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Prospects for a polar-molecular-ion optical probe of varying proton-electron mass ratio
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Molecules with deep vibrational potential wells provide optical intervals sensitive to variation in the proton-
electron mass ratio (μ). On one hand, polar molecules are of interest since optical state preparation techniques
have been demonstrated for such species. On the other hand, it might be assumed that polar species are
unfavorable candidates, because typical molecule-frame dipole moments reduce vibrational state lifetimes and
cause large polarizabilities and associated Stark shifts. Here, we consider single-photon spectroscopy on a
vibrational overtone transition of the polar species TeH+, which is of practical interest because its diagonal
Franck-Condon factors should allow rapid state preparation by optical pumping. We point out that all but the
ground rotational state obtains a vanishing low-frequency scalar polarizability from coupling with adjacent
rotational states, because of a fortuitous relationship between rigid rotor spacings and dipole matrix elements.
We project that, for good choices of spectroscopy states, demonstrated levels of field control should make
possible uncertainties of order 1 × 10−18, similar to those of leading atomic ion clocks. If fast state preparation
can be achieved, the moderately long-lived vibrational states of TeH+ make possible a frequency uncertainty
approaching 1 × 10−17 with one day of averaging for a single trapped ion. Observation over one year could
probe for variation of μ with a sensitivity approaching the 1 × 10−18/yr level.
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I. INTRODUCTION

Searches for variation of fundamental constants are mo-
tivated by their ability to probe physics beyond the stan-
dard model [1]. Modern laboratory searches for variation
use precise frequency measurements with sensitivity to the
fine-structure constant (α) and the proton-electron mass ratio
(μ) [2]. Improved searches for variation of μ are especially
intriguing as it is predicted to drift faster than α in generic
models [3]. If astronomical observations of methanol lines are
cast in terms of a linear temporal drift in μ, they set a limit of
2.4 × 10−17/yr [4]. The tightest laboratory constraint on the
fractional variation of μ, ∼1 × 10−16/yr, was obtained from
a comparison of hyperfine and electronic transitions in atomic
clocks [5,6], using a shell model calculation to describe the
dependence of the nuclear magnetic moment on μ [7]. Since
the sensitivity to μ arises from the relatively low-frequency
(∼10 GHz) hyperfine transition, it will be challenging to
significantly improve the precision of μ variation searches
by this approach. Vibrational transitions in molecules provide
model-independent sensitivity to varying μ, with the current
best constraint (<5.6 × 10−14/yr) obtained in a molecular
beam [8].

Spectroscopy on single trapped atomic ions has achieved
statistical and systematic uncertainties at the low 10−18

level [9,10]. Recent demonstrations of molecular-ion quantum
state preparation [11–15] and nondestructive readout [15,16]
suggest that spectroscopy on a single trapped molecular
ion could obtain a high duty cycle in an environment also
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favorable for control of systematic uncertainties. In order to
evaluate whether this approach to molecular spectroscopy
could improve μ variation sensitivity beyond the 10−16 level
of atoms, the intrinsic details of the molecular states and
practical aspects of state preparation must be carefully con-
sidered. Demonstration of fast optical state preparation for
molecular ions with diagonal Franck-Condon factors (FCFs)
raises the possibility of small statistical uncertainty for single-
molecule spectroscopy [17]. Since other proposed species
without diagonal FCFs [18–20] cannot be state prepared by
this technique, an investigation of statistical and systematic
uncertainties obtainable for a diagonal species like TeH+ is of
interest.

Compared with hyperfine transitions in atoms, high vibra-
tional overtone intervals (10–1000 THz) of molecules have
orders of magnitude larger absolute sensitivity to varying
μ [21,22]. Optical-frequency single-photon overtone transi-
tions have been observed in trapped molecular ions [23,24].
When the state lifetimes are sufficiently long, such overtone
transitions offer a means to surpass the statistical sensitivity
of previous searches. One proposed technique is to drive a
low-frequency transition from a vibrationally excited state
to a nearly degenerate level with different μ sensitivity
[21,22,25–27]. A challenge of this approach is to find suitable
transitions where the dissimilar character of the states does
not cause large differential shifts and systematic uncertain-
ties. An alternative approach is to measure the vibrational
overtone frequency directly by one-photon [19,28] or two-
photon [20,28–32] transitions.

Systematic frequency shifts in polar molecules will gener-
ally arise from coupling of nearby rotational and vibrational
levels, a serious concern absent in atoms. One response is to

2469-9926/2018/98(5)/052513(12) 052513-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.052513&domain=pdf&date_stamp=2018-11-29
https://doi.org/10.1103/PhysRevA.98.052513


KOKISH, STOLLENWERK, KAJITA, AND ODOM PHYSICAL REVIEW A 98, 052513 (2018)

use nonpolar (homonuclear) diatomic molecules, whose van-
ishing dipole moment eliminates Stark shifts from rotational
and vibrational coupling [19,28,31]. However, it is also of
great interest to consider polar molecules, particularly since
demonstrated optical pumping state preparation techniques re-
quire a dipole moment [11,12] or a structure not yet identified
in a homonuclear species [14]. Polar molecules have closely
spaced levels of opposite parity, which for example allow for
molecular orientation in moderate electric fields. One might
naively expect that the associated Stark shifts would pose pos-
sibly catastrophic challenges for clock-level spectroscopy on
polar species. It has previously been pointed out for HD+ that
the dc scalar polarizability of rotationally excited states is in
fact dominated by electronic couplings [33]. Other systematic
uncertainties were considered in detail [19,28,34], and it was
proposed that a weighted average over a carefully chosen set
of disparate transitions could create a composite frequency
with a low inaccuracy [19,34]. Here, we point out that the
remarkable feature of small dc scalar polarizability actually
arises from a nearly precise cancellation of adjacent-level
interactions, and that there is a related cancellation of the
differential polarizability in the high-frequency limit. Recog-
nizing that the only large polarizabilities unavoidable in polar
molecules are tensorial in character, it becomes clear that
simple state averaging techniques, known from atomic clocks
and previously recognized as being useful for homonuclear
spectroscopy [20], can be used to simultaneously suppress this
shift as well as linear Zeeman and quadrupole shifts.

II. MOLECULAR STRUCTURE

We consider the prospects of spectroscopy on a sin-
gle TeH+ ion for an improved search for varying μ. Sev-
eral favorable properties of TeH+ stem from its electronic
structure, which has been recently computed using mul-
tireference configuration interaction with single and double
excitations and Davidson correction for higher excitations
(MRCISD+Q/aV5Z) calculations [35].

No experimental data are currently available for TeH+, but
some confidence in the calculations can be gained by con-
sidering the isolectronic molecule antimony hydride (SbH).
Compared with the TeH+ calculation, the MRCISD+Q cal-
culation for SbH [36] uses a smaller basis set (of quadruple
zeta quality) and fewer configuration-state functions and is
expected to be less accurate. The experimental data on SbH
confirm the predictions of the two lowest state symmetries,
the cooling transition linewidth to within a factor of 2, and the
predictions of low-lying state bond lengths to within 3 pm,
which is important for predicting Franck-Condon Factors
(FCFs) [37–39]. Further discussion of the reliability of the
TeH+ calculations can be found elsewhere [17,35]. What
would be the implications for this work if theoretical errors are
larger than expected? The most significant concerns would be
about statistical uncertainties; nondiagonal FCFs could com-
plicate state preparation and shorter vibrational state lifetimes
would broaden the spectroscopy transition linewidth. Sys-
tematic uncertainties are expected to be fairly robust against
theoretical errors, and many of the results of this work would
still be quite relevant to this molecule and qualitatively so to
other molecules as well.

f08 = 430 THz
Γ = 2π × 4.0 Hz

units of

FIG. 1. Relevant low-lying electronic states of TeH+. Dashed
lines indicate the initial and final states of the spectroscopy transition,
v = 0 → v′ = 8, in the X10+ manifold. Figure adapted from [35].

TeH+ is polar with a predicted ground-state body-frame
dipole moment of 0.91 Debye [35]. The lowest few electronic
states of TeH+ are predicted to have diagonal FCFs [35]
(Fig. 1). These diagonal FCFs arise because the states cor-
respond to different orbital and spin configurations of two
electrons in nonbonding p orbitals localized on the tellurium
ion, so transitions leave the bond length and strength relatively
unperturbed. A diagonal transition from the ground state
can make possible rapid spectroscopy state preparation by
optical pumping [14], and elsewhere we analyze in detail
the prospects for optical state preparation of TeH+ [17].
Furthermore, diagonal FCFs reduce shifts arising from the
upper spectroscopy state coupling to levels in other electronic
manifolds which are close in energy but have poor vibrational
overlap.

In the absence of spin-orbit coupling, the TeH+ ground
state is 3�−, and the two lowest excited states correspond to
1� and 1�+ states [35]. However, strong spin-orbit coupling
originating from the heavy tellurium atom makes the Hund’s
case (c) basis a good approximation to the eigenstates [35,40].
Selection rules that would otherwise prevent transitions be-
tween the three lowest-lying � + S states are relaxed. The
resultant relatively short excited-state lifetimes of the b0+ and
a2 states (15 μs and 2.4 ms, respectively, calculated from data
from [35] using LEVEL 16 [41]) are important for optical
pumping schemes. The ground 3�− state is split into different
� components separated by 1049 cm−1 [35], and we consider
spectroscopy transitions within the (� = 0) X10+ state. We
focus on the 130TeH+ ion, whose lack of Te nuclear spin
reduces the complexity of optical pumping. Optical pumping
is further simplified because of the relatively large rotational
and vibrational constants predicted to be 6.2 and 2100 cm−1,
respectively, arising from the small reduced mass [35]. Larger
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level spacings are beneficial for practical optical pumping
because fewer states are initially thermally populated, and
fewer states are spanned by the spectroscopy transition, after
which repumping will be required. 130TeH+ has I = 1/2, and
we use the Hund’s case (cβ) basis such that Ja = L + S,
J = Ja + R, and F = J + I .

III. STATISTICAL SENSITIVITY

The sensitivity to varying μ of vibrational intervals
in homonuclear molecules has previously been consid-
ered [21,22,29]. For homonuclear molecules the transition
natural linewidth � is extremely narrow, and the maximum
single-shot probe times are limited by other technical issues
such as laser coherence time. Thus choosing an optimal
homonuclear spectroscopy interval is free of any intrinsic
statistical consideration. In contrast, vibrational state lifetimes
of polar hydrides are sufficiently short (typically <1 s) to
limit probe times in realistic experiments. Harmonic-oscillator
physics provides an estimate for the natural lifetime τn of the
nth vibrational state, valid for low n. From 〈n − 1|x|n〉 ∝ √

n,
we obtain τn ≈ τ1/n in the harmonic region. Thus statistical
penalties associated with the n-dependent lifetimes of polar
molecule states must be considered. We find below that
searches for changing μ using polar molecules can benefit
from using vibrational overtones rather than the fundamental,
but that the relative payoff is weaker than for homonuclears.

In response to a change in μ, the fractional change of a
vibrational transition from v = 0 to v′ = n at frequency �n is
given by

��n

�n

= Kn

�μ

μ
, (1)

where we assume here that �n is measured by comparing
against some clock oscillator with minimal μ sensitivity, such
as an optical-frequency atomic transition. The relative sen-
sitivity coefficient Kn = ∂ (ln�n)/∂ (lnμ) describes the frac-
tional response of the transition frequency to varying μ. For
vibrational fundamental or overtone transitions within the
approximately harmonic region, Kn ≈ − 1

2 , independent of
n [2]. The measured frequency shift itself can be expressed
as

��n = Sn

�μ

μ
, (2)

where Sn = �n Kμ is the absolute sensitivity coefficient of
the transition [21,22,29]. For a harmonic oscillator with fre-
quency ω, Sn = −nω/2. Since the strength of the chemical
bond does not have leading-order dependence on nuclear
masses, the sensitivity must vanish toward dissociation; for
a Morse potential the maximum of |Sn| occurs at roughly 3/4
the dissociation energy [21].

The relative and absolute sensitivity coefficients discussed
above do not include any statistical penalty for finite lifetimes
of upper states. To take this into account, we define a statistical
sensitivity ζ given by

ζn(T ) ≡ |Kn|
σy (T )

= |Sn|
δ�n(T )

, (3)

where σy (T ) = δ�n(T )/�n is the Allan deviation for some
overall measurement time T and δ�n(T ) is the associated fre-
quency uncertainty. There are two physical interpretations for
ζn(T ). First, it gives the ratio of frequency shift to frequency
uncertainty, for some fractional change in μ:

��n

δ�n(T )
= ζn(T )

�μ

μ
. (4)

Alternatively, the frequency measurements provide a mea-
surement of the quantity μ itself (albeit with very large
theoretical uncertainty) and the square root of the two-sample
variance is given by σ

(μ)
y (T ) = ζ−1

n (T ).
For a projection-noise limited Ramsey-style measurement

on a single ion, the rms error is given by

δ�n(T ) = 1

TRC

√
Tc

2T
, (5)

where TR is the Ramsey time, Tc is the cycle time, T is the total
measurement time, and C is the fringe visibility (e.g., C = 0.6
for TR = τn) [42,43]. We can then express how the statistical
uncertainty scales with choice of vibrational overtone:

δ�n(T ) =
(

τ1

τn

)k

δ�1(T ), (6)

with 0 � k � 1. The particular value of k depends on the rela-
tionship between TR, Tc, and τ in the measurement protocol.
We consider three limiting cases: (1) k = 0 for TR, Tc � τ ,
most relevant to homonuclear spectroscopy, (2) k = 1 for
TR = τ and TR � Tc, representing dead time limited cycling
relevant to polar molecule spectroscopy, and (3) k = 1

2 for
TR = τ and TC = 2TR, representing optimal cycling for any
molecule. Although it would be statistically preferable to
have the longer upper-state lifetimes of homonuclears, a sort
of consolation for polar hydride spectroscopy is that their
moderate lifetimes can in some cases allow k = 1

2 to be
approached using optical pumping techniques [14,17].

The statistical sensitivities ζn(T ) and ζ1(T ) are then related
by

ζn(T ) = |Sn|
|S1|

(
τn

τ1

)k

ζ1(T ). (7)

For a harmonic oscillator, the sensitivity and lifetime scalings
discussed above yield (1) ζn(T )/ζ1(T ) = n for k = 0, (2)
ζn(T )/ζ1(T ) = 1 for k = 1, and (3) ζn(T )/ζ1(T ) = n1/2 for
k = 1

2 . The strongest benefit of increasing n occurs for the
k = 0 case, most relevant to homonuclear spectroscopy.

Reference [35] predicts TeH+ X10+ vibrational state spon-
taneous emission lifetimes spanning from 200 ms down to
20 ms, over the frequency range 60–600 THz. Stimulated
emission from blackbody radiation at room temperature will
be orders of magnitude slower. In Fig. 2 we plot the TeH+

statistical sensitivity for the three limiting cases of k, as a
function of excited vibrational state. Nontrivial dipole mo-
ment functions and reduced anharmonic level spacings [35]
contribute to the slight enhancement at low n of the sen-
sitivity ratio, as compared with the harmonic-oscillator val-
ues. The statistical uncertainty for the linewidth-limited k =
1
2 case is minimized using the overtone �8/(2π ) = 430
THz with τ8 = 40 ms. Averaging yields δ�8(T )/�8(T ) =
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FIG. 2. Statistical sensitivity to μ of TeH+ overtone transitions
�n, relative to that of the vibrational fundamental transition �1. Val-
ues of k correspond to different experimental timing cases, described
in the text. The dashed curves show the harmonic-oscillator values.

3.1 × 10−15/
√

T/s, or 1.0 × 10−17 at 1 day, corresponding to
δ�8/(2π ) = 4.3 mHz. The corresponding sensitivity coeffi-
cients are K8 = −0.40, S8 = 2π × 170 THz, and ζ8(1 day) =
4.0 × 1016, with σ

(μ)
y (1 day) = 2.5 × 10−17. It is important

to note that approaching this best-case statistical uncertainty
requires state preparation significantly faster than the upper
spectroscopy state lifetime. In Ref. [17] we find that the 15 μs
lifetime of the b0+ state should allow for rapid optical state
preparation, such that k = 1

2 can be approached.

IV. POLARIZABILITY CALCULATIONS

We compute TeH+ Stark shifts directly from the Hamil-
tonian, without actually using expressions for polarizabilities.
However, since we find that some shifts vanish when averaged
over MF , a description in terms of scalar and tensor polar-
izabilities is suggested, and this description is also helpful
for comparing behavior of different species. We take the
quantization axis ẑ to be defined along the direction of an
applied magnetic field, and all electric fields we consider
are relatively small such that Stark shifts are much smaller
than the Zeeman intervals. In this case, the Stark shift can be
expressed as

�W = −1

2
E2

rms

[
αS(ω) + DαT(ω)

3M2
J − J (J + 1)

(2J − 1)(2J + 3)

]
,

(8)
where Erms is the rms value of the oscillating field polarized
along û, D = (3|û · ẑ|2 − 1), and αS and αT are the dynamic
scalar and tensor polarizabilities [44,45]. [Note that we have
defined αT using the molecular convention, which causes
the MJ -dependent factor to be (2J )/(2J + 3) times that of
the atomic convention.] This expression has the correct form
in the dc limit where Edc = Erms. Since the second term
in Eq. (8) vanishes when summed over polarizations, as
occurs naturally for an isotropic blackbody radiation (BBR)

field, or when measured spectra are averaged over Zeeman
states, effects of the tensor polarizability can be strongly
suppressed [46,47]. The scalar polarizabilities are of greater
concern.

If the rotational energy spacing is relatively small, then
expressions of the same form as Eq. (8) can be written for
polarizabilities arising from coupling to adjacent rotational
levels (αr), adjacent vibrational manifolds (αv), the spin-orbit
split X21 manifold (αSO), and electronically excited manifolds
(αe), such that

�W = �W r + �W SO + �W v + �W e. (9)

A. Polarizability formalism for J states

We first consider the case of zero nuclear spin. In the
approximation that (1) the rotational spacing is small com-
pared with other intervals and (2) electronic and vibrational
transition dipole moments do not change significantly when
the rovibrational wave function v(J ) is replaced with v(J ′) for
J ′ = J ± 1, then the (orientation-dependent) individual terms
for � = 0 states can be written as

�Wx (γ, J,MJ )

= −1

2
E2

rms

[
αx

S (γ, J ; ω)+Dαx
T(γ, J ; ω)

3M2
J − J (J+1)

(2J − 1)(2J+3)

]
,

(10)

with D = (3|u · z|2 − 1) and x ∈ {r, SO, v, e} [44]. We have
again used the standard convention for defining the molecular
αT, in which the MJ -dependent multiplier in Eq. (10) is
(2J )/(2J + 3) times that of the atomic convention. With
these definitions, Ref. [44] shows that for I = 0 the electronic
polarizabilities have the following relations:

αe
S = 1

3 [α‖ + 2α⊥],

αe
T = 2

3 [α‖ − α⊥].
(11)

Here, α‖ and α⊥ are the electronic polarizabilities associated
with �� = 0 and �� ± 1 transitions and (α‖ − α⊥) is known
as the polarizability anisotropy.

The second-order perturbation expression for the Stark
shifts of a state |γ, J,MJ 〉 coupled to a manifold γ ′ by an
oscillating electric field E(t ) = E cos ωt ẑ is given by

�Wx (γ, J,MJ ) =
∑
J ′

E2
rms|〈γ, J,MJ |dz|γ ′, J ′,MJ 〉|2

h̄

× −�

�2 − ω2
, (12)

where dz is the laboratory-frame z component of the dipole
operator, h̄� is the signed energy splitting of the states, and
Erms is the rms field magnitude. In this work, we find the
polarizabilities by diagonalizing the Hamiltonian. Combining
Eqs. (8) and (12), and recognizing that the tensorial term
vanishes when summed over all MJ , we obtain

αx
S (γ, J ; ω) =

∑
MJ

∑
J ′

2|〈γ, J,MJ |dz|γ ′, J ′,MJ 〉|2
h̄(2J+1)

�

�2−ω2
.

(13)
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The tensor polarizability αx
T for the manifold can then be

found from Eq. (8). For instance, choosing MJ = 0 and u = z
we obtain

αx
T (γ, J ; ω) = (2J − 1)(2J + 3)

2J (J + 1)

[
−αx

S (γ, J ; ω)

+
∑
J ′

2|〈γ, J, 0|dz|γ ′, J ′, 0〉|2
h̄

�

�2 − ω2

]
.

(14)

1. Polarizability from adjacent rotational levels

The level spacing for a rigid rotor is EJ = BvJ (J + 1),
yielding an upper energy interval

�J→J+1 = 2(J + 1)Bv/h̄ (15)

and a signed downward interval

�J→J−1 = −2JBv/h̄. (16)

For a Hund’s case (c) molecule with body-frame dipole
moment μ0 in a z-polarized field, the polarizability due to
coupling to adjacent rotational levels, from Eq. (8) and, e.g.,
Ref. [40], becomes

αr
S (ω) =

∑
MJ

∑
J ′

2|〈γ, J,MJ | − μz|γ, J ′,MJ 〉|2
h̄(2J + 1)

�JJ ′

�2
JJ ′ − ω2

(17)

= 2μ2
0

∑
MJ

∑
J ′

(2J ′ + 1)

∣∣∣∣
(

J 1 J ′
−MJ 0 MJ

)(
J 1 J ′

−� 0 �

)∣∣∣∣
2

�JJ ′

�2
JJ ′ − ω2

. (18)

We use (
J + 1 1 J

−MJ 0 MJ

)
= (−1)J−MJ +1

[
2(J + MJ + 1)(J − MJ + 1)

(2J + 1)(2J + 2)(2J + 3)

]1/2

(19)

and for ω � �

�JJ ′

�2
JJ ′ − ω2

≈ 1

�

(
1 + ω2

�2

)
. (20)

As an example, taking � = 0, J ′ = 1 for J = 0 or J ′ = J ± 1 for J � 1, for the low-frequency limit ω � � we obtain

αr
S (ω) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
μ2

0

3Bv

)[
1 +

(
h̄ω

2Bv

)2
]

−−→
ω→0

μ2
0

3Bv

, J = 0,

(
μ2

0

3Bv

)(
1

J (J + 1)

)2(
h̄ω

2Bv

)2

−−→
ω→0

0, J � 1.

(21)

The cancellation for J � 1 states occurs because the interac-
tions with the next-lower and next-higher states cancel each
other. This is a nontrivial result, since the level spacing and
coupling strengths are different for each interval. We find
empirically that this cancellation holds for other molecular
configurations, including � �= 0 in Hund’s case (cβ) and
Hund’s cases (a) and (b). (Note that for some of these cases
there is � or � doubling, and the polarizability arising from
coupling of the doublet states is finite.)

This result is consistent with the null value obtained when
one averages over MJ the well-known expressions for rigid
rotor Stark shifts in 1� molecules [40,48], with the previous
observation that the MJ -averaged dc polarizability vanishes
for J > 0 in 1� molecules [49], and with calculations show-
ing that αS(0) for the 2�+ molecule HD+ is dominated by
αe

S(0) [33]. Deviations from the rigid-rotor energy spectrum
approximation are discussed in Sec. V.

One can also show that in the limit ω � Bv/h̄ rotational
coupling causes all levels except for J = 1/2 to obtain a
common scalar polarizability αS = − 4μ2

0Bv

3h̄2ω2 . This result
is relevant, for instance, for Stark shifts from BBR coupling

of rotational levels. However, in practice, since these shifts
are small, this cancellation is less important than the low-
frequency case.

2. Polarizability from unbound electronic levels

For computing the polarizability from coupling to the
unbound A21 level, we use a “classical” approximation
which takes the classical position and momentum of the
spectroscopy state as a function of internuclear distance R and
uses the requirement of conservation of nuclear position and
momentum to define a single energy in the excited potential
which is coupled. It is easily shown that the coupling interval
is given by the so-called difference potential �V (R), the
interval between the two potential-energy curves [50–53].
Then the frequency shift in response to an off-resonant field
is given by

�f =
∫

dR �f (μ(R),�V (R), E(t ))|�(R)|2, (22)

where �(R) is the nuclear wave function, μ(R) is the
laboratory frame transition moment, and �f (μ,�E,E(t ))
describes the light shift for driving field E(t ) of a level
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TABLE I. Contributions to scalar and tensor dc polarizabilities and 300 K BBR shifts for selected X10+ states. For simplicity, we present
here J -state |v, J 〉 values. The proposed spectroscopy transition is marked with an asterisk. Tensor polarizabilities use the molecular prefactor
convention described in the text.

αS(ω = 0) (a.u.) αT(ω = 0) (a.u.) �300 (mHz)

αr
S αv

S αso
S αe

S αr
T αv

T αso
T αe

T �r
300 �v

300 �SO
300 �e

300

|0, 0〉 1500 0.02 0.04 1 0 0 0 0 12 − 0.2 − 0.4 − 10
|0, 1〉∗ 0.08 0.02 0.04 1 1100 − 0.04 0.02 0.6 11 − 0.2 − 0.2 − 10
|0, 2〉 0.2 0.02 0.04 1 400 − 0.04 0.02 0.6 11 − 0.2 − 0.2 − 10
|8, 2〉∗ 0.3 − 0.03 0.03 0.6 600 − 0.09 0.01 0.3 11 0.4 − 0.1 − 6

coupled by transition moment μ to another level separated in
energy �E. The results we obtain by integrating over |�(R)|2
are similar to what we obtain by a simple turning point
approximation. Lab frame transition moments are obtained
from rotationless transition moments in the usual way, the
shifts are summed over coupled F ′,M ′

F levels, and scalar and
tensorial polarizabilities are extracted as described previously.

B. Polarizability formalism for F states

When comparing differential polarizabilities with those of
atoms, it is important to consider the F states. It can be shown
for atoms that the polarizability for F states can be written
in the same form as Eq. (8), but with J → F and MJ →
MF [45]. Since we are considering Hund’s case (cβ), where
F = J + I , the same arguments apply to TeH+. F -state
polarizabilities are calculated by first finding the numerical
Stark shifts and then solving the equations for αS(γ, F ; ω) and
αT(γ, F ; ω).

V. ASSESSMENT OF TeH+ STARK SHIFTS

Stark shifts and polarizabilities are calculated according to
the formalism described above, using dipole moment func-
tions from [35]. Low-frequency polarizability results are pre-
sented in Table I, and the BBR shifts shown in Table I en-
capsulate the most important consequence of high-frequency
polarizability. Comparison of these values with those of op-
tical atomic clock polarizabilities are given in Table II, and
projected Stark shift uncertainties are in Table IV. Light shifts
are discussed in Sec. V E.

Since understanding the general Stark shift properties of
the molecule does not require introducing nuclear spin, for
simplicity we present in Table I the polarizabilities and BBR
shifts for the case of I = 0, i.e., for J states. However, for our
calculations of systematic shifts in Table IV, we use the Stark
shifts for the actual F states.

A. Electronic polarizability

To anticipate the magnitude of electronic polarizabilities
from the potential-energy curves (Fig. 1), it is important to
recognize that the vibrational wave functions generally cause
the upper spectroscopy state to couple to other electronic
manifolds well above their minimum energies. Polarizabilities
are calculated for couplings to the X21, b0+, A12, and A21
states. Since transition moments to other electronic states are
small [35], they are not expected to contribute significantly
to the polarizability. Polarizabilities arising from coupling
to different spin-orbit states are also small, owing to small
transition moments.

B. Vibrational polarizability

Because the rotational and vibrational spacing is much
smaller than the electronic spacing, αv(ω) or αr(ω) for polar
molecules might be expected to dominate the differential
Stark shift at low frequencies and also to play a significant role
at high frequencies. For the case of αv(ω), this turns out to not
normally be the case, for straightforward reasons. Vibrational
transition moments for polar hydrides are typically �10% of
electronic transition moments, so, after squaring to obtain the

TABLE II. Comparison of TeH+ |v = 0, J = 1, F = 1/2〉 → |v=8, J = 2, F=3/2〉 and atomic ion clock transition parameters [9,55–57].
Differential shift coefficients are given for dc polarizabilities �α(0), 300 K BBR Stark shift �f300, quadratic Zeeman shift �M2, and quadrupole
shift ��, all computed for the F states of the transition. For comparison tensor polarizabilities here use the atomic convention, denoted α

(a)
T , so

TeH+ values are smaller than those of Table I by a factor of 2J/(2J + 3). �α and �� are the differences between the upper- and lower-state
values. Lower- and upper-state linear Zeeman shifts are given by the g factors gg and ge, where E = gmF μB . The quadratic Zeeman coefficient
�M2 is either for mF = 0 → m′

F = 0 or for an average over Zeeman components effectively creating that transition. The statistical uncertainty
δf/f is for 1 day of averaging, with TR set to the upper-state lifetime for TeH+ and Sr+ and TR

∗ set to a laser coherence time of 6 s [58] for
Al+ and Yb+.

�αS(0) (a.u.) �α
(a)
T (0) (a.u.) �f300 (Hz) gg ge �M2 (Hz/mT2) �� (a.u.) δf/f × 1018

TeH+ (430 THz) −0.4 250 0.005 0.07 0.05 40 000 0.3 10
Al+ (1100 THz) 0.5 0 −0.004 −0.0008 −0.002 −70 0 0.3∗

Sr+ (445 THz) −30 −50 0.2 2 1 3 3 3
Yb+ E2 (688 THz) 50 −70 −0.4 0.8 50 000 2 6
Yb+ E3 (642 THz) 5 −1 −0.04 1 −2000 −0.04 0.6∗
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Stark shift, vibrational contributions to Stark shifts are still
smaller than electronic contributions despite the closer level
proximity.

C. Rotational polarizability

The case of polarizability from rotational coupling is much
more interesting. As discussed in Sec. IV A 1, we find that
the relationship between the rigid-rotor level spacings and
corresponding dipole matrix elements essentially eliminates
effects of αr

S. In the low-frequency limit, the shifts from
the next-lower and next-higher rotational states balance, and
αr

S(0) = 0 for J � 1. Centrifugal distortion has a small effect
on the rotational spacing (<10−4 per level for TeH+) and
slightly spoils this cancellation, as can be seen in Table I.

D. BBR Stark shifts

BBR shifts were calculated by numerically integrating the
dynamic Stark shifts over the BBR spectrum [54]. In Table II
it is seen that the differential scalar polarizabilities and BBR
shifts of TeH+ compare favorably with those of atoms. The
dominant electronic dipole transition moments in molecules
are typically a few times smaller than those in atoms, so
it is not surprising that molecular electronic polarizabilities
compare favorably. Apart from vanishing for J < 1 (or F < 1)
states, the molecular αr

T(0) is generally large but can be dealt
with by averaging over Zeeman levels.

As discussed in Sec. IV A 1, we find in the high-frequency
limit that all levels obtain a common αr

S, which can be seen
in the rotational contributions to BBR shifts in Table I. In
practice, this cancellation is not significant for TeH+ since the
differential electronic BBR shift is relatively large.

In this analysis, we have made the simplifying assumption
of an isotropic BBR distribution. In fact, the trap electrodes
will modify the BBR field at length scales determined by
the trap geometry. Since there is only small BBR spectral
density at these length scales, these anisotropies are not
expected to significantly modify the predictions shown in
Table II. (Note that even for rotational coupling, where the
rotational-transition wavelengths are comparable to typical
electrode spacings, the Stark shift is dominated by the longer
wavelength part of the BBR spectrum.) However, the effects
of BBR anisotropies induced by trap electrodes should be the
subject of a future study.

E. Light shifts

When driving a relatively weak overtone transition to an
upper state where stronger decay channels are open, the light
shift from the spectroscopy laser must be considered. The sat-
uration intensity Isat ∝ �2/μ2

eg, where � is the total relaxation
rate and μeg is the spectroscopy interval transition moment.
Contrary to the two-level case, saturating a weaker (higher)
overtone transition v = 0 → n requires increased intensity,
since � increases with n but μeg decreases. For the TeH+

v = 0 → 8 transition, the upper state has � = 25 s−1, and
the spectroscopy channel has �80 = 2.4 × 10−4 s−1, yielding
Isat = 1.5 μW/mm2. At this drive intensity, the estimated
differential light shift is 0.5 mHz (a fractional shift of 1 ×
10−18), dominated by coupling of v = 8 to the A21 state.

Spectroscopy laser intensity and pointing control can stabilize
the shift to below this level.

VI. ZEEMAN AND QUADRUPOLE SHIFTS

Spectroscopy states within the X10+ manifold have intrin-
sically small linear Zeeman shifts, due to a lack of electronic
angular momentum. The remaining moments are of the or-
der of a nuclear magneton. However, X10+ acquires some
electronic spin via its rotational-electronic coupling with X21.
This type of mixing, also sometimes called Coriolis coupling,
can sometimes significantly affect the spectrum [59–61].
Since the � doubling in X21 is primarily caused by rotational-
electronic coupling to nearby electronic states of � = ±1, it
can be used to estimate the degree of mixing. To determine
the linear and quadratic Zeeman shifts, we diagonalize the
effective Hamiltonian [40].

A. Effective Hamiltonian

The effective Hamiltonian [40]

H = Hrot + Hnsr + HHFS + HZI
+ HZrot

+HZS + HE + HQ, (23)

where Hrot is the rotational kinetic energy, and

Hnsr = −cIT
1( J ) · T 1(I ),

HHFS = HHFSb + HHFSc,

HHFSb = bT 1(S) · T 1(I ),

HHFSc = cT 1
q=0(S) · T 1

q=0(I ),

HZI
= −gIμNT 1

0 (B) · T 1
0 (I ),

HZrot = −gJ μBT 1
0 (B) · T 1

0 ( J ),

HZS = gsμBT 1
0 (B) · T 1

0 (S),

HE = −T 1
0 (μe) · T 1

0 (E),

HQ = −T 2
0 (∇E) · T 2

0 ( Q).

(24)

The magnetic field along the laboratory ẑ axis defines the
quantization direction. The constants cI , gI , gJ , gs and μe are
the nuclear spin-rotation coupling constant, proton g factor,
rotational g factor, electron spin g factor, and ground-state
body-frame electric dipole moment, respectively. The I · L

and B · L terms are omitted since the pure-precession hypoth-
esis is well justified for hydrides [40], in which case L can be
considered a good quantum number with L = 0 for the TeH+

X states.
The effective Hamiltonian matrix elements for the X10+

and X21 states are adapted from Ref. [40]. For conve-
nience, the diagonal and off-diagonal components of the
rotational Hamiltonian, HD

rot and HOD
rot , are separated, where
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Hrot = HD
rot + HOD

rot . The matrix elements are

〈v, Ja ; �, J |HD
rot|v, Ja; �, J 〉 = Bv[J (J + 1) + Ja (Ja + 1) − 2�2],

〈v, Ja ; �, J |HOD
rot |v, Ja; �′ �= �, J 〉 = −2Bv (−1)Ja−�

(
Ja 1 Ja

−� q �′

)
(−1)J−�

(
J 1 J

−� q �′

)

× [Ja (Ja + 1)(2Ja + 1)J (J + 1)(2J + 1)]1/2,

where q = � − �′,

〈v, �, J, I, F |Hnsr|v,�, J, I, F 〉 = cI (−1)J+F+I

{
I J F

J I 1

}
× [J (J + 1)(2J + 1)I (I + 1)(2I + 1)]1/2,

〈v, Ja ; �, J, I, F |HHFSb|v, Ja; �′, J ′, I, F 〉 = b(−1)J
′+F+I

{
I J ′ F

J I 1

}
[I (I + 1)(2I + 1)]1/2(−1)J−�

(
J 1 J ′

−� q �′

)

× (−1)Ja−�

(
Ja 1 Ja

−� q �′

)
(−1)Ja+L+S+1

{
Ja S L

S Ja 1

}
,

where q = � − �′,

〈v, Ja ; �, J, I, F |HHFSc|v, Ja; �, J ′, I, F 〉

= c(−1)J
′+F+I

{
I J ′ F

J I 1

}
[I (I + 1)(2I + 1)]1/2(−1)J−�

(
J 1 J ′

−� 0 �

)

× (−1)Ja−�

(
Ja 1 Ja

−� 0 �

)
(−1)Ja+L+S+1

{
Ja S L

S Ja 1

}
× [(2J ′

a + 1)(2Ja + 1)S(S + 1)(2S + 1)]1/2,

〈v, �, J, I, F,MF |HZrot |v,�, J, I, F ′,MF 〉

= −gJ μBBz(−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F

′+J+1+I [(2F ′ + 1)(2F + 1)]1/2

×
{

J F ′ I

F J 1

}
[J (J + 1)(2J + 1)]1/2,

〈v, �, J, I, F,MF |HZI
|v,�, J, I, F ′,MF 〉

= −gIμNBz(−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F+J+1+I [(2F ′ + 1)(2F + 1)]1/2

×
{
F I J

I F ′ 1

}
[I (I + 1)(2I + 1)]1/2,

〈v, Ja ; �, J, I, F,MF |HZS
|v, Ja; �′, J ′, I, F ′,MF 〉

= gsμBBz(−1)F−MF +F ′+2J+I+1−�

(
F 1 F ′

−MF 0 MF

)(
J 1 J ′

−� q �′

)
[(2F ′ + 1)(2F + 1)]1/2

× [(2J ′ + 1)(2J + 1)]1/2

{
J F I

F ′ J ′ 1

}
(−1)Ja−�

(
Ja 1 Ja

−� q �′

)
(−1)Ja+L+S+1

×
{
Ja S L

S Ja 1

}
[(2J ′

a + 1)(2Ja + 1)S(S + 1)(2S + 1)]1/2,

where q = � − �′,

〈v, �, J, I, F,MF |HE|v,�′, J ′, I, F ′,MF 〉

= −μeE0(−1)p(−1)F−MF

(
F 1 F ′

−MF p M ′
F

)
(−1)F

′+J+1+I [(2F ′ + 1)(2F + 1)]1/2

×
{
J ′ F ′ I

F J 1

}
(−1)J−�

(
J 1 J ′

−� q �′

)
[(2J ′ + 1)(2J + 1)]1/2,

(25)
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where p describes the field polarization, and q = � − �′,

〈v, �, J, I, F,MF |HQ|v,�, J ′, I, F ′,MF 〉

= T 2
0 (∇E)(−1)F−MF

(
F 2 F ′

−MF 0 MF

)
(−1)F

′+J+2+I [(2F ′ + 1)(2F + 1)]1/2

×
{

J F I

F ′ J ′ 2

}
(−1)J−�

(
J 2 J ′

−� 0 �

)
[(2J ′ + 1)(2J + 1)]1/2〈v,�|T 2

0 ( Q)|v,�〉.

(26)

Proper definite-parity eigenstates were used for � doublets in the X21 manifold. For instance, the parity eigenstate in X21
coupling to the negative parity |v = 0, Ja = 0; � = 0, J = 1〉 state will be

|v = 0, Ja = 1; J = 1,−〉 = 1√
2

(|v = 0, Ja = 1; � = 1, J = 1〉 − |v = 0, Ja = 1; � = −1, J = 1〉). (27)

We also verified that including Stark couplings at expected stray field levels did not affect the Zeeman shift results.

B. Estimate of hyperfine constants and rotational g factor

Without any experimental data for TeH+, we must estimate
some of the interaction constants, with the values we use
listed in Table III. In the case of hydrides, the nuclear spin-
rotation coupling cI can be somewhat reliably predicted for
the heavy atom’s nuclear spin-rotation interaction (Eq. 8-41
in [62] or [63]); however, the proton nuclear spin-rotation
interaction is both difficult to observe and difficult to predict.
We instead estimate the value based on measurements made
for molecules possessing a heavy atom both one row below
and above tellurium in the Periodic Table. For ZnH, cI (H )
was measured to be 60 kHz [64], and for AuH it was not
observed within the experimental uncertainty of 30 kHz [63].
A measurement with similar uncertainty was made for AsH,
where the value of cI (H ) was similarly determined to be
smaller than the uncertainty [65]. We place a large uncertainty
on our estimate of the TeH+ cI (H ), but its effect on the
hyperfine splitting is small compared with the other hyperfine
parameters. The hyperfine constants b and c were estimated
from the AsH molecule [65], which has very similar electronic
structure to TeH+, with As one row above Te in the Periodic
Table. The Fermi contact parameter bF scales approximately
linearly with bond length [66] and the dipolar constant c scales
approximately as the inverse cube of the bond length [67].
Using the ratio of ground-state bond lengths from TeH+ to
AsH of 1.07, we then estimate b and c for TeH+ from the AsH
values of −53 MHz and 13 MHz, respectively. The rotational
g factor gJ was estimated from a measurement of SbH [68],
which has both a very similar reduced mass and electronic
structure to that of TeH+. Its small value indicates that the

TABLE III. Constants used in matrix element calculations.

Constant Value

cI ∼10 kHz
b −50 MHz
c 10 MHz
gI 5.58
gJ −0.001
gs 2
μN 7.62 × 10−4 MHz/G
μB 1.40 × 10−4 MHz/G

rotational Zeeman interaction will be the smallest Zeeman
term.

C. Assessment of linear and quadratic Zeeman shifts

Our estimated linear and quadratic Zeeman coefficients are
given in Table II. Diagonalization of the effective Zeeman
Hamitonian yields X10+ magnetic moments of order 0.1μB .
From estimates of the parameters above, we expect a J =
1/2 hyperfine splitting of � ≈ 600 kHz. The perturbation
theory expectation that the TeH+ quadratic Zeeman shift is of
order (gF MF μB )2/h� is in good agreement with the matrix
diagonalization result. Compared with Yb+, TeH+ has a sig-
nificantly smaller magnetic moment but also a much smaller
hyperfine spacing. The estimated resulting TeH+ quadratic
Zeeman shift is similar to that of the Yb+ (E2) transition and
an order of magnitude larger than for the Yb+ (E3) transition.

D. Assessment of quadrupole shifts

The quadrupole moment tensor T 2
0 ( Q) can be represented

in Cartesian coordinates via

T 2
0 ( Q) = 1√

6
(2QZZ − QXX − QYY ). (28)

Integrating over the internuclear distance R, the quadrupole
moment functions QXX(R), QYY (R), and QZZ (R) for v = 8
in X10+ yield 2.24, −1.12, and −1.12 ea2

0, respectively.
Our proposed spectroscopy transition is discussed further

below. The lower state has F = 1/2 and no quadrupole shift.

TABLE IV. Projected uncertainty for spectroscopy on TeH+

|v = 0, J = 1, F = 1/2〉 → |v = 8, J = 2, F = 3/2〉.

Effect σ/f × 1018

BBR Stark 0.9
dc Stark, scalar 0.09
dc Stark, tensor �1
Light shift < 1
Quadrupole �1
Linear Zeeman < 1
Quadratic Zeeman 0.6
Statistics (at 1 day) 10
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For the upper spectroscopy state |X10+, v = 8, J = 2, F =
3/2〉, we use a calculated quadrupole moment function [69]
and the matrix element shown in Eq. (26) to obtain � =
0.3ea2

0 , which is similar to typical values for atoms. The
simple averaging protocol discussed below can be used to
effectively eliminate this shift.

VII. CHOICE OF SPECTROSCOPY TRANSITION

Here we consider some of the options available for spec-
troscopy on the v = 0 → v′ = 8 overtone transition of the
130TeH

+
X10+ electronic state. To leading order the J > 0

states obtain canceling scalar Stark shifts from coupling to the
next-lower and next-higher rotational levels, as discussed in
Sec. IV A 1. We can then perform spectroscopy on transitions
with J, J ′ � 1 without being concerned with large scalar
Stark shift associated with the polar character of the molecule.
(As an aside, it might appear at first glance attractive to
perform spectroscopy on F = 1/2 components of a J = 0 →
J ′ = 1 transition, since for these states there is no quadrupole
or tensorial Stark shifts. However, the large scalar polariz-
ability of J = 0 makes this transition problematic, since it
cannot be reduced by averaging over Zeeman levels. Addi-
tionally, the differential quadratic Zeeman shift is large for this
transition.)

First-order Zeeman shifts can be strongly suppressed by
averaging the MF → M ′

F and −MF → −M ′
F transitions

within the manifold [70]. Alternatively, the first-order Zee-
man shifts could be reduced by probing MF = 0 → M ′

F = 0
transitions in 125TeH+, which will also have relatively small
quadratic Zeeman shifts due to larger hyperfine splitting [65].
However, since a single-photon E1 transition would not allow
for driving from F = 0 → F ′ = 0, this clock state approach
would suffer from the large polar-molecule tensorial Stark
shifts that are not averaged away.

Quadratic Zeeman shifts arise from MF -preserving mixing
between hyperfine states F = J ± I . In the ground X10+
manifold, J = 0 states will have a quadratic Zeeman shift
from mixing with J = 1. The J = 1 and J = 2 manifolds
each have a pair of stretched states with |MF | = F = J + 1/2
possessing small quadratic Zeeman shifts, which might be
interesting for precision spectroscopy. However, once again,
using exclusively these stretched magnetic sublevel states
would not allow for nulling of the large tensorial Stark shift
arising from the polar nature of the molecule.

We propose to null tensorial Stark, quadrupole, and lin-
ear Zeeman shifts in the same way often done in op-
tical atomic clocks [46,47], by averaging over appropri-
ate combinations of MF → M ′

F with all MF ,M ′
F spanned.

We propose using J, J ′ > 0 to avoid scalar Stark shifts
associated with large rotational polarizability of the polar
molecule. Specifically, we propose averaging over four spec-
troscopy transitions: |v = 0, J = 1, F = 1/2,MF = 1/2〉 →
|v = 8, J = 2, F = 3/2,MF = 1/2(3/2)〉 and their negative
MF partners. These transitions have smaller differential
quadratic Zeeman shifts than would transitions involving
stretched states.

VIII. PROJECTED SYSTEMATIC UNCERTAINTIES

Projected limits to experimental precision are given in
Table IV. Values are obtained for a bias field of 300 nT, which
is more than sufficient to resolve the Zeeman components.
We use a magnetic-field instability of 10 nT, which is a few
times worse than achieved in [71]. We use an electric-field
uncertainty of 100 V/m, which is not the best achieved in
single-ion experiments [72] but is similar to the level arising
in a two-ion experiment where uncontrolled dc fields of up to
10 V/m [73] push the ions off axis into a finite rf field. Finally,
for quadrupole shifts, we use the axial gradient of our trap of
30 V/mm2 and conservatively assume an uncertainty in this
gradient of 1%.

The BBR uncertainty is from a 5 K temperature stabil-
ity at 300 K. Light shifts are discussed in Sec. V E. The
low-frequency scalar Stark shift uncertainty arises directly
from the uncontrolled rf fields described above. We rely on
suppression of the tensorial Stark shift by the MF averaging
techniques discussed above, which have been used to sup-
press tensorial Stark shifts by four orders of magnitude [74].
A suppression by 1000 would make these shifts similar in
magnitude to the scalar Stark shifts. Similarly, we project a
quadrupole shift uncertainty from the field gradient uncer-
tainty discussed above and a suppression factor of 1000 from
MF averaging.

The proposed technique of suppression of linear Zeeman
shifts by averaging over opposite pairs of transitions within
the spectroscopy manifold has achieved suppression of Bohr-
magneton sized linear Zeeman shifts at the <10−17 level
in a single-ion optical clock [74]. Note that this averaging
suppresses the linear Zeeman shift at a level well below that
associated with the field uncertainty. Since our differential g

factor is much smaller (�g = 0.02, discussed in Sec. VI), we
project a linear Zeeman uncertainty at <10−18. The quadratic
Zeeman shift cannot be averaged away, and the value in
Table IV is what comes directly from the field uncertainty.

IX. CONCLUSIONS

We have demonstrated the potential for single-photon vi-
brational overtone spectroscopy on a single polar molecular
ion to reach systematic uncertainties at the 10−18 level. If a
diagonal electronic transition in TeH+ can be exploited to ob-
tain rapid state preparation [17], then statistical uncertainties
approaching the 10−17 level could be obtained for one day
of averaging. We conclude that taking measurements over the
course of a year could probe for varying μ with a sensitivity
approaching the 1 × 10−18/yr level.

The small projected systematic uncertainty comes as some-
what of a surprise, since polar molecules have closely spaced
rotational levels which are strongly mixed by low-frequency
fields, resulting in large Stark shifts. In this work we point
out that the associated polarizability is scalar in character for
J = 0 and indeed a significant issue, but that it is tensorial
in character for J > 0 and can thus be mitigated by simple
averaging protocols regularly used in atomic clocks. The
vanishing of this J > 0 dc scalar polarizability arises from a
fortuitous relationship between rigid-rotor oscillator strengths
and level spacings.
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Our results suggest that atoms, polar, and nonpolar
molecules can reach similar levels of systematic uncertainty,
e.g., they all have electronic polarizabilities which ultimately
determine Stark shift uncertainties. However, statistical uncer-
tainties are expected to be quite different. Although homonu-
clear vibrational state lifetimes are much longer than polar
lifetimes, the achievable statistical uncertainty will depend
heavily on details of the experimental cycle, such as state
preparation time. The spectroscopy cycling rate is a critical
issue which could favor polar molecules with diagonal transi-
tions, despite their broader transition linewidths.

Statistical uncertainty will ultimately limit the reach of
single-ion spectroscopy on TeH+. To improve the statistical
reach of this proposal, the isotopologue TeD+ is of interest
because it is predicted to have overtone linewidths twice as
narrow. Alternatively, the relatively short 15 μs lifetime of the
TeH+ diagonal b0+-X0+ transition might allow fluorescence
state readout of multiple ions [75–77]. Performing spec-
troscopy on a |J = 0, F = 1/2〉 → |J = 1, F = 1/2〉 tran-
sition would give the ions a negative, albeit large, αS which
might allow precision spectroscopy on a 2D or 3D crystal
with the rf frequency properly tuned such that the Stark and

second-order Doppler shifts cancel [75]. This transition would
also be free of tensorial Stark and quadrupole shifts. Finally,
we note that the vibrational state lifetimes of TeH+ are not
particularly long compared with other polar species (e.g., a
v = 1 lifetime of 4.0 s in CD+ [78] as compared with 0.2 s
in TeH+), so searching for other coolable candidates with
favorable properties is well motivated.
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