) Momentum kicks in the method of energy-preserving momentum kicks deflect the momentum vector equivalently to
(b) Gaussian bumps in the method of Gaussian bumps [38-40]. The momentum vector p (black solid and dashed arrows) is deflected (gray
curved arrow) to the momentum vector p’ (black solid arrow). Linear contours of equal potential energy are shown. The inset displays potential

energy on the y = O slice.

effective potential-energy maximum. Specifically, when the
potential energy is given by Eq. (7) and the parametrization
parameter « is negligible, the critical energy E;; at which the
effective potential is maximized is

B pal?

33/221/2C61/2m3/2 ’ ®)

Ecrit =
the critical radius rq at which the critical energy Ei is
reached is

)

and the critical momenta p, i and pg s are the maximum
angular momentum and the minimum radial momentum, re-
spectively, that a particle can have and still pass through the
critical radius iy,

Do.crit = 3]/22]/6(,‘(])/6;11]/2E|/3ﬁ—1/27 (10)

(1)

The turning-point radius Ry, then gives the maximum radius
r that can be reached by particles that cannot pass through the
critical radius i,

Prein = \J2mE +2mCo(Br? + @) — p} ir 2.

2Cs

=6 .
EB

Ruum (12)
The critical values are determined only for the potential of
the outgoing products, as only the potential of the outgoing
products is required to study the process of collision-complex

decay.

2. Critical momentum in Birkhoff coordinates

We can also specify the bottleneck in terms of Birkhoff
coordinates. To specify the phase-space bottleneck that sepa-
rates nonproducts from products in Sec. II C 3 in terms of the
angle between a particle’s position and momentum vectors,
we employ Birkhoff coordinates (see Fig. 4) [72]. An annulus

of a fixed radius » = Rpj« is considered about the origin of
the central force potential. The coordinates of a particle at
Birkhoff radius Rp;y are given by the angle s of the particle
along the annulus and the momentum p; with which the
particle hits the annulus (the sine of the angle ® between the
particle’s position and the momentum vectors), as follows:

s=80, (13)

ps = sin (O), (14)

@:arctan( Po ) (15)
Birk Pr

Given the critical momenta in polar coordinates given
by Egs. (10) and (11), the critical momentum in Birkhoff
coordinates is

Ds.crit = Sin |:arctan <ﬂ)i| (16)
Birk Pr,crit
p,=sin®
Pe\ 1'5
‘L8, B,
\
y Ry s
X

FIG. 4. Birkhoff coordinates (s, p;) at Birkhoff radius Rg;x.
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To create surfaces of section, the area preservation of the
application of Birkhoff coordinates to the billiard problem
[72] is exploited. To ameliorate the concern that the particle
in the central force potential eventually escapes the confines
delimited by the Birkhoff position s whereas billiards stay
within the boundaries, we posit a reflecting wall at a radius
beyond the radii under study, Ryeq > lim,_,  r(¢), to maintain
the area preservation of the map.

3. Phase-space bottleneck in Birkhoff coordinates

To locate the phase-space bottleneck to collision-complex
decay, the surface through which product-forming trajectories
that will pass unimpeded to infinite radius » — oo is found.
Since the radius » = R is the maximum radius at which
the energy-preserving momentum kicks operate, such that
no product particles are found within the radius R and all
product particles are found outside the radius R, the radius
R is the coordinate-space component of the bottleneck. Since
the critical momentum p; i given by Eq. (16) divides product
particles that will pass to infinity » — oo from those non-
products trapped within the turning-point radius r < Rym,
the critical momentum p; it constitutes the momentum-space
component of the bottleneck. The complete phase-space bot-
tleneck is then

r =R, 17)
|ps| < Ps,crit- (18)

All product-forming particles must then pass through this
bottleneck, with product-forming particles restricted to leave
the deflection region at r = R with a momentum p, within
a narrow angle of acceptance. The angle of acceptance ©
spans over all Birkhoff angles ® given by Eq. (15) of
product-forming particles. The critical Birkhoff angle © =
arctan (#;,“cm) is the maximum Birkhoff angle that product-
forming particles can have, such that the angle of acceptance
is twice the critical Birkhoff angle, O = 20

D. Analytical rate

To calculate the collision-complex lifetime, the rate of
product formation from the collision complex was deter-
mined. To calculate the rate, we assume an ergodic pop-
ulation in which trajectories populate phase space equally
in the deflection region of the collision-complex cauldron.
The assumption of ergodicity allows the rate constant k to
be calculated as a phase-space average over the statistical
distribution of particles [82—-86].

The ergodic rate k is given by the ratio of the volume flux
(‘1%% ._p (the phase-space volume fom that the product-
forming trajectories pass through at radius » = R in an in-
finitesimal time interval dt) to the total phase-space volume
of the nonproducts 2,0, (the sum of the inner deflection Q4eq
and outer turning region Qg volumes),

(%

dt )r:R
—= =, 19
Qo0n (19

k=

A schematic of the phase-space ratio is shown in Fig. 5.

Q

non

form )
r=R

X

FIG. 5. Schematic of calculation of the rate constant k from the
phase-space ratio given by Eq. (19) of the volume flux (%)r= R
to the volume of nonproducts €2,,, (the sum of the volumes of the
deflection region Q4.q and the turning region Q). Products are
formed when the trajectory crosses the deflection region boundary
at radius r = R within the angle of acceptance ®, shown magnified
20 times for visibility.

1. Volume flux

To determine the flux of forming products passing through
the phase-space bottleneck, we employed the phase-space
counting method of Wannier [25]. The phase-space volume
is given by integration over the coordinates

Q:f///drd@dp,dpg. (20)

Given conservation of the total energy E, the volume flux is
reformulated in terms of integration over the radial momen-
tum p, and divided by an infinitesimal time increment d¢ to
yield the volume flux through the phase-space bottleneck in

Sec. [1C3,
dQ 2 Po,crit
( f‘““‘) = / d@/ dpe @1)
dt r=R 0 — Po crit

=4 Po crit- (22)

Given the energy dependence of the critical angular momen-
tum pg it given by Eq. (10), the energy-dependence post-
threshold law of the volume flux is E'/3.

2. Rate constant

To calculate the overall rate of collision-complex decay,
the total phase-space volume of nonproducts is given by the
total volume within the phase-space bottleneck in Sec. II C 3,
the sum of the phase-space volumes of the inner deflection
region Qg4eq in which the particles are randomly deflected and
the outer turning region 2, in which the particles leave the
deflection region only to reenter.

To calculate the total phase-space volume of nonproducts,
the inner region is considered to be delimited by the maximum
deflection radius » = R. The outer region is considered to
reside between the boundary of the deflection region R and
the maximum turning point radius Rym, in Eq. (12), and
contains all momenta outside of the phase-space bottleneck
in Sec. I C 3. The total phase-space volume given by Eq. (20)
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of nonproducts is then

R 2w P6.max d
Qnon :m/ dr/ d@(Z/ ﬁ)
0 0 0 Pr
Ruurn 27 Po.max d
+m/ dr/ d9<2/ p9> 23)
R 0 Do crit Pr

— RZ) —4rm[F(R, Rum)],
(24)

=mn’R* + w’m (R,

where F(a, D) is the integral,

b Do, cri
F(a,b) = / r arctan (’—Cm)dr. (25)

¥ Dy crit

The volume flux given by Eq. (22) and phase-space volume
given by Eq. (24) together yield the ergodic rate constant
given by Eq. (19),

4p8,crit

k= .
mT[thurn - 4mF(R, Rturn)

(26)

As the system is in the post-threshold regime described
in Sec. IT A, the energy dependence constitutes the post-
threshold rate law, in contrast to the threshold rate law that
would be observed in the quantum regime. At high ener-
gies at which the turning radius Ry, given by Eq. (12) is
approximately equal to the boundary of the inner deflection
region Qum, the nonanalytic integral F (R, Rym) is negligible.
Expression of the critical angular momentum pyg i given by
Eq. (10) and the turning radius Ry, given by Eq. (12) in terms
of the energy E then reveals an energy dependence of E>/3.

E. Numerical rate

To corroborate the results of this classical method, the
analytic rate was compared to the numerical rate. To calculate
the numerical rate, a classical simulation of collision-complex
breakup was performed for the two-dimensional model of
the ultracold KRb dimer reaction described in Sec. II B. To
model the separation of the outgoing products, the mass m
of the particle in the simulation was given by the reduced
mass of the product K, and Rb, dimers. To simulate the
system being initialized in the collision complex, particles
were initialized at a small radius, riy; < 1 a.u. The particle
trajectory was then integrated with Velocity Verlet with a
time step 7 = 0.01 a.u. (Hartree atomic units m, = e = h =
ke = 1 a.u.) chosen to be sufficiently small to ensure energy
conservation within a fraction of a percent. The particles’
coordinates in phase space were then recorded at short-time
intervals to produce smooth images of the particle trajectories.
The coordinates were recorded every 2'? time steps near
the deflection region (r < 1.5R) in which the deep potential
well led to relatively high velocities. The coordinates were
then recorded every 2'° time steps in the asymptotic regions
where velocities were lower. Particles were considered as
having formed products once they passed through the phase-
space bottleneck described in Sec. II C 3. To ensure that the
full process of collision-complex breakup was simulated, the
trajectory of each particle was simulated until it reached well
past the maximum radius reachable by nonproduct particles

Rum given by Eq. (12). The turning-point radius was Ry, =
18 a.u. at the exothermicity of the reaction £ = 14 K.

To model the pseudo-one-dimensional process of product
separation described in Sec. II B, the potential energy of the
particle was given by the parametrized inverse sixth-order van
der Waals potential given by Eq. (7). The parameters were
chosen to reflect both the characteristic depth of the cauldron
and the characteristic distance of the van der Waals interaction
to produce a realistic depiction of the reaction energetics along
the reaction coordinate . Without the availability of the van
der Waals dispersion coefficient for the products, the van
der Waals dispersion coefficient for the KRb — KRb reaction
C¢ = 16130 a.u. [76,77] was employed to give a constant of
the appropriate order. The characteristic length parameter
was chosen to yield a weak potential once the outgoing dimers
were at a significant distance from each other, as the van
der Waals interaction becomes weak where the particles are
well separated. The value of the parameter, § = 2.9 a.u., was
chosen to yield a full width at half maximum (FWHM) equal
to the predicted equilibrium K-Rb distance at the coupled-
cluster singles, doubles, and perturbative triples [CCSD(T)]
[87] level of theory [9]. To ensure the well depth was equal to
the predicted transition-state well depth at the CCSD(T) level
of theory, the normalization constant was « = 110. a.u. This
choice of the well depth ensures that the relatively high kinetic
energies and the phase-space volume in the potential well re-
flect those possible in the collision-complex cauldron. To en-
sure the WKB criterion was satisfied at the energy E = 14 K,
the quantity in Eq. (§) was determined to be less than one at all
positions, reaching a maximum at 0.48 at 11 a.u. To determine
the difficulty of product formation, the angle of acceptance at
the energy E = 14 K was found to be ® = 1.2 rad.

At short range, random energy-preserving momentum
kicks were employed to efficiently mimic the many-body
interactions in the cauldron. As these interactions are strongest
where the atoms are nearby in the collision-complex cauldron,
the maximum deflection radius R was placed at a region
where the interactions between separating dimers were ex-
pected to be sufficiently weak. For the purpose of the sim-
ulation, the maximum deflection radius was chosen to be at
a distance where the intermolecular distance had stretched to
1.5 times the equilibrium bond distance, R = 4. a.u. To model
the gradual effects of the interactions, the kicks were chosen
such that the particles in the deflection region were smoothly
deflected as if by weak perturbations in the potential. To
ensure the deflection was smooth, the angle of the momentum
rotation was chosen to be small (fgen = [— 15, 15] rad) and the
kicks were chosen to occur at the same time interval at which
dynamics were recorded (every 2'? time steps). To encourage
formation of the near-ergodic ensemble in the deflection re-
gion that would arise naturally from four-body interactions,
the strength of the kicks was chosen to be independent of the
position of the deflection region. The robustness of the method
was verified by measuring the complex lifetime for various
kick angles, kick intervals, and kick strength with radii.

For comparison of the numerical and analytic post-
threshold rate laws, simulations were carried out for micro-
canonical ensembles at a range of energies spanning several
orders of magnitude. In addition to simulation at the pre-
dicted product energy of the ultracold KRb dimer reaction,
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simulations were also carried out at other temperatures to ver-
ify the analytical energy dependence of the rate. Low-energy
simulations were included despite being in the quantum re-
flection threshold regime for the sole purpose of establishment
of the classical energy dependence of the rate. For total system
energies of £ = 0.01, E = 0.1, and E > 0.1 K, 2000, 2048,
and 8192 particles were simulated, respectively. At higher
energies, more particles were simulated to yield a significant
population of remaining nonproducts after the premature for-
mation of products by transient particles was excluded. Re-
sults were only analyzed for times after which 1024 or fewer
particles remained to ensure ergodicity had been reached.
Exponential regression of the number of nonproduct particles
remaining over time yielded the numerical ergodic rate con-
stant k for collision-complex breakup. For direct comparison,
the numerical rate constant was plotted against the analytical
rate constant, which was computed as a power regression for
sampled energies in the range E € [1077, 800] K.

III. RESULTS

The particles in the numerical simulation exhibited
snarled trajectories associated with a collision complex. A
representative particle path is shown in Fig. 6. The trajectory
is shown at a low energy, E = 1073 K, to illustrate a difficult
“escape.” In all of the individual trajectories, the particle
moved randomly within the deflection region and, upon
reaching the deflection region boundary, made an attempt to
leave the deflection region. Two behaviors were evidenced
in these attempts. In failed escape attempts (‘“nonproduct”)
to leave the deflection region, the particle returned to the
deflection region. In successful escape attempts (“product”),
the particle left the deflection region without returning. In the
trajectory shown in Fig. 6, the particle repeatedly made failed
escape attempts until the particle left the deflection region
with escape velocity. Successful escape attempts passed
through the phase-space bottleneck described in Sec. IIC 3,
while failed escape attempts did not. The behavior matched
the expected behavior of the collision complex, in which the
collision complex is expected to sample the many possible
configurations in the collision-complex cauldron, making

—— 140
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FIG. 6. Sample particle trajectory (solid multicolor line) in
potential (7) (dashed gray, logarithmic contours) simulated
numerically.

failed attempts to form products when the energy is outside of
the phase-space bottleneck, until it reaches a configuration in
the phase-space bottleneck that allows it to irreversibly form
products.

The phase-space bottleneck was also reflected in surfaces
of section taken at the boundary of the deflection region. A
representative Poincaré surface of section is shown in Fig. 7
for the trajectory in Fig. 6. The points were spaced evenly
throughout the surface of section with only one passage
through the phase-space bottleneck. The uniformity of the
point spacing in Fig. 7(a) was in keeping with that expected
for a near-ergodic system. The even spacing reflected
the random behavior arising from the energy-preserving
momentum kicks. The surface of section did not exhibit
saddle points, in contrast to applications of phase-space
transition-state theory [60,69,70]. In addition, the single
passage through the bottleneck was in keeping with the
irreversible formation of products.

Passage through the Birkhoff radius Rpjy was associated
with successful and failed escape attempts on the trajectory,
dependent on whether or not the Birkhoff momentum p;
fell inside the bottleneck described in Sec. IIC 3. When the
particle had more than the critical Birkhoff momentum py .
given by Eq. (16), the particle made a failed attempt to
escape the potential, and the particle left the deflection region
only to return. When the particle had less than the critical
Birkhoff momentum p; i given by Eq. (16), the particle
passed through the phase-space bottleneck to make a success-
ful escape attempt, and the particle left the deflection region
and ultimately passed to the maximum radius included in the
simulation, well past the turning radius Ry, given by Eq. (12)
that bounded nonproduct trajectories at the energy E of the
simulation. The behavior agreed with what would be expected
for a system with a phase-space bottleneck separating the
collision-complex cauldron from outgoing products.

Observation of the proportion of nonproduct particles
remaining in the collision-complex cauldron over time in
the numerical simulation closely agreed with the proportion
predicted to remain analytically. The close agreement at the
energy released in the reaction, £ = 14 K, is shown in
Fig. 8(a). The numerical rate constants were found to match
the analytical rate constants at various energies over several
orders of magnitude, as shown in Fig. 8(b).

Discrepancies in the calculated rate constants may be at-
tributed to limitations in the methods of calculation of the
analytical and numerical rate constants. Accurate analytical
calculation of the rate constant k was limited by numerical
errors in evaluation of the nonanalytical integral given by
Eq. (25) and the assumption that the normalization constant
« is negligible in Sec. IIC 1. Accurate numerical calculation
of the rate constant £ was also limited by variations in the
relaxation time in which near ergodicity is achieved.

The agreement between the analytical and numerical val-
ues for the rate constant K was also evident in the half life >,
the characteristic timescale for disappearance of half of the
remaining nonproducts. As the half life #;», inversely related
to the rate constant k, provides a measure of the collision-
complex lifetime, agreement between the values suggested the
value of the methods to study collision-complex lifetimes in
sufficiently exothermic ultracold reactions.
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FIG. 7. (a) Evenly spaced points (light gray) on the Poincaré surface of section for the particle shown in Fig. 6 (Rpix = 4 a.u., p, > 0)

reflect the near ergodicity of the system. (b) Two points are highligh

ted as examples of a successful product escape (green) and a failed

nonproduct escape (red) in a 56X magnified image of the phase-space bottleneck (blue rectangle). (c),(d) Trajectory plots illustrate the portions
of the trajectory (thick multicolor line) that contributed the highlighted points on the surface of section.

At the energy released in the ultracold KRb reaction
E = 14K, the analytical rate constant was k = 153 ns™!
(half life #; =4.5 ps) and the numerical rate constant
was k = 149ns™! (half life ¢/, = 4.6 ps, asymptotic stan-
dard error Ak = £0.025ns™!). The timescale was submil-
lisecond as in the Rice-Ramsperger-Kassel-Marcus (RRKM)
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FIG. 8. (a) Remaining proportion of nonproducts over time at 14 K

transition-state theory [54-57] treatment of the transition-
state decay in the full KRb — KRb reaction, although the
timescales differ significantly and both methods are qualita-
tive in their current form [24]. The RRKM analysis predicted a
RRKM lifetime of the collision complex of T = 3.5 us for the
total angular momentum J = 0 and J = 1 states, T = 3.6 us

(b)

-7
-
-

° Numerical L
10° o
_— |  mme—- Analytic o
= »
§ y’/
» 10 e
& L
(] .. &
2 e
© e
i e
001 7
1077 1075 0.001 0.100 10 1000 10°
Energy [K]

calculated numerically (solid light-gray line) and analytically (dashed

dark-gray line). (b) Rate constant k of product formation determined numerically (light-gray points) and analytically (dashed dark-gray lines).
Maximum standard asymptotic error was 0.03%, indistinguishable from the point at the plot scale.
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for the J = 2 state, and t = 3.7 us for the J = 3 state. The
results of the RRKM method and the present method are not
directly comparable as the RRKM method does not include
the effects of a phase-space bottleneck. In addition, the present
method does not include consideration of the total angular mo-
mentum J or the internal structure of the dimers. The applica-
tion presented here is only a partial solution of the reaction, as
the products are considered to be structureless point particles.

IV. DISCUSSION

Our semiclassical argument for quantum-classical corre-
spondence suggests that classical mechanics provides a dif-
ferent window into the study of collision-complex decay in
sufficiently exothermic ultracold reactions. Whereas quan-
tum mechanical methods become intractable for ultracold
systems of many heavy atoms, causing difficulties even in
the two-dimensional case, the classical methods presented
here help bring the study of complex ultracold chemical
reactions within reach. The successes of our method for a
two-dimensional model of collision-complex decay in the
ultracold KRb dimer reaction suggest that classical mechanics
can be used as an essentially exact alternative to quantum
mechanics for specific elements of collision-complex decay
in sufficiently exothermic ultracold reactions.

Our introduction of a simplified model of many-body in-
teractions takes advantage of this classical picture to simulate
the decay process efficiently. Whereas other methods can
lead to numerical instability, application of classical energy-
preserving momentum kicks in the two-dimensional system is
computationally economical and satisfies energy conservation
inherently. Agreement between the analytical ergodic rate law,
determined with Wannier’s method of phase-space counting
[25], and the numerical rate law, determined with energy-
preserving momentum kicks, supports the validity of this
method for inducing a near-ergodic distribution and determin-
ing the rate in a barrierless reaction. The success of the method
of energy-preserving momentum kicks and Wannier phase-
space counting demonstrated here in a reduced-dimensional
simulation of the ultracold KRb dimer reaction, in which

products were treated as structureless point particles, bodes
well for generalization to full-dimensional simulations.

Our fully classical method not only enables computa-
tional simulations of collision-complex decay in sufficiently
exothermic ultracold reactions, but also provides intuition as
to how these processes proceed. Instead of visualizing the
interaction of wave functions, the reaction can be visualized
in terms of classical particles that must proceed through a
narrow window in momentum space in order to form products.
In this picture, since the exothermicity of the reaction is low,
the particle must focus almost all its available momentum on
direct radial separation in order to form products, as without
escape velocity the particle would reenter and remix in the
collision-complex cauldron.

Replacement of point particles with structured particles
will require quantized vibrations and rotations and, subse-
quently, the addition of quantum effects. We acknowledge that
classical tools as presented here do not yet provide essentially
exact results for the full-dimensional reaction. Instead, the
classical techniques presented here give a classical view into
collision-complex decay in sufficiently exothermic ultracold
chemical reactions and a means to calculate aspects of the
process nearly exactly where quantum mechanics presents
difficulties. The study successfully illustrates the idea that
collision-complex decay in sufficiently exothermic ultracold
reactions can be approached from a classical perspective.
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