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Reduced theoretical error for 4He+ spectroscopy
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We apply point-particle effective field theory to electronic and muonic 4He+ ions, and use it to identify linear
combinations of spectroscopic measurements for which the theoretical uncertainties are much smaller than for
any particular energy levels. The error is reduced because these combinations are independent of all short-range
physics effects up to a given order in the expansion in the small parameters R/aB and Zα (where R and aB are
the ion’s nuclear and Bohr radii). In particular, the theory error is not limited by the precision with which nuclear
matrix elements can be computed, or compromised, by the existence of any novel short-range interactions, should
these exist. These combinations of 4He measurements therefore provide particularly precise tests of quantum
electrodynamics. The restriction to 4He arises because our analysis assumes a spherically symmetric nucleus,
but the argument used is more general and extendable to both nuclei with spin, and to higher orders in R/aB

and Zα.
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I. INTRODUCTION

Atomic systems have historically been an important testing
ground for quantum electrodynamics (QED), even providing
one of the very first observations of a relativistic quantum
effect with the Lamb shift [1]. Muonic atoms have fur-
ther proved an excellent means of honing our understanding
of QED by contrasting with electronic measurements. For
muonic atoms, the leading QED radiative correction is due
to electron-loop vacuum polarization [2] in contrast to the
electron’s leading self-energy correction, and finite-size ef-
fects are enhanced by a factor (mμ/me )3 ∼ 8×106. Indeed,
experiments in the 1970’s found a discrepancy between the-
oretical and measured values for certain transitions in heavy
muonic atoms [3,4]. This motivated much research, and after
a few years improvements in the theory [5–8] and in ex-
periments [9,10] resolved the discrepancy and improved our
understanding of QED [11]. Today, a very similar situation
can be found in the “proton-radius” problem [12], wherein
the root-mean-squared charge radius inferred from the leading
nuclear contributions to atomic energy shifts in hydrogen
and muonic hydrogen appears to depend on the flavor of the
orbiting lepton.

Recent laser spectroscopy of muonic atoms [13] has
opened the door to new high-precision tests of QED, con-
stituting tests of the theory at the two- and three-loop levels
[14]. However, the small size of these higher-order QED
corrections to atomic levels makes them compete with more
mundane energy shifts, such as those due to the finite size of
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the nucleus. Consequently, uncertainties in computing nuclear
contributions to atomic energy shifts are important compo-
nents of the theoretical error budget when comparing with
experiments. These theoretical uncertainties are made even
worse if there should also be new short-range interactions
between the nucleus and muon, such as have been motivated
[15] by the proton-radius problem. Until it is understood
whether this problem is solved by a better understanding
of the experimental errors or through the existence of new
physics, this discrepancy must be treated as an unknown
unknown when assessing the theory error.

A better understanding of the nature of short-distance
nucleus-lepton interactions is therefore an important prereq-
uisite for exploiting the precision of spectroscopic measure-
ments, both for the extraction of the best value of the Rydberg
and to test QED. This is where effective field theory (EFT) in
general [16,17], and the point-particle effective field theory
(PPEFT) framework in particular, can help [18–20]. EFTs
allow one to write a small set of effective interactions that
capture the effects of all short-distance contributions to atomic
energy levels (including both nuclear-scale physics and any
hypothetical new short-range forces), order by order in powers
of the relevant small size R of the physics in question. For
nuclear physics R would be of order the nuclear radius, while
for a new short-range force it would instead be the force’s
range. The existence of these effective interactions allows a
robust parametrization of the contributions of short-distance
physics to atomic energy levels, without having to understand
the details of its microscopic origin.

Of course, knowing the underlying microscopic physics
in question (such as the structure of the relevant nucleus), it
becomes possible to compute the size of these effective inter-
actions from first principles. In this language, the uncertainties
in nuclear-structure calculations enter into predictions through
any inaccuracy in the values so inferred for the effective
interactions. One of the points of this paper is to show how
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to relate such calculations to the effective couplings of the
PPEFT framework in particular.

We also take an entirely different tack. Instead of trying
to reduce the inaccuracy of these effective couplings through
more precise nuclear calculations, in this paper we also use
the generality of the EFT parametrization to identify combi-
nations of spectroscopic measurements from which all of the
relevant short-distance effective couplings drop out to a fixed
order in the expansion in R/aB = mεZα and Zα (where m is
the mass of the orbiting particle, Z is the nuclear charge, α is
the fine-structure constant, and aB is the relevant Bohr radius).
These combinations are particularly interesting because the
absence of short-distance contributions to them means that the
theoretical error for these observables is controlled by powers
of R/aB or Zα rather than by the larger uncertainties arising
from (say) nuclear physics. A similar approach has been used
to cancel dependence on nuclear effects for the hyperfine
splitting in hydrogen [21] (as well as to highlight nuclear
isotope dependence, among other reasons [13,22]), however
our approach has the advantage of being systematic, and can
be applied in principle to any spinning or spinless nucleus. We
can also extend our results to higher orders, as we illustrate by
identifying nuclear-free combinations to higher order in Zα

than has been done previously.
The key observation of this work is that the short-distance

PPEFT couplings only enter into spectroscopic measurements
through a single (mass-dependent) length scale ε�e,μ (where
the e and μ are used to distinguish between the scale that
applies to electrons versus muons). As a result, a single
spectroscopic measurement for each fermion-type suffices
to predict the finite-size contribution to all other energy
shifts. Working to order m4R3(Zα)5 ≈ 10−2 eV ≈ 103 GHz
for muonic atoms (as is relevant for the newest generation
of muonic helium experiments [12]), we use this approach to
predict
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where
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is the difference between the total n1Xj1-n2Yj2 transition
(�E1→2) and the purely pointlike contributions to the same
difference (�EEM

1→2). [Equivalently, this is the difference be-
tween the finite-size correction to the n1Xj1 and n2Yj2 states
(�EPP

1→2), plus the difference between the combined finite-
size-QED corrections to the same states (�E

PPQED
1→2 )]. Here,

ηn� are computable n- and �-dependent coefficients associ-
ated with the combined finite-size-QED contributions given
explicitly for electrons in (64) below.

For electrons, we also work to order m4R3(Zα)5, but now
this is closer to 10−12 eV ≈ 100 kHz, and so we must also in-
clude terms of order m3R2(Zα)6 ≈ 10−11 eV ≈ 10 kHz since

the smaller electron mass makes those scales comparable. In
this case, we predict for the same transitions
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in which we define
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Moreover, even without solving for ε� explicitly, our
knowledge of how this one parameter enters into energy shifts
allows us to write linear combinations of measurements from
which it cancels altogether, thus defining relations between
energy shifts that are entirely free of nuclear physics. For
muons, we identify
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while for electrons,
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where
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We organize our presentation as follows. Section II sets
up the PPEFT framework required to draw the above conclu-
sions, starting with a summary of the relevant near-nucleon
boundary conditions and how these are related to the PPEFT
effective description of the nucleus. This section also deals
with various conceptual issues, such as deriving the appro-
priate renormalization-group- (RG-) invariant nuclear length
scale ε�. Next, Sec. III computes how this RG-invariant pa-
rameter captures various microscopic models for nuclei, in-
cluding the moments of fixed charge distributions and nuclear
polarizabilities. Once it is established how these contribute
to atomic energy levels only through the one RG-invariant
combination ε�, we identify combinations of atomic transition
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frequencies from which this one nucleus-sensitive parameter
cancels out. There are a great many such combinations, and
each represents a quantity for which nuclear uncertainties are
negligible at the level of present-day experimental measure-
ments. Section IV applies the formulas of the previous sec-
tions to the helium ion using the only available experimental
data, the 2S1/2-2P1/2 transition. The result is a prediction for
the 1S-2S transition of ν1S-2S = 9.868 561 009 (1)×109 MHz,
which is roughly four times less precise than predictions in the
literature [23]. Our precision is, however, entirely dominated
by the experimental error, and so can only improve with future
experiments, while never relying on the inherently uncertain
choice of a particular model of the nucleus. Finally, some
conclusions are briefly summarized in Sec. V.

II. PPEFT FOR SPINLESS NUCLEI

We present in this section a brief summary of EFT meth-
ods, as needed to discuss nuclear effects on the energy levels
of electrons and muons orbiting spinless nuclei, such as 4He.
EFTs are designed to exploit any hierarchies of scales in a
problem to most efficiently compute a system’s properties. As
applied to atoms, EFTs such as nonrelativistic QED (NRQED)
[16] are usually used to exploit the hierarchy between the
electron-muon mass and the much smaller size of typical
bound-state energies. For PPEFT the hierarchy exploited is
the large ratio between the small size R of the nucleus and
the much larger size aB of the atomic Bohr radius. The
expansion of observables in powers of R/aB reveals them
not to depend on most of the nuclear details, but only on a
set of “generalized multipole moments,” similar to the way
that ordinary multipole moments control the expansion of the
electrostatic field of a compact charge distribution.

A. PPEFT including subleading order

This section reviews how to set up and solve for atomic
energies within the PPEFT framework.

1. Bulk system

Before describing the nuclear degrees of freedom, we start
by defining the long-distance, “bulk,” fields whose properties
the nucleus perturbs. We take the bulk system to be defined
by QED, describing the renormalizable coupling of charge −e

fermions to photons,1

SB = −
∫

d4x

[
�( /D + m)� + 1

4
FμνF

μν

]
, (10)

where /D = γ μDμ with γ μ denoting the usual Dirac gamma
matrices and Dμ� = (∂μ + ieAμ)�, as appropriate for
fermions of charge −e, while Fμν = ∂μAν − ∂νAμ. It is often
useful to zoom in on the nonrelativistic limit of this bulk
physics by taking m to be much larger than the energies of
interest, and NRQED is the natural field-theoretic language
for doing so. For later purposes it suffices to notice that this

1Our metric has (− + ++) signature, so γ 0 is anti-Hermitian while
the spatial γ i are Hermitian.

limit can be formally derived by performing a field redefini-
tion that simplifies the large-m limit. This is done for electrons
and muons by redefining � → exp[mtγ 0]�, and assuming �

to vary appreciably only over distances and times much larger
than 1/m. The point of this redefinition is to ensure SB has
a well-defined large-m limit since the term m�� = m � �

then precisely cancels the rest-mass part of the time derivative
�γ 0∂t� = −m � � + · · · , leaving interactions that can be
expanded in powers of derivatives divided by m.

2. Nuclear properties

If proceeding in the spirit of NRQED, nuclear properties
could be included into the theory by adding its field �,
preferably already within a nonrelativistic framework that
exploits expansions in inverse powers of the nuclear mass M .

Within PPEFT, however, nuclear properties are instead
identified by writing the first-quantized action for the nucleus
that includes all possible local interactions between its center-
of-mass coordinate yμ(τ ) and the “bulk” fields Aμ(x) and
�(x), respectively describing the electromagnetic potential
and the Dirac field of the orbiting particle. This first-quantized
framework is completely equivalent to the second-quantized
one restricted to single-particle states and is more convenient
when working purely within the single-nucleus sector, such
as when describing an atom, for which most of the bells and
whistles of quantum field theory for the nucleus are overkill.

For a spherically symmetric nucleus such as helium (or
other doubly magic nuclei) restricted to parity-preserving
interactions, this leads to [20]

Sp = −
∫
W

dτ

[
M − Ze Aμẏμ + cs � � + icv � γμ� ẏμ

+ h̃ ẏμ∂νFμν + ids ẏμ� Dμ� + dv ẏμẏν� γμDν�

+ 1

2
(dE + dB )ẏμẏνFμλFν

λ + 1

4
dBFμνF

μν + · · ·
]
.

(11)

Here, W denotes the world line yμ(τ ) of the nuclear center of
mass, along which τ is its proper time with derivative ẏμ :=
dyμ/dτ , at which all bulk fields are evaluated; as above,
Dμ� = (∂μ + ieAμ)�.

The first line describes the physics of a point source with
mass M and charge Ze. The couplings cs , cv , and h̃ in the
second line have dimensions of [length]2, and so are expected
to be order R2 in size, up to dimensionless O(1) coefficients.
Similarly the couplings ds , dv , dE , and dB have dimension
[length]3 and should be order R3 and so on, with the ellipses
containing all terms suppressed by more than three powers
of R.

Since our focus is on energy shifts due to finite nuclear
size, for simplicity of presentation we neglect kinematic
nuclear recoil effects since the suppression of these correc-
tions by powers of m/M make their contributions to nuclear
size effects smaller than the order to which we work. This
amounts to assuming the nucleus to be at rest within the
atomic rest frame: ẏμ = δ

μ
0 . Recoil corrections are, however,

easily included within this framework by instead using (and
quantizing) the full nuclear 4-velocity ẏμ = γ {1, v}, where
γ = (1 − v2)−1/2.
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With a static nucleus the above action becomes

Sp = −
∫
W

dt

[
M − Ze A0 + cs � � + icv � γ0�

− h̃ ∇ · E + ids � D0� + dv � γ0D0� + 1

2
dEE2

+ 1

2
dBB2 + · · ·

]
. (12)

In the absence of any � terms, the four pure electromag-
netic interactions would establish the particle to have electric
charge Ze, charge radius rp with h̃ = 1

6 Ze r2
p, and so on.

The complete response of the atom to the nucleus, including
nuclear polarizabilities [24], also requires direct couplings to
�, however, we see below how to relate these couplings to
other nuclear properties, such as the polarizabilities and order-
R3 Friar moment contributions to the nuclear electrostatic
form factor [25].

Because our interest is in largely nonrelativistic applica-
tions for which kinematic effects arise as powers of 1/m,
just as for the bulk it can be convenient to rescale � =
exp[mtγ 0]�, to remove the rapidly oscillating phase associ-
ated with the rest mass. Having a reasonable large-m limit
after doing so requires the coefficients cs and cv to contain
contributions proportional to m that cancel those terms in Sp

involving time derivatives ∂t� = mγ 0� + · · · , leading to

cs � � + icv � γ0� + ids � D0� + dv � γ0D0�

= (cs − dvm) � � + i(cv + dsm) � γ0� + · · · , (13)

and so suggesting writing cs = dvm + c̃s and cv = −dsm +
c̃v , and so on. In what follows, we make these replacements
but drop the “tilde” on cs and cv to avoid notational clutter.
Once this is done, all time derivatives acting on � in Sp can
be treated as giving ∂t� → −i(ω − m)�.

3. Electromagnetic response

The purely electromagnetic terms in (12) influence atomic
energy levels through the change they introduce in the electro-
magnetic field sourced by the atomic nucleus. The naive way
to compute the modified electric field represents the action
(12) as a delta function, leading to the formal perturbative
modification

E � Ec + h̃ ∇δ3(r) + dEEc δ3(r), (14)

in which Ec = (Ze/4πr2)r̂ denotes the lowest-order
(Coulomb) field, with r̂ = r/r being the radial unit vector.

What makes the above expression naive is the divergence
of Ec at the support of the delta function. A more precise way
to formulate this (for which the PPEFT formalism is designed
[18–20]) is to recast the influence of Sp on Aμ in terms of
a boundary condition at a regularization surface at small but
nonzero radius r = ε. The couplings h̃ and dE are regarded
as depending implicitly on ε in such a way as to ensure that
physical quantities do not depend on the precise value chosen
for ε.

What counts for energy shifts is the scalar potential
implied by (14). Keeping the regularization in mind, the

result is

A0(r ) = − Ze

4πr
+ h̃ δ(3)(r) + dEZe

(4π )2ε2
fε (r ), (15)

where the function fε (r ) is any regularization consistent
with ∇fε = 4π r̂ δ3(r) in the small-ε limit [such as fε (r ) =
−�(ε − r )/ε2 where �(x) is the Heaviside step function].

A similar story goes through for the magnetic field, for
which the Maxwell equation gets modified by Sp to become

∇×B = dB ∇×[B δ(3)(x)]. (16)

Because of the absence of nuclear spin (and so also magnetic
moment) dictated by our spherical-symmetry assumption,
nontrivial solutions to this arise only suppressed by powers
of v/c ∼ Zα and so are negligible to the order we work. This
allows the neglect of the vector potential A in the calculations
described below, in particular ensuring the magnetic polariz-
ability dB contributes negligibly to atomic energies at the order
we work.

To these must be added the corrections to the Dirac
field due to the boundary-condition change it also
experiences.

4. Fermion response

To study atomic helium in this framework, we examine
QED involving the Dirac and electromagnetic quantum fields,
subject to the boundary conditions implied [18–20] by the
presence of Sp. In this language, it is only through these
boundary conditions, and the modification (15), that the nu-
cleus affects atomic energy levels. More and more detailed
nuclear contributions correspond to adding more and more
complicated interactions to Sp, in what amounts to a “gen-
eralized multipole expansion” of the nucleus.

In this framework, QED interactions are included per-
turbatively as usual, with bound-state energies obtained
from the positions of poles of the two-point function
〈0|T �(x)�(x ′)|0〉. These are determined in part by comput-
ing the modes ψn(x) = 〈0|�(x)|n〉 everywhere away from
the nucleus. Perturbation theory is set up as usual, with the
unperturbed system neglecting QED and nuclear corrections
to A0, i.e., using for ψn solutions to the Dirac equation with a
Coulomb potential:

( /D + m)ψ =
[
−γ 0

(
ω + Zα

r

)
+ 	γ · 	∇ + m

]
ψ = 0,

(17)

for energy eigenstates ψ ∝ e−iωt .
This has well-known solutions of definite parity and total

angular momentum given by

ψ± =
(

f±(r ) U±
jjz

(θ, φ) + ig±(r ) U∓
jjz

(θ, φ)

f±(r ) U±
jjz

(θ, φ) − ig±(r ) U∓
jjz

(θ, φ)

)
, (18)

where ψ+ and ψ− denote parity eigenstates, U±
jjz

are the
Dirac spinor harmonics with definite total angular mo-
mentum j = � ± 1

2 , and the parity eigenvalue is �̂U±
jjz

=
(−)j∓ 1

2 U±
jjz

.
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To lowest order the functions f±(r ) and g±(r ) solve the radial part of the Dirac-Coulomb equation, and for a source with
charge Ze have the form

f± = √
m + ω e−ρ/2ρζ−1

{
A± M

[
ζ − Zαω

κ
, 2ζ + 1; ρ

]
+ C±ρ−2ζM

[
− ζ − Zαω

κ
,−2ζ + 1; ρ

]
− A±

(
ζ − Zαω/κ

K − Zαm/κ

)
M

[
ζ − Zαω

κ
+ 1, 2ζ + 1; ρ

]
+ C±

(
ζ + Zαω/κ

K − Zαm/κ

)
ρ−2ζM

[
− ζ − Zαω

κ
+ 1,−2ζ + 1; ρ

]}
(19)

and

g± = −√
m − ω e−ρ/2ρζ−1

{
A± M

[
ζ − Zαω

κ
, 2ζ + 1; ρ

]
+ C±ρ−2ζM

[
− ζ − Zαω

κ
,−2ζ + 1; ρ

]
+ A±

(
ζ − Zαω/κ

K − Zαm/κ

)
M

[
ζ − Zαω

κ
+ 1, 2ζ + 1; ρ

]
− C±

(
ζ + Zαω/κ

K − Zαm/κ

)
ρ−2ζM

[
− ζ − Zαω

κ
+ 1,−2ζ + 1; ρ

]}
,

(20)

where A± and C± are integration constants, M[a, b; z] =
1 + (a/b)z + · · · are the standard confluent hypergeometric
functions, ω is the mode energy, while ρ = 2κr where κ and
ζ are defined by

κ =
√

(m − ω)(m + ω) and

ζ =
√(

j + 1
2

)2 − (Zα)2. (21)

In what follows, κ is real because we study atomic bound
states which satisfy m > ω. The parity of the state often
enters through the parameter K = ∓(j + 1

2 ) where the upper
(lower) sign in K corresponds to state ψ+ (or ψ−).

In this language, the entire influence of nuclear-scale
physics on the orbiting fermion arises through the boundary
condition implied by the point-particle action (12) for the bulk
fields � and Aμ near the origin [18–20]. Nuclear contributions
to QED corrections similarly enter through the boundary
conditions satisfied by the propagators built from these modes
in the relevant graphs.

5. Near-nucleus boundary conditions

The main result (explained in some detail for the Dirac
equation in [20]) governing how nuclear properties perturb
atomic levels relates the parameters of Sp to the near-nucleus
value of the ratios (g+/f+)r=ε and (f−/g−)r=ε of the radial
modes evaluated at a small (but arbitrary) distance r = ε

outside the nucleus: R � ε 
 aB (with R the smallest radius
where an external extrapolation is valid and aB denoting the
relevant atomic Bohr radius). The ratios g+/f+ and f−/g− at
r = ε determine the physical integration constant that arises
in the general solution to the radial equation, which in turn
controls the dependence of atomic observables.2

2Notice that specifying f±/g± at r = ε generically implies the
radial functions need not remain bounded at the origin, which is
the traditional choice for boundary conditions there. But, this is
not a fundamental worry because the growth of the radial solution
eventually gets cut off once the interior of the nucleus is reached and
the asymptotic solution of the Coulomb-Dirac equation no longer
approximates the real physics.

It is convenient when stating the boundary conditions to
write the ratios (g±/f±)r=ε in a way that makes manifest
the small parameters in the problem: the two small quantities
ε/aB = mεZα and (Zα)2. This is most conveniently done by
writing

(
g+
f+

)
r=ε

= ξg Zα and X

(
f−
g−

)
r=ε

= ξf

2n
, (22)

where X := √
(m − ω)/(m + ω) is included for later nota-

tional simplicity, while n is the state’s principal quantum num-
ber and/or atomic energy levels ω = m − (Zα)2m/(2n2) +
· · · . The quantities ξf and ξg then have the expansions

ξg := ĝ1(ε) + (mεZα)ĝ2(ε) + (Zα)2ĝ3(ε) + · · · ,

ξf := (mεZα)f̂1(ε) + (mεZα)2f̂2(ε) + (Zα)2f̂3(ε) + · · · ,

(23)

where the ellipses involve terms involving more powers of
(mεZα) and/or (Zα)2 than those written, and the depen-
dence on n follows directly from the ω dependence of the
radial Dirac equation. The dimensionless coefficients ĝi (ε)
and f̂i (ε) are normalized in (22) so as to ensure that ĝ1 are
order unity in applications to atomic energy levels.

6. Energy shifts

Before determining how f̂i and ĝi depend on nuclear
parameters, we briefly summarize how these quantities are
related to shifts in atomic energy levels. As shown in detail
in [20], the ratio of integration constants A±/C± appearing
in the solutions (19) and (20) can be determined if f±/g± is
regarded as being specified at r = ε. For bound states, impos-
ing normalizability at infinity overdetermines the eigenvalue
problem in the usual way, leading to standard predictions
for the bound-state energy levels. Writing the shift in these
energies relative to the standard Dirac energies (obtained
when C± = 0) due to the deviations in f̂i and ĝi [20] as δE
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gives the nucleus-dependent shift to the j = 1
2 positive- and negative-parity energy levels as

δE+
1/2 � m3ε2(Zα)4

n3

{
2(1 + 2ĝ1) +

[
2ĝ2 − 8

3
− 4 ĝ1(ĝ1 + 2)

]
(mεZα) +

[
4ĝ3 + 5 + 8ĝ1 − 2ĝ2

1

+ (1 + 2ĝ1)

{
12n2 − n − 9

2n2(n + 1)
− 2 ln

(
2mεZα

n

)
− 2Hn+1 − 2γ

}]
(Zα)2 + · · ·

}
(24)

for parity-even states and

δE−
1/2 � − (n2 − 1)

n5
m4ε3(Zα)5

(
f̂1 − 2

3

)
+ n2 − 1

2n5
m3ε2(Zα)6(1 − 2f̂3) + · · · (25)

for parity-odd states. In these expressions, the ellipses contain
terms suppressed by higher powers of (mεZα) and (Zα)2.
Here, γ is the Euler-Mascheroni constant and Hn are the
harmonic numbers Hm = 1 + 1

2 + 1
3 + · · · + 1

m
, and so H1 =

1, H2 = 3
2 , H3 = 11

6 , and so on.
We include in the above all contributions relevant to

the current generation of experiments involving electrons
and muons orbiting a 4He nucleus. Recall that for muons,
(mεZα) � (Zα)2 when ε is a typical nuclear size, but for
electrons (mεZα) � (Zα)2. Consequently, for muonic atoms
it suffices to keep terms of order m4ε3(Zα)5 while dropping
terms of size m3ε2(Zα)6, but for electrons these terms must
both be kept. This means the coefficients ĝ1, ĝ2, and f̂1 are in
principle of interest for muonic He, while all of ĝ1, ĝ2, ĝ3, f̂1,
and f̂3 are relevant for electrons. It is for this reason that the
contribution to δE− from f̂2 is not written in (25). Similarly,
the leading contributions for j = 3

2 are the same size as terms
neglected above, and so can be dropped in what follows.

Later sections evaluate these formulas using f̂i and ĝi as
computed with several simple specific models of nuclei, and
in this way we verify that they include the results of stan-
dard calculations in the literature. In particular, they contain
the various moments encountered when doing so with the
nucleus modeled as a static charge distribution, reducing to
well-known formulas for finite-size corrections to the Dirac-
Coulomb energies [2,20,25–29]. However, as we see below,
the real power of the above expressions (24) and (25) is in their
generality since once computed in terms of the parameters in
Sp they capture the effects of arbitrary short-distance physics
localized at the nucleus.3

B. Matching and RG invariance

The influence of the nucleus on atomic levels (or on low-
energy lepton scattering) is completely determined by the
near-nucleus boundary condition for the modes ψ at r = ε,
and so is ultimately parametrized by the dependence of the co-
efficients ĝi (ε) and f̂i (ε) on nuclear parameters. The mapping
of nuclear physics to atomic physics is completely captured

3The interactions of Sp specialize to rotational and parity invari-
ance, but nothing in principle forbids extending these interactions to
include nuclear spin and parity-violating interactions.

by describing this dependence, and the point of the PPEFT
formalism is to parametrize this dependence efficiently so as
to exploit the hierarchy of scales R � ε 
 aB .

1. Connecting boundary conditions to Sp

The main consequence of Sp for atomic levels comes from
the boundary condition it implies at r = ε for the radial
functions f±(r ) and g±(r ). These are worked out at leading
nontrivial order in [20], and the result is extended to include
the subdominant interactions of (12) in [30]. The boundary
conditions that follow from these references are

ĉ′
s + ĉ′

v tot − (Zα)

2n2
(d̂s + d̂v )(mεZα)

=
(

g+
f+

)
r=ε

= Zα[ĝ1(ε)+(mεZα)ĝ2(ε)+(Zα)2ĝ3(ε) + · · · ] (26)

for the parity-even states and

ĉ′
s − ĉ′

v tot − (Zα)

2n2
(d̂s − d̂v )(mεZα)

=
(

f−
g−

)
r=ε

= 1

2nX
[(mεZα)f̂1(ε) + (mεZα)2f̂2(ε)

+ (Zα)2f̂3(ε) + · · · ] (27)

for the parity-odd states. Here, the hatted quantities are
ĉ′
s,v tot := c′

s,v tot/4πε2 while d̂s,v := ds,v/4πε3, and so are di-
mensionless. Primes denote the combinations

c′
s,v := cs,v − (Zα)ds,v

ε
. (28)

Finally, the subscript “tot” represents the combination

cv tot := cv − eh̃ − dEZα

3ε
. (29)

The parameters cv and eh̃ naturally combine in this way since
both of these effective interactions introduce a delta-function
potential in the nonrelativistic Schrödinger limit [18,20].

The final step is to solve the above boundary condition to
relate the quantities f̂i and ĝi to the parameters cs , cv , ds ,
dv , h̃, and dE . This allows a determination of which nuclear
parameters govern which atomic energy shifts. Before doing
so, we first show how to deal with the apparent arbitrariness
associated with the ubiquitous ε dependence of the boundary
conditions. Doing so allows an efficient identification of the
physical quantities, and in particular allows a clean counting
of the number of nuclear parameters that enter into energy
shifts at any given order.
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2. Renormalization-group running

Recall that the position r = ε, where the boundary con-
ditions (26) and (27) are imposed, is basically arbitrary, so
long as it lies outside the nucleus and is much smaller than
the atomic Bohr radius. This makes it odd that expressions
like (24) and (25) for physical energy shifts appear to make
them depend on ε. The purpose of this section is to show why
this dependence is really an illusion because it is canceled by
an ε dependence that is implicit in the effective couplings cs ,
cv , and so on. This section develops renormalization-group
(RG) tools for determining this dependence explicitly, thereby
allowing a determination of the physical RG-invariant content
of the effective couplings.

To this end, it is important to realize that equations like (26)
and (27) can be read in two ways. First, they can be read as
giving the ε dependence required of the effective couplings in
order to ensure that physical quantities remain ε independent.
This is done by equating it to the ε dependence that is explicit
on the right-hand side (through the evaluation of the bulk
solution for f±/g±). The condition that physical quantities be
independent of ε in this language corresponds to demanding
that the ratio of integration constants A±/C± be ε independent
(and so RG invariant as ε is varied).

Once this is done, the ε dependence on both sides of
Eqs. (26) and (27) becomes identical, and then the second
way to read these equations is to equate the RG-invariant

coefficients on both sides. This then gives the ratio of integra-
tion constants A±/C± in terms of RG-invariant parameters.
But, because energy shifts can be computed from A±/C±,
this also gives predictions for the energy shifts in terms of
the RG-invariant characterizations of the coupling flow.

To start this off, we take the small-r asymptotic form of
the solutions given in (19) and (20) and use these to evaluate
g+/f+ and f−/g− on the right-hand sides of Eqs. (26) and
(27). This leads to the following expressions:

ĉ′
s + ĉ′

v tot − (Zα)

2n2
(d̂s + d̂v )(mεZα)

= −X

{
(g+

02 + g+
03ρ) + (g+

12 + g+
13ρ) C+

A+
ρ−2ζ

}{
(f +

02 + f +
03ρ) + (f +

12 + f +
13ρ) C+

A+
ρ−2ζ

} (30)

and

ĉ′
s − ĉ′

v tot − (Zα)

2n2
(d̂s + d̂v )(mεZα)

= − 1

X

{
(f −

02 + f −
03ρ) + (f −

12 + f −
13ρ) C−

A−
ρ−2ζ

}{
(g−

02 + g−
03ρ) + (g−

12 + g−
13ρ) C−

A−
ρ−2ζ

} , (31)

where (as before) X := √
(m − ω)/(m + ω) while ρ =

2κε = 2mε
√

1 − ω2/m2 � 2mεZα/n. Finally, the coeffi-
cients are given by

g+
02 := −

(
j + 1

2

)
+ ζ − Zα

X
, g+

12 := −
(

j + 1

2

)
− ζ − Zα

X
,

f +
02 := −

(
j + 1

2

)
− ζ − ZαX, f +

12 := −
(

j + 1

2

)
+ ζ − ZαX, (32)

and

f −
02 :=

(
j + 1

2

)
− ζ − ZαX, f −

12 :=
(

j + 1

2

)
+ ζ − ZαX,

g−
02 :=

(
j + 1

2

)
+ ζ − Zα

X
, g−

12 :=
(

j + 1

2

)
− ζ − Zα

X
, (33)

and

g+
03 := (ζ − Zαω/κ )(ζ − Zα/X)

2ζ + 1
, g+

13 := (ζ + Zαω/κ )(ζ + Zα/X)

−2ζ + 1
,

f +
03 := (ζ − Zαω/κ )(−ζ − ZαX − 2)

2ζ + 1
, f +

13 := (ζ + Zαω/κ )(−ζ + ZαX + 2)

−2ζ + 1
,

f −
03 := (ζ − Zαω/κ )(−ζ − ZαX)

2ζ + 1
, f −

13 := (ζ + Zαω/κ )(−ζ + ZαX)

−2ζ + 1
,

g−
03 := (ζ − Zαω/κ )(2 + ζ − Zα/X)

2ζ + 1
, g−

13 := (ζ + Zαω/κ )(−2 + ζ + Zα/X)

−2ζ + 1
. (34)

These equations show that it is the series in integer powers of ρ on the right-hand side that corresponds to the expansion in
powers of mεZα on the left-hand side. Temporarily working to lowest order in this expansion leads to the expression found in
[20] for the running of the couplings ĉs and ĉv, tot:

ĉs + ĉv, tot = −X

(
g+

02 + g+
12

C+
A+

ρ−2ζ

f +
02 + f +

12
C+
A+

ρ−2ζ

)
, (35)
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with coefficients given in (32). Similarly,

ĉs − ĉv, tot = − 1

X

(
f −

02 + f −
12

C−
A−

ρ−2ζ

g−
02 + g−

12
C−
A−

ρ−2ζ

)
, (36)

with coefficients given in (33).
These expressions give the RG evolution of ĉ′

s ± ĉ′
v, tot as

functions of ε. It is convenient to rewrite the result as

ĉ′
s ± ĉ′

v, tot = λ̄±, (37)

where the λ̄± are given by

λ̄± := 1

Zα

[
±ζ

(ε/ε±
� )2ζ + η±

(ε/ε±
� )2ζ − η±

+ K

]
, (38)

where K := ∓(j + 1
2 ), with upper (lower) sign correspond-

ing to parity even (odd). Equation (38) defines two types
of RG evolution, distinguished by the parameter η± :=
sgn[|(Zα)λ̄± − K| − 1]. η± = 1 corresponds to a class of
evolution for which λ̄± never passes through −K/Zα and
is unbounded (diverging at ε = ε±

� ). η± = −1 represents a
class of evolution for which λ̄± is bounded and passes through
−K/Zα once (at ε = ε±

� ).
This evolution can also be recast in differential form by

differentiating while requiring C±/A± to be ε independent,
and reexpressing the result in terms of λ̄±. Equation (38)
trades the constants C±/A± for convenient RG-invariant in-
tegration constants ε±

� , obtained by integrating the differential
evolution.

How is this picture changed once we include the mεZα

corrections? It turns out that the functions λ̄±(ε) are very
useful in this case too because the functional form (38)
appears in the coefficients of each power of ρ in (30) and (31).
In particular, the generalization of (35) and (36) to next order
in mεZα has the form

ĉ′
s ± ĉ′

v tot − (Zα)

2n2
(d̂s ± d̂v )(mεZα)

= λ̄± + 1

n

[
C±

0 + C±
1 λ̄± + C±

2 λ̄2
±
]
(2mεZα), (39)

where, evaluating X and κ using the lowest-order Coulomb
energy, ω/m ≈ 1 − 1

2 (Zα/n)2,

C+
0 := X(g+

02g
+
13 − g+

03g
+
12)

f +
02g

+
12 − f +

12g
+
02

≈ 8n2 + 1

12n
(Zα) + . . . ,

C+
1 := f +

02g
+
13 − f +

03g
+
12 − f +

12g
+
03 + f +

13g
+
02

f +
02g

+
12 − f +

12g
+
02

≈ 2n + . . . ,

C+
2 := f +

02f
+
13 − f +

03f
+
12

X(f +
02g

+
12 − f +

12g
+
02)

≈ n

Zα
+ 8n2 − 2n + 1

4n
(Zα) + . . . , (40)

and

C−
0 := f −

02f
−
13 − f −

03f
−
12

X(g−
02f

−
12 − g−

12f
−
02 )

≈ n

3(Zα)
+ · · · ,

C−
1 := g−

02f
−
13 − g−

03f
−
12 − g−

12f
−
03 + g−

13f
−
02

g−
02f

−
12 − g−

12f
−
02

≈ 2n

3
+ · · · ,

C−
2 := X(g−

02g
−
13−g−

03g
−
12)

g−
02f

−
12−g−

12f
−
02

≈−8n2−3

12n
(Zα) + · · · . (41)

Here, ellipses indicate higher powers of Zα.
Equating the coefficients of each power of mεZα in (39)

dictates separately the running of ĉ′
s , ĉ′

v, tot [given by (37)],
and d̂s and d̂v . The running of d̂s and d̂v is given by

Zα(d̂s + d̂v ) = −8n2 + 1

3
(Zα) − 8n2λ̄+

−
(

4n2

Zα
+ (8n2 − 2n + 1)(Zα)

)
λ̄2

+ (42)

and

Zα(d̂s −d̂v )=− 4n2

3(Zα)
− 8n2

3
λ̄− + 8n2 − 3

3
(Zα)λ̄2

−. (43)

Interestingly, the running of all of the effective couplings
are controlled by the two functions λ̄±(ε). As a result, the
flow of all couplings is described in principle by the same
two RG-invariant constants ε±

� . These two parameters encode
the information contained in C±/A± in the solutions f±
and g±. As we see below, only one of these two quan-
tities is independent for a parity-preserving nucleus since
ε+
� = ε−

� =: ε�.
These functions are plotted in Figs. 1 and 2 (for parity

even) and in Figs. 3 and 4 (for parity odd). In each case, the
two classes of flows identified by η± :=sgn[|(Zα)λ̄±−K|−1].
These figures show that the RG-invariant quantities ε±

� give
the value of ε for which (Zα)λ̄± ∓ K approaches infinity
(when η± = +1) or 0 (when η± = −1).

III. NUCLEAR UNCERTAINTIES

Having established in the previous section why the precise
value of ε carries no physical information, we turn in this
section to connecting the RG-invariant parameters ε±

� to ex-
plicit nuclear properties. This is done in the first subsection

−4 −2 0 2 4

−10

−5

0

5

ln / ∗

FIG. 1. Plot of the RG flow of B = (Zα)4(d̂s + d̂v )/4 (solid
blue) and B = (Zα)(ĉ′

s + ĉ′
v tot ) (dashed orange) vs ln ε/ε�, with

η+ = +1.
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−4 −2 0 2 4

−4

−3

−2

−1

0

ln / ∗

FIG. 2. Plot of the RG flow of B = (Zα)4(d̂s + d̂v ) (solid blue)
and B = (Zα)(ĉ′

s + ĉ′
v tot ) (dashed orange) vs ln ε/ε�, with η+ = −1.

by computing the energy shift as a function of ε±
� , and then

comparing this result to the results of explicit simple models
of the nucleus. The upshot of this section is the observation
that a single parameter ε� := ε+

� = ε−
� accounts for the energy

shifts found using explicit calculations with these models,
with η+ = η− = +1.

Furthermore, the parameter ε� required to obtain this agree-
ment does not depend on the quantum numbers {n, l,m} of
the state whose energy is being computed, as is intuitively
plausible given that ε� captures the properties of the nucleus
and these should not depend on which particular electron (or
muon) state that is used to probe them.

Finally, the above statements are equally true at lowest
order and when higher-order contributions are included in
powers of Zα and/or mRZα. Working to subdominant order
does not introduce new parameters beyond ε� into the result,
it just determines the value of ε� with more precision than at
lower order.

−4 −2 0 2 4

−6

−4

−2

0

2

4

6

ln / ∗

FIG. 3. Plot of the RG flow of B = (Zα)4(d̂s − d̂v ) (solid
blue) and B = (Zα)(ĉ′

s − ĉ′
v tot ) (dashed orange) vs ln ε/ε−

� , with
η− = +1.

−4 −2 0 2 4
−4

−2

0

2
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ln / ∗

FIG. 4. Plot of the RG flow of B = (Zα)4(d̂s − d̂v )/4 (solid
blue) and B = (Zα)(ĉ′

s − ĉ′
v tot ) (dashed orange) vs ln ε/ε−

� , with
η− = −1.

The upshot to the order we work is that all calculations
are captured by an RG-invariant scale ε� of the following
form:

ε2
� = (Zα)2

[
R2

0 + R2
1 (Zα) + R2

2 (Zα)2 + · · · ]. (44)

The length scales Ri are generalized nuclear moments whose
values can weakly depend on m (e.g., logarithmically), and
are computed below for several models of interest. Notice in
particular that the overall factor (Zα)2 ensures ε� is much
smaller than the Ri , which turn out to be typical nuclear
scales.

Finally, the second subsection in this part of the paper
asks for observable combinations of energy levels from which
ε� drops out. Such combinations must always exist when
there are more observables than there are nuclear parameters.
What is crucial is that the numbers R0, R1, and R2 above
are not independent parameters in this sense since they enter
into all observables, for both electronic and muonic atoms,
purely through the single combination ε�. Because of the
explicit appearance of m, and the implicit dependence of the
Ri on lepton mass, ε� will be numerically different between
electronic and muonic atoms.

A. Moments and polarizabilities

We start by making contact with nuclear models, com-
puting the value of ε±

� required to reproduce energy-shift
calculations in the literature [and justifying Eq. (44)].

1. RG-invariant energy shifts

Consider first the energy shifts for atomic energy levels
as a function of the RG-invariant parameters ε±

� and η±.
The calculation is greatly simplified given the knowledge
that ε±

� proves to be much smaller than typical nuclear sizes
[in retrospect due to the explicit factor ε� ∝ Zα implied
by (44)].
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Expanding Eqs. (37), (38), (42), and (43) in the limit of
small ε�/ε, and specializing to j = 1

2 , we have

ĝ1 = −1

2
+ 2η+

(Zα)2

(
ε+
�

ε

)2

,

ĝ2 = −n2 − 1

6n2
+ 4η+

(Zα)2

(
ε+
�

ε

)2

+ 8

(Zα)4

(
ε+
�

ε

)4

,

ĝ3 = −1

8
− η+

(Zα)2

(
ε+
�

ε

)2

[1 + 2 ln(ε+
� /ε)]

+ 2

(Zα)4

(
ε+
�

ε

)4

, (45)

while

f̂1 = 2

3
,

f̂3 = 1

2
− 2η−

(Zα)2

(
ε−
�

ε

)2

. (46)

Using these in the energy shifts, Eqs. (24) and (25), then
gives the parity-even j = 1

2 shift

δEnS1/2 � 4m3(Zα)2

n3
η+(ε+

� )2

{
2 +

[
12n2 − n − 9

2n2(n + 1)

− 2 ln

(
2mε+

� Zα

n

)
− 2Hn+1 − 2γ + 4

]
× (Zα)2 + · · ·

}
, (47)

while the parity-odd j = 1
2 state shifts by

δEnP1/2 � 2
n2 − 1

n5
m3(Zα)4η−(ε−

� )2(1 + · · · ) . (48)

As mentioned earlier, the nuclear shifts to j = 3
2 states and

higher are smaller than the order to which we work.

2. Fixed charge distributions

The simplest nuclear model treats it as a simple static
charge distribution ρ(r) and energy shifts for Dirac fermions
orbiting such distributions have been computed in the limit
where the radius R of the distribution is much smaller than
atomic size aB [2,20,25–29].

For such models in the limit R 
 aB , the finite-size energy
shift to leading and subleading order in R/aB is parametrized
by just three moments of the charge distribution. Expressions
for this shift (as found by Refs. [2,20,25–29]) agree with
(47) and (48) when η := η+ = η− = +1 and the RG-invariant
parameter ε+

� = ε−
� =: ε� is given by

ε2
� = (Zα)2

12

(
r2
p + 1

2
r3

F
mZα + a2

rel(Zα)2

)
, (49)

which corresponds to the generalized moments

R2
0 = r2

p

12
, R2

1 = m
r3

F

24
, and R2

2 = a2
rel

12
. (50)

The nuclear moments r2
p, r3

F
, and a2

rel above are defined as
follows.

At order m3R2(Zα)4, the only moment that appears is the
charge radius

r2
p := 1

Ze

∫
d3r r2ρ. (51)

At order m4R3(Zα)5 only the Friar (or third Zemach) moment
appears

r3
F

:= 1

(Ze)2

∫
d3r d3r′ ρ(r)ρ(r′)|r − r′|3. (52)

Finally, at order m3R2(Zα)6, there is one more moment that
arises which we call arel. This moment has a more complicated
structure, for which several authors have presented different
but equivalent formulations [25,28,31]. Following [31], we
write

a2
rel = r2

p

[
1 + 1

2
ln(12) − ln(Zα) + ln

(
rC1

rp

)]
, (53)

with the parameter rC1 [cf. Eq. (66) in [31]] given by

ln
rC1

rp

− 1 = 6

r2
p

∫ ∞

0
dr ln(r/rp )

d

dr
r3

×
{

2πρ(r )[V (2)(r )]2 − [V (r )]2V (2)(r )

− 1

r2

[
r

2
+ r2

p

6r

]}
, (54)

where V (r ) ≈ 1/r , V (2)(r ) ≈ −r/2 − r2
p/6r , and ρ(r ) is the

nuclear charge distribution.
This example illustrates several things. First, it shows that

agreement with calculated energy shifts requires the parity-
even and parity-odd RG invariants to be the same. This seems
a reasonable consequence of the assumed parity invariance
of the nuclear couplings: odd- and even-parity electrons (or
muons) see the same nucleus. Furthermore, this example
shows how moving past leading order does not introduce new
independent RG-invariant parameters into the energy shifts.
Instead, it provides a more accurate determination of the value
of the single RG invariant ε�. Finally, ε� is independent of the
lepton-state quantum numbers jjz�.

3. Nuclear polarizability

In general, nuclear contributions to atomic energy shifts
arise that cannot be simply parametrized in terms of a static
nuclear charge distribution, such as those due to “inelastic”
Coulomb exchanges. These typically involve sums over in-
termediate nuclear states and so sample nuclear degrees of
freedom outside of their ground state, and contain the effects
of nuclear polarizability. A representative example of how
such a calculation proceeds is sketched in Appendix A.

The upshot of these calculations is that they contribute (to
within the accuracy we work here) to atomic energy shifts in a
way that depends on the quantum numbers of the atomic state
in the same way as does the charge-radius contribution. As a
result, these contributions can also be captured by a shift in
the value of the RG-invariant scale ε� with η = +1.

In terms of the parametrization of Eq. (44) the calculations
of Refs. [24,31–34] give contributions that first arise at order
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m3R2(Zα)5 for muonic atoms, and m4R3(Zα)5 for elec-
tronic atoms. For muons, the inelastic two-photon exchange
introduces a new contribution R2

1 ⊃ −α̃′
pol/6, where α̃′

pol is a
generalized (mass-dependent) nuclear polarizability given by
[35,36]

α̃′
pol :=

∫
ET

dE

√
m

2E
|〈φN | 	d|E〉|2, (55)

where |φN 〉 is the nuclear ground state, |E〉 is the nuclear
excited state with energy E − M , 	d is the nuclear dipole
operator (divided by the elementary charge), and ET is the
nuclear threshold excitation energy (which for helium [37]
is ∼20 MeV). Furthermore, at order m4R3(Zα)5, the nuclear
polarizability also adjusts the value of R2

1 , so that R2
1 ⊃

mr̃3
F /24, where now r̃3

F is a generalized Friar moment. For
muonic atoms [24],

r̃3
F,μ = − 1

(Ze)2

∫
d3r

∫
d3r ′|r − r ′|3〈φN |ρ̂†(r )ρ̂(r ′)|φN 〉,

(56)

where ρ̂(r ) is the (un-normalized) nuclear charge density
operator, and |φN 〉 is again the nuclear ground state [note
that the matrix element 〈φN |ρ̂†(r )ρ̂(r ′)|φN 〉 is distinct from
ρ(r )ρ(r ′) = 〈φN |ρ̂†(r )|φN 〉〈φN |ρ̂(r ′)|φN 〉, which appears in
(52)]. For electronic atoms, the static dipole polarizability also
arises at this order, and so [36]

r̃3
F,e = − α̃pol

6
− 1

(Ze)2

∫
d3r

×
∫

d3r ′|r − r ′|3〈φN |ρ̂†(r )ρ̂(r ′)|φN 〉, (57)

where

α̃pol = 2

3

∫
dE

{
19

6
|〈φN | 	d|E〉|2+5|〈φN | 	d ln(2E/m)|E〉|2

}
(muons) (58)

is the weighted static electric nuclear polarizability. Finally,
R2

2 is also altered, although in this case the exact form of the
inelastic exchange is not known for helium [31]. However, for
both electrons and muons it is expected to be well described
by a local interaction due to the high excitation energy of the
4He nucleus relative to atomic scales, and so should appear
as some generalized arel which we denote ãrel, in analogy
with the generalized Friar moment. Altogether, inclusion of
nuclear polarizability effects can be encoded simply by the
contributions

R2
0 = r2

p

12
, R2

1 =− α̃′
pol

6
+ m

r̃3
F

24
, and R2

2 = ãrel

12
, (59)

where α̃′
pol is defined in (58) for muons, and is 0 for electrons.

The bottom line is again that these contributions represent
particular kinds of contributions to ε�, and are not contributing
to atomic energy shifts as independent parameters. Conse-
quently, assessments of nuclear errors involved in each of
these kinds of processes can be interpreted as contributions
to the total theoretical uncertainty in microscopic predictions
for ε�.

However, the real power of the above expressions in terms
of ε� is in their very broad generality. Although specific
kinds of nuclear physics contribute to the value of ε�, the
same would also be true for arbitrary short-distance physics,
regardless of whether this has nuclear origins or not. Because
the PPEFT framework parametrizes all possible interactions
localized at the nucleus consistent with symmetries, the con-
tribution to atomic energies of these couplings (through their
RG-invariant parametrizations ε� and η) are guaranteed to
capture any short-distance physics that shares these symme-
tries to the given order in R/aB , regardless of the details of
how that physics might be modeled.

B. Nucleus-independent combinations

Exploitation of more precise measurements of atomic level
spacings is currently hampered by theoretical uncertainties
associated with predicting the energy shifts due to nuclear
physics. Ongoing efforts are underway to improve the theo-
retical prediction for these nuclear shifts, and in the language
of PPEFT these can be regarded as improving the theoretical
prediction for the RG-invariant parameter ε�. In this view,
the various individual contributions to nuclear level shifts,
e.g., charge radius, Friar moment, polarizability, and so on,
all enter together only through this single parameter.4

The fact that the nucleus can only influence atomic levels
through ε� suggests another approach towards reducing theo-
retical error for precision atomic measurements. Rather than
trying to reduce the theoretical error by computing this param-
eter more accurately, why not instead identify combinations
of observables from which the parameter ε� cancels out? Any
such combination is a quantity for which the theoretical error
is much smaller since it does not depend at all on any nuclear
uncertainties.

To formalize this, we write the energy levels of hydrogenic
atoms as

Enj± = EDirac
nj + δE

QED
nj± + δEPP

nj± + δE
PPQED
nj± , (60)

where quantum numbers n, j and parity ± are used as labels.
Here, EDirac is the energy eigenvalue predicted by the Dirac-
Coulomb solution, and δEQED contains all QED radiative
corrections in the limit of a point nucleus. δEPP is the nucleus-
dependent contribution given above, and δEPPQED contains
the influence of nonzero nuclear size on all QED radiative
corrections.

When comparing to the literature, such as the three-
photon contributions evaluated in Ref. [31], it is the “high-
energy” parts of graphs whose effects can be captured by a
shift in the parameters of the effective theory, which in the
present instance means shifting the value of ε2

� in δEPP
nj±.

The same cannot be done for the “low-energy” parts that
correspond to graphs evaluated within the effective theory us-
ing nucleus-modified propagators and so these contributions

4Since ε� depends explicitly on the lepton mass [cf. the R3
2 term

in (44)], strictly speaking there is a single parameter controlling
electron-type atoms and another one for muonic atoms, and any
evidence for a difference in these parameters for electrons and muons
is evidence for the presence of a nonzero size for the parameter R3

2 .
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are either already included in the perturbative expansion of
the energy shifts [Eqs. (24) and (25)], or else grouped into
δE

PPQED
nj± .
Both of δEPP and δEPPQED suffer from systematic uncer-

tainties arising from nuclear physics (and the proton radius
problem, should this prove not to be due to experimental
error). But, because δEPPQED starts out with higher powers
of α it only depends on the lowest-order R2

0 contributions5

to ε�, unlike δEPP which in principle depends on all of the
parameters R2

0 through to R2
2 of Eq. (44).

However, it is differences �E1→2 := En1,j1,±1 − En2,j2,±2

between energy levels that are measured spectroscopically.
For these quantities we therefore write

�E1→2 = �EEM
1→2 + �EPP

1→2 + �E
PP QED
1→2 , (61)

in which the Dirac-Coulomb and point-source QED effects
are grouped together into the term labeled “EM.” Because
�EEM

1→2 is calculable with negligible error, we focus below on
the nucleus-dependent combination

�̂E1→2 :=�E1→2−�EEM
1→2 =�EPP

1→2+�E
PPQED
1→2 . (62)

Our goal is to identify linear combinations of these observ-
ables from which the parameter ε� cancels. With upcoming
experiments in mind we do so explicitly here for muonic
atoms up to the accuracy of m4R3(Zα)5 required to see the
Friar moment. For electrons we go to the same accuracy,
which is slightly more involved due to the necessity of keeping
terms at both order m4R3(Zα)5 and m3R2(Zα)6 since these
are similar in size (due to the numerical coincidence meR ∼
Zα).

1. Predicted energy differences

In order to pursue this program, we need complete expres-
sions for the ε� dependence of all relevant levels, including
both the δEPP and δEPPQED contributions. Since to the de-
sired accuracy ε� does not appear at all within δEPP for the
energies of j > 1

2 states, we focus on itemizing all relevant
contributions for j = 1

2 .
The mixed nuclear-QED contribution has been evaluated

at the order required, and we simply quote the result here.
For both electrons and muons the leading result is given by
[38,39]

δEPPQED = 4η
(e)
nl

n3
m3

μα(Zα)2ε2
�μ (muons)

= 4η
(μ)
nl

n3
m3

eα(Zα)3ε2
�e (electrons), (63)

with the dimensionless coefficients η
(a)
nl depending on the

quantum numbers of the lepton state. In these expressions, the
subscripts “a = μ , e” on ε�μ is meant to underline that it is
evaluated using the muon mass in its R3

2mZα contribution.

5Apart from logarithms (see, e.g., [31]) inasmuch as other nuclear
scales aside from R0 can appear logarithmically in low-energy con-
tributions. When this occurs, we write a contribution of the form
ln(mRx ) as ln(mR0 ) + ln(Rx/R0 ) and absorb the m-independent
factor ln(Rx/R0 ) into the R2

2 term of (44).

We identify the ε� dependence by trading the dependence on
r2
p given in the literature for ε� using only the leading R2

0

contribution from Eq. (49): ε2
� = 1

12 (Zα)2r2
p.

For electronic atoms ηnl is given by [38]

η
(e)
nl := (8 ln 2 − 10)δl0 (electron), (64)

which vanishes for l �= 0 since the wave function must have
support at the position of the nucleus because the Bohr radius
for the orbit aB ∼ (Zαme )−1 is much larger than the Compton
wavelength λc ∼ m−1

e of the virtual electrons in the QED
loop. The same is not true for muons since αmμ is comparable
to me, and so for muonic atoms η

(μ)
nl need not vanish for l �= 0.

The precise value of η
(μ)
nl , given in [39], is not required in what

follows.
Collecting results we have the following:
Muons. Here, we have the nonzero nuclear-dependent en-

ergy shifts to the desired order6

δEPP
nS1/2

+ δE
PPQED
nS1/2

= 4m3
μ(Zα)2

n3

(
2 + η

(μ)
n0 α

)
ε2
�μ (65)

while

δEPP
nP1/2

+ δE
PPQED
nP1/2

= m3
μ(Zα)2η

(μ)
n1 α ε2

�μ (66)

and

δEPP
nP3/2

+ δE
PPQED
nP3/2

= m3
μ(Zα)2η

(μ)
n1 α ε2

�μ. (67)

Combining these expressions provides the following ex-
pressions for the measurable energy differences for the lowest
angular momentum states:

�̂EnS1/2-nP1/2 = 4m3
μ(Zα)2

n3

[
2 + (

η
(μ)
n0 − η

(μ)
n1

)
α
]
ε2
�μ , (68)

�̂EnS1/2-nP3/2 = 4m3
μ(Zα)2

n3

[
2 + (

η
(μ)
n0 − η

(μ)
n1

)
α
]
ε2
�μ, (69)

while

�̂EnP1/2-nP3/2 = 0. (70)

Electrons. The corresponding formulas for electrons
are

δEPP
nS1/2

+ δE
PPQED
nS1/2

= 4m3
e (Zα)2

n3
ε2
�e

{
2 +

[
12n2 − n − 9

2n2(n + 1)
− 2 ln

(
2meε�eZα

n

)
−2Hn+1 − 2γ + 4 + η

(e)
n0

Z

]
(Zα)2

}
, (71)

as well as

δEPP
nP1/2

+ δE
PPQED
nP1/2

= 2

(
n2 − 1

n5

)
m3

e (Zα)4ε2
�e, (72)

but now δEPP
nP3/2

= δE
PPQED
nP3/2

= 0 to the order of interest.

6We switch to spectroscopic notation where states are labeled by
j and parity, so the labels S, P,D, F, . . . are proxies for parity.
Thus, S (or P ) are parity-even (-odd) states with spin j = 1

2 , while D

(or F ) are parity-even (-odd) with spin j = 3
2 and so on.
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The corresponding energy differences for electrons are therefore

�̂EnS1/2-nP3/2 = 4m3
e (Zα)2

n3
ε2
�e

{
2 +

[
12n2 − n − 9

2n2(n + 1)
− 2 ln

(
2meε�eZα

n

)
− 2Hn+1 − 2γ + 4 + η

(e)
n0

Z

]
(Zα)2

}
, (73)

as well as

�̂EnS1/2-nP1/2 = 4m3
e (Zα)2

n3
ε2
�e

{
2 +

[
12n2 − n − 9

2n2(n + 1)
− 2 ln

(
2meε�eZα

n

)
− 2Hn+1 − 2γ + 4 + η

(e)
n0

Z
− n2 − 1

2n2

]
(Zα)2

}
(74)

and

�̂EnP1/2-nP3/2 = 2

(
n2 − 1

n5

)
m3

e (Zα)4ε2
�e. (75)

In essence, these expressions imply that the nuclear-size
contributions to a great many energy electronic and muonic
levels can be parametrized in terms of just two parame-
ters, ε�e and ε�μ. By eliminating these parameters, we can
derive relations that directly connect measurable quantities.
The relations derived in this way are therefore known with
smaller theoretical errors since they are entirely independent
of nuclear uncertainties.

2. Levels with n = 2

We start by concentrating on the energy levels that have
already been measured, and so restrict our attention to the
special case n = 2.

Focusing first on muonic atoms, the nuclear contribution
to the differences between the three levels 2S1/2, 2P1/2, and
2P3/2 is controlled by the single parameter ε�μ. This means
there must be a nucleus-independent combination relating the
two independent energy differences. This can be taken to be
(70): �̂EnP1/2-nP3/2 = 0 is a statement unclouded by nuclear
uncertainties, in particular for n = 2.

Alternatively, (68) provides an accurate experimental de-
termination of ε� for muonic helium:

ε2
�μ = �̂E2S1/2-2P1/2

m3
μ(Zα)2

[
1 + 1

2

(
η

(μ)
20 − η

(μ)
21

)
α
] + O[(Zα)4]. (76)

Turning now to the 4He+ ion, the nuclear contribution to the
two independent differences between the 2S1/2, 2P1/2, and
2P3/2 levels is controlled by the single parameter ε�e, again
suggesting there is a nucleus-independent combination.

This can be found by using (74) to eliminate ε�e and using
the result in (75) to predict the 2P1/2-2P3/2 transition in terms
of the 2S1/2-2P1/2 transition:

�̂E2P1/2-2P3/2 = 3

16
(Zα)2�̂E2S1/2−2P1/2 + O[(Zα)7]. (77)

We write the error in this expression as (Zα)7 rather than
(Zα)8 because the corrections to (75) arise at relative order
(mRZα), though for electrons this is numerically closer to
order (Zα)8. Alternatively, using the 2S1/2-2P1/2 to predict
the 2S1/2-2P3/2 difference leads to the equivalent prediction

�̂E2S1/2-2P3/2 = �̂E2S1/2-2P1/2

[
1 + 3

16 (Zα)2 + O((Zα)4)
]
.

(78)

While naively ε�e might be obtained from (75), leading to

ε2
�e = 16

3m3
e (Zα)4

�̂E2P1/2-2P3/2 + O((Zα)4) , (79)

this determines it with larger relative error than it would have
been by solving for ε�e from one of the other two energy
differences. Taking this latter approach instead leads (see
Appendix B, including the result for general n) to

m2
eε

2
�e � 1

me(Zα)2
�̂E2S1/2-2P1/2

×
{
1+ (Zα)2

2

[
ln

(
�̂E2S1/2-2P1/2

me

)
−3

2
+2γ−η20

Z

]}

+O
(

(Zα)2 �̂E2S1/2-2P1/2

me

)
, (80)

and the correction is now down by (Zα)4 relative to the
leading term.

3. More general n

The relations found above for the special case n = 2 might
not be all that surprising. However, should experiments access
transitions with higher n, the fact that all nuclear contributions
are controlled by the single parameter ε� becomes ever more
predictive. This section makes a start at some of the nuclear-
free relations that can be derived in this way for general n.

Muons. We start with muons, which are simpler. A start is
the prediction for the general nS1/2-nP1/2 shift for any n given
measurements of this shift for n = 2. For n = 2, we use (69)
to infer the value of ε�μ, which when substituted into (68) for
general n, gives

�̂EnS1/2-nP1/2 = 8
[
2 + α

(
η

(μ)
n0 − η

(μ)
n1

)]
n3

[
2 + α

(
η

(μ)
20 − η

(μ)
21

)] �̂E2S1/2-2P1/2 . (81)

Similarly, generic muonic S-S transitions become

�̂En1S1/2-n2S1/2 = 2

(
2 + αη

(μ)
n10

n2
1

− 2 + αη
(μ)
n20

n2
2

)
�̂E2S1/2-2P1/2 .

(82)

A similar argument relates the S1/2-P3/2 transitions for general
n:

n2
1

2 + α
(
η

(μ)
n10 − η

(μ)
n21

)�̂En1S1/2- n1P3/2

= n2
2

2 + α
(
η

(μ)
n20 − η

(μ)
n21

)�̂En2S1/2-n2P3/2 . (83)
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Electrons. Similar expressions hold for electronic atoms.
The prediction for the nS1/2-nP1/2 shift for any n in terms of
this shift for n = 2 obtained by using (80) to infer the value of
ε�e used in (74) gives

�̂EnS1/2-nP1/2 = 8

n3
�̂E2s1/2-2p1/2

×
{

1 + (Zα)2

[
N (n) − n2 − 1

4n2

]}
, (84)

in which we define

N (n) := 12n2 − n − 9

4n2(n + 1)
− Hn+1 + 5

4
+ η

(e)
n0

2Z

− η
(e)
20

2Z
− ln

(
2

n

)
. (85)

The predictions for electronic S-S transitions is similarly

�̂En1S-n2S

= �̂E2S1/2-2P1/2

{
1

n3
1

− 1

n3
2

+ (Zα)2

[
N (n1)

n3
1

− N (n2)

n3
2

]}
.

(86)

The nucleus-free prediction for the difference between the P

states for electronic atoms becomes

n5
1

n2
1 − 1

�̂En1P1/2-n1P3/2 = n5
2

n2
2 − 1

�̂En2P1/2-n2P3/2 . (87)

This situation is somewhat more complicated for electronic
S-wave states, but using

n3
1�̂En1S1/2-n1P1/2 − n3

2�̂En2S1/2-n2P1/2

= 4m3
e (Zα)4ε2

�e(F [n1] − F [n2]), (88)

where

F [n] := 12n2 − n − 9

2n2(n + 1)
− n2 − 1

24n2
+ 2 ln n − 2Hn+1 + η

(e)
n0

Z
,

(89)

the difference becomes
1

F [n1] − F [n2]

(
n3

1�̂En1S1/2-n1P1/2 − n3
2�̂En2S1/2-n2P1/2

)
− 24n5

1

n2
1 − 1

�̂En1P1/2-n1P3/2 = 0, (90)

which is again free of nuclear uncertainties. It is clear that a
great many such relations can be derived in the same way.

IV. NUMERICAL EXAMPLE

At the moment, data [40] are only available for the
2P1/2-2S1/2 transition in 4He+. With this transition, we can
use (86) to predict the 1S-2S transition in hydrogenic helium,
which is relevant for upcoming experiments [41]. Subtracting
the pointlike physics listed in [23], we compute

�̂E
(exp)
2S1/2-2P1/2

= −2.58 (5)×10−9 Ry, (91)

in units of the Rydberg energy. Here, the number in parenthe-
ses is the error on the last digit. The predicted 1S-2S transition

is then

�E2S-1S = 2.999 706 711 8 (4) Ry

= 9.868 561 009 (1)×109 MHz, (92)

where in the last line, we used Ry = 3.289 841 960 355 ×
1015 Hz from the 2014 CODATA review [13]. Our prediction
agrees with [41] and [23], however, the error we report is
nominally a few times larger than they report (three times [41]
and four times [23]). What is important in our case is that
the error is completely independent of nuclear uncertainties,
and is dominated by the experimental error. Our result will
therefore only improve as future experiments improve their
precision, and will never be hindered by a particular choice of
nuclear model.

V. CONCLUSION

We here apply the PPEFT framework to muonic and elec-
tronic atoms with spinless nuclei, which produce systematic
parametrizations of the energy level shifts due to all short-
range physics, including (but not limited to) uncertainties in
evaluating nuclear contributions. Our parametrization cleanly
identifies a single mass-dependent length scale ε� that encodes
the effect of all nuclear physics on atomic energy levels.

That is, in discussions of finite-size contributions to atomic
energy shifts, one often writes (see, e.g., [24])

�E = δQED + δFS r2

〈
r2
p

〉 + δFS Other, (93)

where δQED is all of the non-finite-size-dependent contribu-
tions, δFS r2〈r2

p〉 is all the finite-size terms that are proportional
to the squared charge radius, and δFS Other is all the other
finite-size contributions. Our observation is that at the level
of atomic energy shifts, this division is artificial. The real
division is

�E = δQED + δε�
, (94)

where δQED is all point-nucleus contributions (as above), and
δε�

is all finite-size contributions, which is a known function
of the one length scale ε�. The separation of ε� into different
sources (such as moments of the nuclear charge distribution,
and nuclear polarizability) is a theoretical exercise (although
certainly a worthy one) that always needs supplementary
information, such as input from theoretical models and scat-
tering data. However, ε� is just one number, so once it is
determined from a single measurement, it can be used to
predict the finite-size contribution of all other measurements.

As a practical application of this observation, we use two
different strategies to make predictions about spectroscopic
transition for electronic and muonic atoms that are free of ε�.
For these observables our formulas reduce the theoretical error
in tests of QED by eliminating any uncertainties arising from
explicit models of the nucleus. The same predictions are also
independent of any potential short-range new physics (should
this prove to be responsible for the proton-radius problem)
allowing tests of QED using only muonic 4He whose validity
is undiminished by the existence of such forces.

Our first strategy is using a single measurement to solve for
ε�, and then use that to predict all other measurements. Doing
so, we find explicitly predictions for the following transitions:
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For muonic atoms, we find

�̂EnS1/2-nP1/2 = 8
[
2 + α

(
η

(μ)
n0 − η

(μ)
n1

)]
n3

[
2 + α

(
η

(μ)
20 − η

(μ)
21

)] �̂E2S1/2-2P1/2 (95)

and

�̂En1S1/2-n2S1/2 = 2

(
2 + αη

(μ)
n10

n2
1

− 2 + αη
(μ)
n20

n2
2

)
�̂E2S1/2-2P1/2 ,

(96)

while electronic atoms produce

�̂EnS1/2-nP1/2 = 8

n3
�̂E2s1/2-2p1/2

{
1 + (Zα)2

×
[
N (n) − n2 − 1

4n2

]}
(97)

and

�̂En1S-n2S = �̂E2S1/2-2P1/2

{
1

n3
1

− 1

n3
2

+ (Zα)2

×
[
N (n1)

n3
1

− N (n2)

n3
2

]}
, (98)

with N (n) defined in (85).
Our second approach is to avoid solving for ε� altogether,

and instead find general linear combinations of measurements
for which it falls out. In this way, we predict the following:
For muonic systems,

n2
1

2 + α
(
η

(μ)
n10 − η

(μ)
n21

)�̂En1S1/2-n1P3/2

= n2
2

2 + α
(
η

(μ)
n20 − η

(μ)
n21

)�̂En2S1/2-n2P3/2 , (99)

while for electronic systems,

1

F [n1] − F [n2]

(
n3

1�En1S1/2-n1P1/2 − n3
2�En2S1/2-n2P1/2

)
− 24n5

1

n2
1 − 1

�En1P1/2-n1P3/2 = 0, (100)

where F [n] is defined in (89).
Using the only available data for the helium ion (the

2S-2P Lamb shift in ordinary 4He+), we use (86) to pre-
dict a 1S-2S transition ν1S-2S = 9.868 561 009 (1)×109 MHz.
While our uncertainty in this prediction is roughly four times
the uncertainty in the literature, our error is dominated by the
experimental precision of the 2S-2P measurement. Conse-
quently, our predictions will become more and more precise
as experiments improve, and remain unencumbered by the
inherent uncertainty in choice of nuclear model.

Although we here address only spinless nuclei, it is cer-
tainly possible to include nuclei with spin in the PPEFT
framework, and work is ongoing to do so. Although nuclear
spin changes the counting of parameters in the energy shift
formulas above, the principle remains exactly the same and
we expect in this case also to be able to build observables
from which short-range contributions completely drop out.
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APPENDIX A: POLARIZABILITY IN A NUCLEAR MODEL

To illustrate how nuclear polarizabilities enter into the
PPEFT framework, this appendix considers a relatively simple
nuclear model, following Refs. [24,34]. The model works with
nucleons and leptons with states |NJJz; njjz〉 representing
the nuclear (upper case) quantum numbers and lepton (lower
case) quantum numbers. The Hamiltonian of the system is

H = HN + Hf + �H, (A1)

where HN is the Hamiltonian of the nucleus (whose details
never need be explicitly written, with the basis of nuclear
states |NJJz〉 assumed known), Hf is the Schrödinger or

Dirac-Coulomb Hamiltonian for the lepton interacting with a
point-source Coulomb potential, and �H is given by

�H = Zα

r
− Zα

∫
d3r ′ �̂(r′)

|r − r′| , (A2)

where �̂ is the electric charge operator written in terms of
the quantum nuclear degrees of freedom (such as the nu-
cleon positions and charges). The perturbation subtracts out
the point-source Coulomb interaction appearing in Hf and
replaces it with the more realistic nuclear electromagnetic
source distribution.

Working perturbatively in �H leads to a graphical expan-
sion that includes those of Fig. 5. Of these, the leftmost graph
is linear in the nonpointlike Coulomb-nuclear coupling �H ,
and involves one factor of the nuclear charge-density operator
�̂ evaluated within the nuclear ground state 〈0|�H |0〉. It
is this type of graph that gives the contributions that look
like the charge radius r2

p of the nuclear charge distribution
ρ(r) = 〈0|�̂(r)|0〉.

Terms quadratic in this same nuclear charge distribution,
such as the Friar moment r3

F
of (52), arise from the second

graph in Fig. 5 that are quadratic in �H but also only
involve the nucleus in its ground state. The first two types
of graphs therefore have counterparts for leptons interacting
with a specified charge distribution and so can be expected
to contribute to energy shifts in the same way, leading to
contributions to ε� of the form given in (49).

It is the final graph of Fig. 5 (and its crossed counterpart)
that contains the nuclear polarizability and so is not simply
captured by static moments of a given nuclear distribution
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+

+

FIG. 5. Graphs arising from the perturbative expansion of nu-
clear electromagnetic interactions. The upper solid line represents
the atomic lepton, dotted lines represent the Coulomb part of the
electromagnetic field, and the lower solid line represents the nu-
cleus in its ground state. The fat dot vertex includes a nonpointlike
momentum-dependent correction to the Coulomb vertex, while the
fat solid line represents the propagation of an excited nuclear state.
Crossed graphs are also present even though they are not drawn.

ρ(r) = 〈0|�̂(r)|0〉. For the nuclear sector, this graph con-
tributes a contribution involving a sum over nuclear states
involving the off-diagonal matrix elements |〈N |�̂(r)|0〉|2.

Explicitly, in [34] Friar gives the following expression for
the atomic energy shift due to such a polarizability:

δEpol = −4π

3
(Zα)2|φn(0)|2

∑
N �=0

[√
2m

ωN

|〈N |D|0〉|2

+m

4

∫
d3x

∫
d3y〈0|ρ(y)|N〉〈N |ρ(x)|0〉|x − y|3

]
,

(A3)

where D is the nucleon electric dipole operator D =∫
d3x xρ(x), and ωN is the excitation energy of the interme-

diate nuclear state while φn(0) is the lepton’s wave function at
the origin.

For the main text what is important about this calculation
is that it depends on the lepton quantum numbers in precisely
the same way as does the charge radius r2

p, and so can be
interpreted as a shift in the value of ε�. The leading (dipole)
polarizability term goes as (Zα)2|φn(0)|2R2 and so is a con-
tribution to the R2

1 contribution of ε� in the parametrization of
(44).

By comparison, the second term (and Friar moment cor-
rection) can be seen to go as relative order (mRZα) and so
are also contributions to R2

1 in (44). Contributions to R2
2 in

(44) also arise in explicit calculations, typically as relativistic
kinematic corrections to lower-order terms.

APPENDIX B: SOLVING FOR ε�

This Appendix fills in the details that give the expression
for ε� in situations where the energy shifts also depend log-
arithmically on ε�. This arises in the main text when writing
an expression for ε� in terms of the 2S1/2-2P1/2 level shift, for
example. We do so in this appendix for general n.

We start by writing the nS1/2-nP1/2 shift as

�̂EnS1/2-nP1/2 = 4m3
e (Zα)4

n3
ε2
�e{χn − ln[(meε�e )2]}, (B1)

where

χn := 2

(Zα)2
− 2 ln

(
2Zα

n

)
+ 12n2 − n − 9

2n2(n + 1)
− 2Hn+1

− 2γ + 4 + η
(e)
n0

Z
− 2(n2 − 1)

n2
, (B2)

and rearrange to obtain

n3

4me(Zα)4
�̂E2S1/2-2P1/2 = m2

eε
2
�e{χn − ln[(meε�e )2]}. (B3)

We wish to solve this equation for ε�e, but it has no closed-
form solution. However, the solution does have a name: it is
called the Lambert W function. In terms of this we have

m2
eε

2
�e = exp

[
W

(
− n3

4me(Zα)4
�̂E2S1/2-2P1/2e

−χn

)
+ χn

]
.

(B4)

To turn this into something useful, we use some approx-
imate forms for W in various limits. The first observation is
that the argument of the W function is order e−1/(Zα)2

(coming
from the χn) and so is very small. Also, the energy shift in
question is positive, so this argument is negative. In this limit,
W [z] is double valued, and the branch of interest is the one
satisfying W [z] < −1, denoted by Wm[z]. In the limit of small
negative argument,

Wm[z] � − ln

(
−1

z

)
− ln

[
ln

(
−1

z

)]
− ln[ln(−1/z)]

ln(−1/z)
. . . ,

(B5)

so that

W

(
− n3

4me(Zα)4
�̂EnS1/2-nP1/2e

−χn

)
+ χn

� ln

(
n3

4me(Zα)4
�̂EnS1/2-nP1/2

)
− ln

[
χn − ln

(
n3

4me(Zα)4
�̂EnS1/2-nP1/2

)]
− (Zα)2

2
ln

(
2

(Zα)2

)
+ · · · , (B6)

where the dots contain terms suppressed by order (Zα)4 and
higher. Consequently,

m2
eε

2
�e � n3

8me(Zα)2
�̂EnS1/2-nP1/2

×
{

1+(Zα)2

[
χ̂n+ 1

2
ln

(
n3

4me(Zα)4
�̂EnS1/2-nP1/2

)]}

+O

(
(Zα)2 n3�̂EnS1/2-nP1/2

4me

)
, (B7)
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where

χ̂n := 1

2
ln[2(Zα)4/n2] − 12n2 − n − 9

4n2(n + 1)
+ Hn+1 + γ − 2 − ηn0

2Z
+ n2 − 1

4n2
(B8)

(defined by χn = [2/(Zα)2](1 − χ̂n)), and the correction is down by (Zα)4 relative to the leading term.
Finally, plugging this into (73) for the nS1/2-nP3/2 shift, we predict

�̂EnS1/2-nP3/2 ≈ �̂EnS1/2-nP1/2

{
1 + (Zα)2

[
χ̂n + 1

2
ln

(
n3

4me(Zα)4
�̂EnS1/2-nP1/2

)]}

×
{

1 + (Zα)2

[
12n2 − n − 9

4n2(n + 1)
− 1

2
ln

(
n�̂EnS1/2-nP1/2

2me

)
− Hn+1 − γ + 2 + ηn0

2Z

]}

= �̂EnS1/2-nP1/2

{
1 + (Zα)2

[
n2 − 1

4n2

]
+ O((Zα)4)

}
, (B9)

which is exactly the result (77) used in the main text.
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