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Excited electronic states from a generalization of the extended Koopmans theorem
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Inspired by the extended Koopmans theorem, we demonstrate that excited electronic states can efficiently
and very accurately be computed from the ground-state density correlators. That this is possible in principle
does not come as a surprise. However, what correlator order is needed is an important question. There are
a number of methods that differ in the way in which higher-order correlators, which are very expensive to
evaluate, are treated: the equation-of-motion approach, also known as the random phase approximation, the
cumulant, and the Hermitian operator methods. Here it is shown that there exists, in fact, a close connection
between the extended Koopmans theorem and the equation-of-motion approach. A dramatic improvement over
the conventional linear-response calculations is numerically demonstrated for a paradigmatic molecular system
and explained by comparing with the equation-of-motion approach for a single-determinant reference state and
for the case of composite excitations. Our approach opens prospects for systematic improvements of the adiabatic
approximation of the time-dependent density functional theory by exploiting properties of the correlated ground
state.
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I. INTRODUCTION

Knowledge of excited electronic states in atoms,
molecules, and extended systems is a cornerstone of fun-
damental materials science [1] having profound technological
applications [2]. Time-dependent density functional theory
(TDDFT) [3–6] has been universally used for the computation
of neutral excited states demonstrating excellent compromise
between the numerical effort and the accuracy, which is even
comparable to the accuracy of dedicated but computationally
more demanding methods [7–10].

Despite this impressive progress, there are classes
of materials—remarkably light-harvesting complexes with
paramount importance in biochemistry and technology
[11,12]—that in principle cannot be described in the frame-
work of the commonly used adiabatic approximation of
TDDFT [13]. The difficulty is in the description of the doubly
excited states and states in the vicinity of conical intersec-
tions where corresponding many-body wave functions are
manifestly multideterminantal. Improvement of the Casida’s
linear response equations of TDDFT can be achieved by the
explicit inclusion of double [14,15] and particle-particle [16]
excitation channels, by working in the natural orbitals basis
[17], or by using the ensemble DFT [18]. The time-dependent
Sham-Schlüter equation allows us to construct the optimized
effective potential systematically in the exact-exchange case
[19] and for any given diagrammatic self-energy approxima-
tion [20]. Many-body perturbation theory and diagrammatic
approach leads to methods based on the solution of the Bethe-
Salpeter equation (BSE) [21–24]. However, all these methods
share substantially higher computational complexity, and are
often plagued with numerical instabilities [25–28]. In view of
these methodological difficulties, insight on the computation
of excited states from different theories is therefore called for.

In this work we take advantage of the density matrix for-
malism. This enables one to develop a systematic theoretical
approach to include correlation effects in excited-state calcu-
lations on the basis of the ground-state reduced density matri-
ces (RDMs). We bring together two approaches: the equation-
of-motion (EOM) formalism [29] and the extended Koop-
mans theorem (EKT) [30], which is closely connected to the
Hermitian operator method and its generalizations [31–33].
The first one states that excited states (with energy Eα and
wave function |�α〉 = Q̂α|�0〉) can be determined from the
eigenvalue equation

〈[[[Â, [Ĥ , Q̂α]]]]〉 = (Eα − E0)〈[Â, Q̂α]〉. (1)

Here, the average with respect to the ground-state wave func-
tion |�0〉 involves commutators of the excitation operator Q̂α ,
the Hamiltonian of the system Ĥ , and arbitrary deexcitation
operators Â. This equation is valid provided that the consis-
tency condition

Q̂†
α|�0〉 = 0 (2)

holds. This is not true if Q̂†
α changes the number of particles in

the system. However, for exact excitation operators |�α〉〈�0|
preserving the number of particles it is generally valid. Equa-
tion (2) is central for our discussion.

If in Eq. (1) we set Q̂†
α to be linear combinations of single

excitation operators Êσ
ij = ĉ

†
iσ ĉjσ , and assume that |�0〉 is

given by a single Slater determinant, the random phase ap-
proximation (RPA) follows. However, Eq. (1) can be extended
in several ways.

One possibility is to use the true correlated ground state.
This leads to the so-called extended random phase approxi-
mation (ERPA). Besides single-particle properties as in RPA,
the two-particle RDM (2-RDM) is now needed. It is a
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complicated quantity. Different approaches for its compu-
tation give rise to different implementations of ERPA: for
instance variational optimization by van Aggelen et al. [34]
or the N -representable 2-RDM from the geminal theory by
Chatterjee and Pernal [35].

The second possibility is to keep the ground state on a
weakly correlated level, but to include double excitations
in Q̂α . This idea has a very long history starting probably
from the work of Wambach [36], who presented a very nice
diagrammatic analysis of the involved physical processes:
additional scattering channels arise by down-folding the total
Hamiltonian onto the space of single excitations. The same
idea was used by Maitra et al. [37] to include double ex-
citations in the formalism of TDDFT. Subsequently Casida
presented a mathematical substantiation of this approach [38],
and Sangalli et al. [23] performed a diagrammatic analysis
connecting it to BSE. They found that while kernel diagrams
are included in ERPA, the self-energy diagrams are not. We
will show below that it is directly related to the violation of
the consistency condition (2). However, these two ways are
not completely disconnected because higher-order excitations
need to be added to ERPA in order to guarantee proper spin
symmetries of excited states [39].

The extended Koopmans theorem does not rely on the
assumption (2). The very first application goes back to Smith
and Day, and was initially devised as a tool to obtain ioniza-
tion potentials and electron affinities from the known ground
state [30]. The central equation is very similar to EOM (1):

〈Â [Ĥ , Q̂α]〉 = (Eα − E0)〈Â Q̂α〉. (3)

As can be seen, the outer commutator is absent, therefore
the consistency condition (2) is no longer required. In the
theory of Smith and Day, dropping this condition was nec-
essary for the description of processes changing number of
particles since 〈� (±)

α |�0〉 = 0 could not be guaranteed. The
method has been successfully used to determine spectroscopic
properties of molecular systems [40–42], in particular, in con-
junction with correlated Matsubara Green’s function approach
[43–46].

In the context of neutral excitations, Eq. (3) was used in
several works: Rosina [31], Mazziotti [32], Greenman and
Mazziotti [33]. They started from the Schrödinger equation
in the matrix form

〈Â Ĥ Q̂α〉 = Eα〈Â Q̂α〉. (4)

If m-particle excitations are included in Q̂α , the (2m + 2)-
RDMs are obviously needed, however, by using a commuta-
tor, one excitation operator can be eliminated. In the case of
single excitations, it leads to a theory that can be formulated
in terms of 3-RDMs. This is a big computational saving. Ad-
ditionally one can use the cumulant method to approximately
reconstruct 3-RDM from the 2-RDM, or take advantage of the
semidefinite programming for a more efficient construction of
the density matrices [33].

Thus, there are two classes of methods for the determi-
nation of excited states that make use of the 2-RDM, either
through Eq. (1) provided that the consistency condition holds,
or from Eq. (3) by neglecting the connected reduced density
matrix (cRDM) 3�. However, there is even a more direct

connection between the EOM and the EKT methods that will
be established here. It is based on the idea that every excitation
in many-body systems can be represented as a superposition
of simpler ones. For instance, neutral excitations can be
regarded as transitions between the quasiparticle states, which
include self-energy corrections, or doubly excited states can
be described in a basis of singly excited states. It is then shown
that the residual interactions between such configurations are
described by the effective EOM Hamiltonian involving two
commutators as in Eq. (1). Building upon this theoretical
insight, excited-state calculations can be performed without
relying upon the consistency condition or neglecting the
higher-order cRDMs.

Besides establishing this important finding in Sec. IV, a
number of supporting results are presented. In Sec. II A, we
specialize Eq. (3) for the cases of single and double excita-
tions. Very compact and transparent notations are proposed.
In Sec. II B, we specialize Eq. (1) for the case of single
excitations from a correlated ground state. This serves the
purpose of directly comparing the EOM (1) and the EKT (3)
approaches. As the underlying assumption, we consistently
neglect the connected density matrices 3� and 2�. It is shown
that resulting equations are not identical, but can be reduced to
the same form for the idempotent 1-RDM. From the numerical
perspective, Eqs. (1) and (3) are very similar: they represent
a generalized eigenvalue problem, which is also pertinent to
the Casida equation [47] (Meer et al. [48] compare the form
of this equation for different scenarios). For a completely
exact or a completely uncorrelated ground state the metric
(the matrix on the right-hand side) is symmetric and pos-
itive definite. For approximate states, these two conditions
may not be fulfilled. Thus, some dedicated methods need to
be developed. A stable and universal solution based on the
singular value decomposition (SVD) is proposed in Sec. II C.
In Sec. III we present numerical calculations (corresponding
data is tabulated in Appendix for the stretched water molecule,
which develops singlet-triplet instability far from the equi-
librium geometry. We demonstrate that Eq. (3) yields very
accurate energies by including only single excitations. This
is not possible to achieve with ERPA—double excitations are
needed. Another important message of this section is the ex-
cellent descriptions (even of quintet states) that were obtained
by including double excitations in Eq. (3). The calculations
are numerically very demanding because 5-RDMs are needed.

II. THEORY

A. Explicit forms of Eq. (3)

A general excitation operator Q̂(m,n)
α adds m electrons to

the system and consists of n fermionic creation ψ†(x) or
annihilation operators ψ (x):

Q̂(m,n)
α =

∫
d(x1 . . . xp )

∫
d(y1 . . . yq ) wα (x1 . . . xp; y1 . . . yq )

× ψ̂†(x1) · · · ψ̂†(xp )ψ̂ (y1) · · · ψ̂ (yq ), (5)

where p + q = n and p − q = m, and vector xi ≡ (ri , σi )
is a shorthand for composite position and spin variables. It
is sufficient to consider the normal operator order. In the
original EKT n = 1 and m = ±1. The generalized ansatz as in
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Eq. (5) was discussed by Ayers and Melin [49]. The n-particle
Dyson orbitals wα (x1 . . . xn) in the expansion of the excitation
operators are determined from the requirement that |� (m)

α 〉 are
the eigenstates of the full Hamiltonian:

Ĥ =
∫∫

d(xy)

[
ψ̂†(x)t (x, y)ψ̂ (y)

+ 1

2
ψ̂†(x)ψ̂†(y)v(x, y)ψ̂ (y)ψ̂ (x)

]
, (6)

where t (x, y) and v(x, y) are one- and two-body operators.
We denote corresponding energies as E(m)

α and notice that
the excitation energies ε (m)

α = E(m)
α − E0 can be expressed in

terms of the commutator of the excitation operator with the
Hamiltonian. 〈

Â
[
Ĥ , Q̂(m,n)

α

]〉 = ε (m)
α

〈
Â Q̂(m,n)

α

〉
. (7)

Notice that no approximations are involved in the derivation
of Eq. (7). However, it is important that a set of auxiliary
operators Â is big enough so that wα can be determined. Equa-
tion (7) has a structure of the extended Koopmans theorem,
which will be referred to as EKT-n, where n stands for the
total number of creation and annihilation operators as defined
by Eq. (5).

We will work now in a finite basis of real functions
({φi (r)}, i = 1, . . . , Nb), and introduce the associated cre-
ation and annihilation operators:

ψ̂ (x) =
∑

i

φi (r)ĉjσ , ψ̂†(x) =
∑

i

φi (r)ĉ†jσ . (8)

The many-body Hamiltonian can be expressed in terms of the
excitation operators Êσ

ij = ĉ
†
iσ ĉjσ and Êij = Êα

ij + Ê
β

ij , where
α, β stand for spin-up, -down contributions, respectively:

Ĥ =
∑
ab

tabÊab + 1

2

∑
ab,cd

(ab|cd )(ÊabÊcd − δbcÊad ).

Here, the one-body matrix elements are defined as tab =∫
drφ∗

a (r)t̂ (r)φb(r), and for the Coulomb integrals we use
the chemistry notation to emphasize the eightfold per-
mutation symmetry (ab|cd ) = ∫∫

d(r, r′)φ∗
a (r)φb(r)v(r −

r′)φ∗
c (r′)φd (r′). We introduce now a set of effective Fock

operators F̂ij and express the commutators of Ĥ with the
excitation operators Êσ

ij in their terms:

F̂ij = tij +
∑
cd

Êcd (cd|ij ), (9)

∂Êσ
ij = [

Ĥ , Êσ
ij

] =
∑

a

Êσ
aj F̂ai −

∑
b

F̂jbÊ
σ
ib, (10)

Notice that indices a, b and i, j do not have a special meaning
of occupied or virtual states, as is sometimes adopted in
quantum chemistry [50]. The differential operator ∂ fulfills
the standard product rule ∂ (X̂Ŷ ) = X̂(∂Ŷ ) + (∂X̂)Ŷ .

Neutral excited states can be computed by specializing
Eq. (7) for n = 2, 4. They can be written in a very transparent
form if the collection of the orbital and spin indices is denoted
by one vector index X̂σ

ij ≡ X̂ξ and the Einstein summation
over the repeated ones is assumed. In these notations the

considered excitation operators are

Q̂(0,2)
α = Êμwμ,α, Q̂(0,4)

α = ÊμÊνwμν,α. (11)

By selecting Â to comprise single, double excitations, re-
spectively, we arrive at the eigenvalue equations determining
excited states:

〈Êζ ∂Êμ〉wμ,α = ε (0)
α 〈Êζ Êμ〉wμ,α, (12a)

〈Êζ Êη ∂ (ÊμÊν )〉wμν,α = ε (0)
α 〈Êζ Êη ÊμÊν〉wμν,α. (12b)

The ground-state correlators 〈Êζ . . . Êν〉 can be expressed
in terms of the reduced density matrices [51]:

p
D

i1i2...ip
j1j2...jp

= 1

p!

〈
c
†
i1
c
†
i2

· · · c†ip cjp
cip−1 · · · cj1

〉
. (13)

Therefore, we have

〈
Êα

ax

〉 = 1Da
x , (14a)〈

Êα
axÊ

α
by

〉 = 2! 2Dab
xy + δbx

1Da
y . (14b)〈

Êα
axÊ

α
byÊ

α
cz

〉 = 3! 3Dabc
xyz − 2! δcy

2Dab
zx + 2! δcx

2Dab
zy

− 2! δbx
2Dac

zy + δbxδc,y
1Da

z . (14c)

Only spin-up (α) components are shown. Other spin compo-
nents and higher correlators can be expressed similarly using
the anticommutation relations for creation and annihilation
operators.

The computational complexity of equations (12) is set by
the dimension of the variational space Nv = O(Nn

b ): we find
that the brute-force solution of the EKT-4 equation is only
feasible for a maximum of Nb = 10 basis functions.1

The generalization of Eqs. (12) to higher-order excitations
is obvious. However, let us return to the original extended
Koopmans theorem for ionization potentials (IPs) and electron
affinities (EAs):

〈ĉ†iσ ′ [Ĥ , ĉjσ ]〉xjσ,α = ε (−)
α 〈ĉ†iσ ′ ĉjσ 〉xjσ,α, (15a)

〈ĉjσ ′ [Ĥ , ĉ
†
iσ ]〉yiσ,α = ε (+)

α 〈ĉjσ ′ ĉ
†
iσ 〉yiσ,α, (15b)

and present a useful generalization, which differs by the
choice of the operators Â:

〈Êζ ĉ
†
iσ ′ [Ĥ , ĉjσ ]〉xjσ,α = ε (−)

α 〈Êζ ĉ
†
iσ ′ ĉjσ 〉xjσ,α, (16a)

〈Êζ ĉjσ ′[Ĥ , ĉ
†
iσ ]〉yiσ,α = ε (+)

α 〈Êζ ĉjσ ′ ĉ
†
iσ 〉yiσ,α. (16b)

Notice that these equations are intermediate between the
simplest EKT-1 (15) and the EKT-3 equations, which were
studied by Farnum et al. [52].

Terminology. Equations (12), (15), (16) are analyzed in
detail below. The variational space of the first group of equa-
tions, i.e., EKT-2 (n = 2) and EKT-4 (n = 4) is comparable

1The brute-force approach can be made more efficient by the
elimination of the linear dependence in excitation operators and
the spin adaptation. The bottleneck is not as much the solution of
these equations, but rather the construction and the storage of the
correlators.
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to that of the configuration interaction methods with single
and double excitations, CIS and CISD, respectively. Equations
from the second group (n = 1) represent the extended Koop-
mans theorem in the original formulation [30].

B. EKT vs EOM

The two theories can be directly compared in some limiting
cases. Following Mazziotti [53], the connected p-reduced
density matrices (p-cRDMs) are introduced. The lowest-order
RDMs can be expressed as follows:

1D = 1�, (17a)
2D = 2� + 1� ∧ 1�, (17b)
3D = 3� + 1� ∧ 1� ∧ 1� + 3 2� ∧ 1�, (17c)

where ∧ is the wedge product of two tensors. Let us now
explicitly evaluate Eq. (12a) assuming

3� = 2� = 0, 1�ij = 1Dij = niδij . (18)

The natural orbital basis is adopted here. In this basis the
1-RDM is diagonal. We introduce for brevity the hole pop-
ulation hi = 1 − ni , which is complementary to the particle
population, and denote σ̄ the spin projection opposite to σ .
Calculations are performed analytically using Mathematica
computer algebra system. They yield:〈

Êσ
kl ∂Êσ

ij

〉
0 = nkδkl (nj − ni )εji + nkhl (δjkεli − δliεjk )

+ nkhl (nj − ni )(lk||ji), (19a)〈
Êσ̄

kl ∂Êσ
ij

〉
0 = nkδkl (nj − ni )εij

+ nkhl (nj − ni )(lk|ji), (19b)〈
Êσ

klÊ
σ
ij

〉
0 = nkniδklδij + nkhlδjkδli , (19c)〈

Êσ̄
klÊ

σ
ij

〉
0 = nkniδklδij . (19d)

Similar calculations for the EOM approach can be found in,
e. g., Chatterjee and Pernal [35]. They read:〈[

Êσ
kl, ∂Êσ

ij

]〉
0 = (nk − nl )(δjkεli − δliεjk )

+ (nk − nl )(nj − ni )(lk||ji), (20a)〈[
Êσ̄

kl, ∂Êσ
ij

]〉
0 = (nk − nl )(nj − ni )(lk|ji), (20b)〈[

Êσ
kl, Êσ

ij

]〉
0 = (nk − nl )δliδjk, (20c)〈[

Êσ̄
kl, Êσ

ij

]〉
0 = 0. (20d)

Here, we additionally introduced the effective Hartree-Fock
Hamiltonian

εjk = hjk +
∑

c

2nc(cc|jk) −
∑

c

nc(ck|jc), (21)

and the antisymmetrized Coulomb matrix elements:

(lk||ji) = (lk|ji) − (li|jk). (22)

Equations (19) and (20) are in general not equivalent. Pro-
vided the ground-state occupation numbers ni are known from
some correlated calculations, it is tempting to use them as
a refinement for the ordinary RPA. According to Chatterjee
and Pernal [35] “using correlated 1-RDM’s in the linearized

ERPA equations does not bring improvement over RPA.”
We arrived at the same conclusion starting from Eq. (19).
The reason is that the connected RDMs are expected to be
lower in magnitude than the disconnected components only
for separable noninteracting subsystems (Ref. [51], chap. 10).
For systems where all pairwise interactions are present, they
need not be small.

For a single-determinant ground state, the 1-RDM is idem-
potent and the effective Hamiltonian (21) is diagonal, εjk =
εj δjk . Therefore, the first terms of Eqs. (19a), (19b) vanish due
to (nj − ni )εij = 0. Adopting a standard enumeration of rows
[composite (ij ) index] and columns (lk), the metric takes a
symmetric matrix form because (i) δjkδli is a diagonal matrix;
and (ii) njnlδklδij = ninkδklδij . The Hamiltonian matrix is not
symmetric due to the terms containing Coulomb interaction.
However, the EKT-2 equation reduces to the RPA equation
by subtracting the two equations with interchanged k and l

indices and considering that nkhl − nlhk = nk − nl .
From Eqs. (20) and (19), it is evident that the overlap

matrix is rank deficient for uncorrelated reference states. For
weakly correlated states, there are many small eigenvalues.
They need to be eliminated as discussed below.

C. Numerical approach

Equations (12) belong to the class of generalized eigen-
value problems Fwα = εαSwα . In analogy with electronic
structure methods, we designate F as the generalized Fock
and S as the overlap matrices. They can be indexed in such
a way that for the exact RDMs the matrix F is symmetric,
whereas S is symmetric and positive definite. For approximate
densities these properties cannot be warranted (as was also
observed for EKT [41]). In the eigenvalue problem (16), the
matrices are not even square. Thus, specialized methods are
required. We found the following stable procedure that works
for nonexact densities. On the first and computationally most
demanding step a singular value decomposition of the over-
lap is performed S = U�VT , where UT U = VT V = I are
orthogonal matrices, and � = diag(σ1 � σ2 � . . . � σNv

) is
real and diagonal. Dominant eigenvalues of the overlap (above
a certain threshold, {σi > TSVD}, 1 � i � Nt < Nv) are se-
lected and the effective Fock matrix is built and diagonalized;
subsequently, the found eigenvectors are back-transformed:

F̃ij = uT
i√
σi

F
vj√
σj

, F̃w̃α = εαw̃α, wα =
k∑

i=1

w̃iα√
σi

vi .

Typically the number of eigenvalues of the overlap above
the threshold Nt 	 Nv because the full set of excitation
operators (11) is not linearly independent.

Besides energies, the spectral strength is an important
characteristic of excited states. Assuming that vectors wα are
normalized according to

wT
α Swα = I, (23)

it can be computed as follows:

zα =
∑

κ

|〈Êκ Êμ〉wμ,α|2, zα =
∑

κ

|〈Êκ ÊμÊν〉wμν,α|2.

052508-4



EXCITED ELECTRONIC STATES FROM A … PHYSICAL REVIEW A 98, 052508 (2018)

FIG. 1. (a) Potential energy surfaces of H2O at the experimental values of the H(1)-O-H(2) angle (104.45◦) and the O-H(1) distance
(0.9484 Å) as functions of the O-H(2) bond length. Results of the calculation on the (6,6) subspace by exact diagonalization (full lines) and
EKT-2 with TSVD = 10−3 (dots) are compared with CIS (dashed lines) using a consistent color coding. The ground reference state is shown in
black, singlet excitations—in red and orange, triplet excitations—in blue and cyan. (b) Natural molecular orbitals of the ground state for two
O-H(2) bond lengths. (c) Summary of the EOM-CCSD calculations: energies in eV (with respect to RHF value for the ground state, and with
respect to CCSD value for excited states, first line) and weight of dominant electron configurations (second and third line) are shown for each
state for RO-H(2) = 0.7 Å (top) and RO-H(2) = 2.5 Å (bottom).

III. NUMERICAL VALIDATION

In this section we study the performance of EKT-2 and
EKT-4 methods using correlated ground-state RDMs. As is
evident from Eqs. (12), 2- and 3-RDMs are required for
the EKT-2 approach and 4- and 5-RDMs are needed for the
EKT-4 approach. Unless explicitly indicated, these RDMs
are evaluated from the ground-state wave function obtained
from the exact diagonalization of the many-body Hamiltonian
without using any further approximations.

To illustrate the procedure, we study the single-bond break-
ing in a water molecule. This is a commonly used benchmark-
ing scenario because electronic correlations can be tuned by
stretching the bond from the equilibrium distance (where the
wave function is dominated by a single Slater determinant)
to a more correlated multideterminant case [54–56]. Such
electronic states cannot be treated on the basis of adiabatic
TDDFT [37,57,58] or configuration interaction singles (CIS).
In Fig. 1(a) the energies of two lowest singlet and triplet ex-
citations are plotted as a function of the RO-H(2) bond distance
for a fixed angle (the experimental value of 104.45◦).2 We
use the cc-pVTZ basis set and perform calculations on the
active space comprising six electrons in six orbitals using our

2We further notice that there is a conical intersection of two
lowest singlet states at almost linear geometry: exact calculations
predict a crossing of the two energy surfaces for a specific bond
length in the linear geometry, whereas in CIS or adiabatic TDDFT
a one-dimensional seam is formed for a range of the H(1)-O-H(2)
angles [57].

own implementation for integrals [59] and the graphical uni-
tary group approach [60,61] for the configuration interaction
[54]. Supporting calculations within the equation of motion
coupled cluster approach (EOM-CCSD) and the restricted
Hartree-Fock (RHF) reference, provide insight on the nature
of the electronic states. At short distances the ground elec-
tronic state is weakly correlated, the singlet and triplet excited
states are of single excitation character. Stretching one of the
bonds, the closed-shell solution becomes unstable at 1.7 Å,
which is manifested as negative singlet-triplet CIS excitation
energy. For larger distances, an open-shell singlet ground state
is favored with approximate electronic configuration depicted
on Fig. 1(b). In order to describe such a state on the basis of
RHF, simultaneous promotion of the spin-up and spin-down
electrons from HOMO to LUMO is needed. This is a double
excitation with a weight 0.72 as shown in Fig. 1(c). The
lowest triplet excitation is of very similar nature, therefore
it can be regarded as single excitation. In contrast, other
excited states are correlated: in order to restore a physically
correct picture in the dissociative limit, very large corrections
of the CIS values are needed, which is accomplished by our
EKT-2 approach by including interactions between the virtual
orbitals. They are absent in the EOM approach.

The EKT-2 approach is also very economical in terms of
the size of variational space.3 In our next calculation, we

3For the considered system in (6,6) active space and TSVD = 10−2

cutoff, at most 28 amplitudes must be optimized, in contrast to 153
amplitudes in the unrestricted EOM-CCSD approach.
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FIG. 2. Potential energy surfaces of the H2O molecule as a
function of RO-H(1) at EKT-2 (left) and EKT-4 (right) levels of theory
using TSVD = 10−2 cutoff are compared with the full CI calculations.
Notice that correct spin symmetry is obtained even without the spin
adaptation prior to the diagonalization. Rather large cutoff was used
to demonstrate that EKT is a very economical theory in terms of the
size of variational space.

deliberately use a rather high TSVD = 10−2 cutoff, which adds
just a few virtual-virtual transitions. Nonetheless, energies
of other excited singlets (Fig. 2, left) and triplets are well
reproduced. As expected, for a weakly correlated ground state
(close to the equilibrium geometry) the EKT-2 solution is
less accurate collapsing onto the CIS energies (visible as a
discontinuity in EKT-2 results at RO-H(2) = 1.1 Å in Fig. 2,
left). This can be cured by either reducing the cutoff or
by going to the next level of theory (EKT-4, Fig. 2, right),
which also gives access to quintet states. In fact, EKT-2 and
EKT-4 are almost one order of magnitude more accurate than
corresponding CIS and CISD methods. This conclusion holds
for the mean absolute error (MAE) of the energy as well as of
the oscillator strength (Fig. 3). Here, we define the MAE of a
quantity f as a sum over N geometrical configurations

MAE = 1

N

N∑
i=1

∣∣f c
i − f r

i

∣∣, (24)

where f c
i and f r

i refer to the computed and the reference
values, respectively.

In Fig. 4 we compare the performance of the EKT-2 vs.
EOM. Exact RDMs is used for EKT-2, whereas exact and
noninteracting RDMs are used for the equation of motion. The
EOM approach is significantly less accurate, this is manifest
most of all in the oscillator strength, which reaches unphysical
values above 1. However, it is known that the Thomas-Reiche-
Kuhn sum rule is satisfied [62]. We also observe that some
triplet states cannot be found (i.e., EOM approach yields
solutions that are significantly different from the exact ones,
so that a correspondence between both methods cannot be
established) for stretched geometries (RO-H above 1.4 Å for
uncorrelated reference state and above 1.8 Å for fully cor-
related reference). In approaching the point of single-triplet
instability, the spectral strength becomes very large. It has

FIG. 3. Mean absolute errors of the excitation energy (left) and
spin resolved spectral weight (right) of the first singlet excited state
for a number of methods. TSVD = 10−3 cutoff is used for all EKT
calculations. The accuracy of CIS is reduced due to the presence of
the singlet-triplet instability. Providing correct ordering of excited
states, the generalized Koopmans theorem yields almost an order of
magnitude improvement over its CI counterparts. However, the errors
crucially depend on the reference state: using CISD density reduces
the accuracy of the EKT-4, whereas CISDTQ does not.

been suggested that some of the deficiencies of the EOM
approach can be cured by explicitly adding double excitations
[35,37]. We do not add these excitations here for a fair
comparison with the EKT-2 method. A clear conclusion at
this point is that EKT-2 can accurately predict the single-
triplet instability, whereas EOM not. Since the only difference
between the methods is that the consistency relation (2) is not
needed in the EKT approach, we will explore this point in
detail now.
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FIG. 4. Spectral strength and energies of the lowest singlet (left)
and two triplets states (right) of the H2O molecule as a function of
RO-H(1) at the full CI, EKT-2, and EOM levels of theory (EOM-0 refer
to uncorrelated reference states).
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IV. EKT FOR COMPOSITE EXCITATIONS

Despite the deficiencies mentioned above, the equation of
motion approach is a very convenient starting point for the
treatment of correlated excited states. It is well known that
for single-determinant states (Hartree-Fock or Kohn-Sham)
and for single excitations it reduces to the random phase
approximation or adiabatic TDDFT, respectively [62]. Higher
excitations can readily be incorporated into the effective
Hamiltonian. However, they are typically treated perturba-
tively by down-folding the Hamiltonian onto the space of
single excitations [36–38]. Such effective Hamiltonian can
be analyzed diagrammatically by building parallels with the
Bethe-Salpeter equation. According to Sangalli et al. [23],
the diagrams do not include the self-energy corrections. This
is clearly related to the violation of the consistency con-
dition (2). Numerical calculations above (Fig. 4) demon-
strate that self-energy corrections are essential and are indeed
present in the EKT approach, which does not rely on the
consistency condition. In fact, one can demonstrate explicitly
that EKT equations for neutral excitations contain self-energy
corrections.

It is often instructive to think about complex excitations
in many-body systems as being composed of simpler ones.
Many-body perturbation theory gives, for instance, a pre-
scription how the propagator describing a particle-hole pair
can be represented in terms of the diagrams with single-
particle propagators as building blocks. Something similar can
be achieved starting from the basic EKT equation (3). Let
us expand the excitation operator Q̂γ in direct products of
simpler excitations:

Q̂(C)
γ =

∑
αβ

Cαβ,γ Q̂(A)
α Q̂

(B )
β , (25)

where we demand that the total number of electrons added
to the system is mC = mA + mB , and that Q̂(C)

γ consists of
nC = nA + nB fermionic creation or annihilation operators,
viz., definition (5). The EKT equation can be reformulated by
using these two commutator identities:[

Ĥ , Q̂(A)
α Q̂

(B )
β

] = Q̂(A)
α

[
Ĥ , Q̂

(B )
β

] + Q̂
(B )
β

[
Ĥ , Q̂(A)

α

]
− [[[

Q̂
(B )
β ,

[
Ĥ , Q̂(A)

α

]]]]
(26a)

= Q̂(A)
α

[
Ĥ , Q̂

(B )
β

] − Q̂
(B )
β

[
Ĥ , Q̂(A)

α

]
+ {

Q̂
(B )
β ,

[
Ĥ , Q̂(A)

α

]}
, (26b)

where {Â, B̂} ≡ ÂB̂ + B̂Â denotes an anticommutator. In
the former, latter identities should be used for bosoniclike,
fermioniclike excitations, respectively. Now the crucial obser-
vation allowing to simplify the resulting EKT equations is that〈

Â
[
Ĥ , Q̂

(A/B )
α/β

]〉 = (Eα/β − E0)
〈
ÂQ̂

(A/B )
α/β

〉
(27)

holds for any choice of auxiliary operators Â provided that
Q̂

(A/B )
α/β |�0〉 are exact eigenstates. Equations (15), (16) il-

lustrate, for instance, how quasiparticle (-hole) excitations
can be obtained either from the equations involving either
2-RDMs or 3-RDMS, respectively. When Q̂(A)

α , Q̂
(B )
β are only

approximations for the true excitation operators, Eq. (27) may
not hold for an arbitrary Â. Nonetheless, this assumption is

a reasonable starting point for the derivation of simplified
theories bases on EKT. In combination with the fact that an
additional (anti)commutator reduces the number of excitation
operators by one, the correlators arising from the right-hand
side of Eqs. (26) are simpler than the correlator arising from
the respective left-hand side. The physical content of this
approximation is that by neglecting interactions between the
A and B excitations, the excitation energies are approximately
given by

ε (mC )
γ ≈ ε (mA )

α + ε
(mB )
β , (28)

and

Ĥ±
αβ = ±[[[

Q̂
(B )
β ,

[
Ĥ , Q̂(A)

α

]]]]
± ∓ εα

[
Q̂

(B )
β , Q̂(A)

α

]
± (29)

are effective Hamiltonians describing interactions between
these excitations. Here, we denote for brevity commutators
as [. . .]−, and anticommutators as [. . .]+. Equation (29) has
obviously the form of the EOM effective Hamiltonian (1).

In summary, the EKT for the Q̂(C)
γ excitations can be writ-

ten by virtue of the identities (26) as a generalized eigenvalue
problem:∑

αβ

〈ÂĤ±
αβ〉Cαβ,γ = (

ε (mC )
γ − ε (mA )

α − ε
(mB )
β

)

×
∑
αβ

〈
ÂQ̂(A)

α Q̂
(B )
β

〉
Cαβ,γ , (30)

with the equation-of-motion Hamiltonian (29) in the basis of
excitations Q̂(A)

α and Q̂
(B )
β that are given as the solutions of

simpler EKT eigenproblems (27).
We will now consider two examples for the neutral excita-

tions given by Eqs. (11):
(a) Q̂(A)

α ≡ Q̂(1,1)
α , Q̂

(B )
β ≡ Q̂

(−1,1)
β forming Q̂(C)

γ ≡ Q̂(0,2);

(b) Q̂(A)
α ≡ Q̂(0,2)

α , Q̂
(B )
β ≡ Q̂

(0,2)
β forming Q̂(C)

γ ≡ Q̂(0,4).
The method is, however, not limited to neutral excitations,

but can be used to derive effective Hamiltonians for charged
excitations such as trions [63], albeit without screening, or for
photoemitted electrons in continuum [64], and is similar in
spirit to recent results of Yang et al. [18].

a. Neutral excitations as 1p-1h transitions. In this scenario
we expand the eigenvectors wμ,γ of Eq. (12a) in the direct
products of the EKT-1 [Eq. (16)] eigenvectors yiσ,α and xjσ,β :

wμ,γ ≡ wijσ,γ =
∑
αβ

Cσ
αβ,γ yiσ,αxjσ,β . (31)

We now exploit the fact that yiσ,α and xjσ,β are also ap-
proximate eigenvectors of Eqs. (16). This allows us to recast
Eq. (12a) in the form involving maximum the 2-RDMs:

∑
αβ

⎧⎨
⎩[ε (−)

β +ε (+)
α ]

∑
ij,σ

〈
Êσ ′

kl Êσ
ij

〉
yiσ,αxjσ,β + Hσ ′σ

kl,αβ

⎫⎬
⎭Cσ

αβ,γ

= ε (0)
γ

∑
αβ

⎧⎨
⎩

∑
ijσ

〈
Êσ ′

kl Êσ
ij

〉
yiσ,αxjσ,β

⎫⎬
⎭Cσ

αβ,γ , (32)
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where the matrix elements of the effective Hamiltonian are
given in accordance with Eq. (29) by

Hσ ′σ
kl,αβ = 〈

Êσ ′
kl H+

αβ

〉 = (
tσβα − ε−

α δσ
βα

)〈
Êσ ′

kl

〉
+

∑
cd

(βα|cd )
〈
Êσ ′

kl Êcd

〉 − ∑
cd

(cα|βd )
〈
Êσ ′

kl Ê
σ
cd

〉
.

(33)

Here tσβα = ∑
ij tj iyiσ,αxjσ,β , and δσ

βα = ∑
ij δjiyiσ,αxjσ,β . If

H is neglected, the excited-state energy is approximately
equal to the quasiparticle energy difference between the vir-
tual and the occupied states:

ε (0)
γ ≈ ε

(−)
β + ε (+)

α ≡ E
(N−1)
β + E(N+1)

α − 2E0. (34)

Notice that ε (±) are the correlated energies that include the
self-energy corrections, which are missing in the EOM ap-
proach [23]. While it is an important finding, one may argue
that the approximation (34) trivially follows from the Bethe-
Salpeter in which the ingredient single-particle Green’s func-
tions are fully renormalized, but the kernel is missing. The
main achievement of Eq. (32) is, however, that the correction
can be written in extremely simple form of a Hartree-Fock
Hamiltonian averaged over the correlated density matrix;
maximally the 2-RDM is required. For a single-determinant
reference state, Eq. (32) reduces to the random phase approx-
imation.

b. Neutral excitations as a sum of two singly excited
states. Since the procedure has already been explained in
details above, it is sufficient to present results for the effective
Hamiltonian. In fact, its structure is well known from the
EOM method:

H−
αβ = ∑

μν

{
[[[Êν, [Ĥ , Êμ]]]] − ε (0)

α [Êν, Êμ]
}
wμ,αwν,β . (35)

With this ingredient, the final eigenvalue equation reads∑
αβ

{[
ε

(0)
β + ε (0)

α

]
Sηζ ,αβ + Hζη,αβ

}
Cαβ,γ

= ε (0)
γ

∑
αβ

Sηζ ,αβCαβ,γ , (36)

with

Sηζ ,αβ =
∑
μν

〈Êζ Êη ÊμÊν〉wμ,αwν,β , (37)

Hηζ ,αβ = 〈Êζ Êη H−
αβ〉. (38)

Equation (36) has the same complexity as the equation of
motion

〈[Êζ Êη, ∂ (ÊμÊν )]〉wμν,α = ε (0)
α 〈[Êζ Êη, ÊμÊν]〉wμν,α.

(39)

Although they both depend on the 4-RDM, it is expected that
their accuracy will be different depending on the nature of
the reference ground state. Detailed comparison of these two
approaches will be a topic of further investigations.

V. CONCLUSIONS

The extended Koopmans theorem [30] and the equation
of motion approach [29] are well-known tools to compute
excited electronic states of many-body systems in terms of
the ground-state reduced density matrices. Traditionally, EKT
has been used to describe the quasiparticle states, whereas
EOM is typically reduced to the random phase approxi-
mation and used in the Casida equation form for neutral
excitations. Recently, the EOM approach has been used to
perturbatively include double excitations in the TDDFT ex-
cited states calculations [37,38]. It is known, however, that
EOM additionally relies on the consistency condition (2) and,
therefore, lacks important self-energy corrections [23]. It is
explicitly demonstrated here that EKT includes these terms,
which makes EKT an attractive tool to describe doubly excited
configurations.

Motivated by these developments, we performed numerical
simulations and demonstrated that the EKT theory is sig-
nificantly more accurate than EOM or related configuration
interaction methods of equivalent complexity, and even at
the lowest level is capable of treating double electron ex-
citations. Furthermore, connections between EKT and EOM
have been analytically established on various levels: for a
single-determinant ground state (Sec. II B) and for composite
excitations (Sec. IV). This latter result leads to a method for
the determination of excited states distinct from EOM, but of
comparable complexity.

Since our theory requires only the ground-state quantities,
it is especially relevant for extended systems where excited-
state calculations using wave-function formalism are hard
[65], but RDMs may be available from the Green’s function
methods [27,66]. Applications to systems involved in fast
photophysical processes, such as polyenes where conical in-
tersections are prevalent, are envisioned [67].
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APPENDIX: TABULATED DATA

In Table I a compilation of numerical data for the lowest
singlet state is shown.
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TABLE I. Energies (in atomic units) and spectral strengths (dimensionless) of the first singlet excited state from the full CI, EKT-4, EKT-2,
and CISD methods. TSVD = 10−3 cutoff is used for all EKT calculations. Mean absolute errors of the excitation energy and spectral weight
computed according to Eq. (24) are shown in the last row. These values can be directly compared with Fig. 3.

Full CI EKT-4 EKT-2 CISD

RO-H E Z E Z E Z E Z

0.55 0.361579 0.973287 0.361627 0.973385 0.378146 0.990086 0.362804 0.970925
0.60 0.359150 0.974111 0.359192 0.974215 0.375409 0.990651 0.360443 0.971678
0.65 0.356718 0.974780 0.356769 0.974916 0.372834 0.991224 0.358069 0.972314
0.70 0.354188 0.975260 0.354257 0.975448 0.370347 0.991801 0.355595 0.972784
0.75 0.351483 0.975505 0.351580 0.975770 0.367916 0.992393 0.352955 0.973031
0.80 0.348530 0.975457 0.348662 0.975820 0.365556 0.993043 0.350086 0.972983
0.85 0.345228 0.975012 0.345320 0.975251 0.363366 0.993865 0.346908 0.972520
0.90 0.341261 0.973913 0.341327 0.974084 0.357394 0.991758 0.343135 0.971340
0.95 0.334962 0.971198 0.335005 0.971302 0.351588 0.990170 0.337088 0.968311
1.00 0.322777 0.964905 0.322840 0.965074 0.339534 0.984871 0.324940 0.961315
1.05 0.306016 0.955391 0.306095 0.955616 0.322284 0.975619 0.308001 0.951210
1.10 0.287490 0.943909 0.287578 0.944164 0.302794 0.963683 0.289277 0.939429
1.15 0.268013 0.930665 0.268097 0.930911 0.281912 0.949419 0.269617 0.926089
1.20 0.248050 0.915649 0.248123 0.915868 0.260306 0.933102 0.249490 0.911102
1.25 0.228063 0.898909 0.228124 0.899095 0.238647 0.915016 0.229362 0.894466
1.30 0.208468 0.880573 0.208518 0.880725 0.217482 0.895418 0.209646 0.876275
1.35 0.189591 0.860840 0.189630 0.860963 0.197200 0.874555 0.190669 0.856710
1.40 0.171665 0.839966 0.171696 0.840064 0.178055 0.852681 0.172660 0.836013
1.45 0.154841 0.818245 0.154862 0.818320 0.160191 0.830069 0.155770 0.814470
1.50 0.139207 0.795995 0.139223 0.796055 0.143680 0.807009 0.140084 0.792396
1.55 0.124798 0.773541 0.124810 0.773589 0.128536 0.783801 0.125637 0.770114
1.60 0.111614 0.751203 0.111623 0.751241 0.114740 0.760744 0.112426 0.747943
1.65 0.099626 0.729278 0.099633 0.729308 0.102244 0.738124 0.100423 0.726180
1.70 0.088787 0.708033 0.088792 0.708056 0.090983 0.716202 0.089580 0.705093
1.75 0.079036 0.687694 0.079041 0.687710 0.080882 0.695203 0.079834 0.684909
1.80 0.070303 0.668442 0.070307 0.668455 0.071860 0.675309 0.071115 0.665809
1.85 0.062515 0.650410 0.062519 0.650420 0.063832 0.656657 0.063348 0.647927
1.90 0.055595 0.633685 0.055600 0.633692 0.056714 0.639339 0.056458 0.631351
1.95 0.049467 0.618311 0.049471 0.618315 0.050422 0.623404 0.050366 0.616123
2.00 0.044057 0.604296 0.044061 0.604296 0.044877 0.608862 0.045000 0.602251
2.05 0.039294 0.591613 0.039299 0.591611 0.040002 0.595691 0.040288 0.589710
2.10 0.035112 0.580212 0.035117 0.580216 0.035728 0.583841 0.036163 0.578446
2.15 0.031448 0.570025 0.031453 0.570025 0.031987 0.573243 0.032562 0.568392
2.20 0.028244 0.560968 0.028250 0.560972 0.028720 0.563815 0.029428 0.559464
2.25 0.025448 0.552953 0.025453 0.552954 0.025872 0.555476 0.026709 0.551573
2.30 0.023009 0.545886 0.023016 0.545888 0.023390 0.548108 0.024357 0.544625
2.35 0.020886 0.539676 0.020892 0.539677 0.021230 0.541631 0.022327 0.538528
2.40 0.019038 0.534235 0.019044 0.534232 0.019352 0.535953 0.020581 0.533194
2.45 0.017428 0.529478 0.017435 0.529472 0.017718 0.530988 0.019083 0.528539
2.50 0.016026 0.525328 0.016032 0.525320 0.016296 0.526655 0.017803 0.524487

MAE 0.000000 0.000000 0.000034 0.000092 0.007275 0.010766 0.001277 0.002721
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