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Nonadiabatic relativistic correction in H2, D2, and HD
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We calculate the nonadiabatic relativistic correction to rovibrational energy levels of H2, D2, and HD
molecules using the nonadiabatic perturbation theory. This approach allows one to obtain nonadiabatic cor-
rections to all the molecular levels with the help of a single effective potential. The obtained results are in very
good agreement with the previous direct calculation of nonadiabatic relativistic effects for dissociation energies
and resolve the reported discrepancies of theoretical predictions with recent experimental results.
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I. INTRODUCTION

The hydrogen molecule has not yet been used for deter-
mination of fundamental physical constants, unlike atomic
hydrogen. This is due to difficulties in accurate solution
of the molecular Schrödinger equation and an inherence of
an electron correlation, combined with relativistic, quantum
electrodynamic, and nonadiabatic effects. At the precision
level of 10−7 cm−1, vibrational excitations are sensitive to
uncertainties in the electron-proton mass ratio, in the nuclear
charge radii, and in the Rydberg constant. Therefore, from
sufficiently accurate theoretical predictions and corresponding
measurements, one can obtain those fundamental physical
constants.

To deal with the problem of accurate calculation of molec-
ular levels in a systematic manner, one employs the non-
relativistic quantum electrodynamic (NRQED) approach [1],
which is a perturbation theory that can be made to agree with
the full quantum electrodynamics (QED) up to an arbitrary
order in the fine structure constant α. It assumes an expansion
of the binding energy in α

E(α) = α2E(2) + α4E(4) + α5E(5) + α6E(6)

+α7E(7) + O(α8), (1)

where E(n) is a contribution of order αn m and may include
powers of ln α. Each E(n) can be expressed as an expectation
value of some effective Hamiltonian with the nonrelativistic
wave function. These expansion terms can, in turn, be ex-
panded further—in another series of the electron-nuclear mass
ratio—to obtain the contributions of the Born-Oppenheimer,
adiabatic, and nonadiabatic effects. These contributions can
be calculated within the so-called nonadiabatic perturbation
theory (NAPT) [2].

Significant progress has been achieved in recent years by
the accurate (∼10−7 cm−1) direct solution of the four-body
Schrödinger equation [3], while the calculations of relativistic
(α4m), quantum electrodynamic (α5m), and higher order
quantum electrodynamic (α6m) corrections were performed
within the Born-Oppenheimer (BO) approximation. The re-
sulting theoretical predictions happened to be in about 3 σ dis-
agreement with recent experimental results. It was suggested,

for the resolution of these discrepancies, that an estimate
of relativistic nonadiabatic corrections by the factor of the
electron-nucleus mass ratio might not be correct. Indeed, very
recent fully nonadiabatic calculations for the ground molec-
ular state [4–6] have demonstrated that these corrections are
about 10 times larger than expected and explain the apparent
discrepancy with measured dissociation energies for H2 and
D2. For HD, however, a 2 σ discrepancy remains and this
requires further investigations.

In this paper, we provide the results for the relativistic
nonadiabatic correction obtained with a perturbative approach
based on NAPT. More important, this method retains the key
benefit of the adiabatic approximation—the existence of the
potential energy curve, which, calculated once for a given
electronic state, can be utilized to easily obtain all rovibra-
tional energies. The obtained results are in a very good agree-
ment with the direct calculation of nonadiabatic relativistic
correction for the ground molecular state and explain almost
all previously reported discrepancies for various transition
energies.

II. DERIVATION OF FORMULAS

We pass now to the derivation of formulas for the nonadi-
abatic relativistic correction. The Schrödinger equation for a
bielectronic, binuclear molecule, written in a center-of-mass
frame, with the origin in the geometric center of the nuclei, is

(H + Hn − E(2) ) |�(�r1, �r2, �R)〉 = 0, (2)

where

H = −1

2

( �∇2
1 + �∇2

2

) + V, (3)

V = − 1

r1A

− 1

r1B

− 1

r2A

− 1

r2B

+ 1

r12
+ 1

R
, (4)

Hn = − 1

2μn

( �∇2
R + �∇2

el

) +
(

1

MA

− 1

MB

)
�∇R

�∇el, (5)

and where 1, 2 indices denote electrons, A, B indicate
nuclei, the nuclear reduced mass μn = MAMB/(MA + MB),
�R = �RA − �RB , and �∇el = ( �∇1 + �∇2)/2. In homonuclear
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molecules, such as H2 or D2, the last term in Hn vanishes,
whereas in HD it is present. However, it is neglected anyway
because it contributes in the second order of the electron-
nuclear mass ratio, while our calculations of relativistic nona-
diabatic corrections are performed only to the first order.
The magnitude of these neglected terms is estimated in Sec.
VII and verified against nonperturbative calculations for the
ground molecular state [4–6].

The function �(�r1, �r2, �R) in Eq. (2) is the solution of
the full Schrödinger equation for H2, describing both the
electrons and the nuclei. Here, however, we employ the NAPT
formalism and represent the wave function as

�(�r1, �r2, �R) = ψ (�r1, �r2)χ ( �R) + δ�na (�r1, �r2, �R), (6)

where the matrix element in the electron space vanishes
〈δ�na|ψ〉 = 0, and ψ (�r1, �r2) is an eigenfunction of the elec-
tronic Schrödinger equation

H |ψ〉 = E (2,0)(R) |ψ〉 , (7)

with the eigenvalue dependent on the internuclear distance R.
The function χ satisfies the following nuclear equation:[

− ∇2
R

2 μn
+ E (2,0)(R) − E(2,0)

]
χ ( �R) = 0. (8)

For convenience, from now on we will denote
E (R) ≡ E (2,0)(R). The leading finite nuclear correction
is given by

E(2,1) = 〈χ |E (2,1)(R)|χ〉, (9)

where E (2,1) is the expectation value of Hn, known as the
adiabatic correction,

E (2,1)(R) = 〈ψ |Hn|ψ〉

= 1

2μn
〈 �∇Rψ | �∇Rψ〉 + 1

2μn
〈 �∇elψ | �∇elψ〉 . (10)

This correction is known with a high accuracy from Ref. [7].
The remainder δ�na will not be needed because we calculate
here only the leading corrections in the electron nuclear mass
ratio.

In analogy to the nonrelativistic energies, the relativistic
BO correction is an expectation value of the Breit-Pauli
Hamiltonian with the electronic wave function

E (4,0)(R) = 〈ψ |H (4,0)|ψ〉 , (11)

where

H (4,0) = − p4
1 + p4

2

8
− 1

2
pi

1

(
δij

r12
+ ri

12r
j

12

r3
12

)
p

j

2 + πδ3(r12)

+ π

2

[
δ3(r1A) + δ3(r2A) + δ3(r1B ) + δ3(r2B )

]
.

(12)

It has recently been recalculated with a high accuracy in
Ref. [8]. The topic of this work is a combined, nonadiabatic-
relativistic correction E (4,1)(R), which is represented as a sum
of three terms,

E (4,1)(R) = 1

μn

[
E (4,1)

1 (R) + E (4,1)
2 (R) + E (4,1)

3 (R)
]
, (13)

where

E (4,1)
1 (R) = 〈 �∇Rψrel| �∇Rψ〉 , (14)

E (4,1)
2 (R) = −〈ψrel| �∇2

el|ψ〉 , (15)

E (4,1)
3 (R) = μn 〈ψ |H (4,1)

M |ψ〉 , (16)

and where

|ψrel〉 = 1

(E − H )′
H (4,0) |ψ〉 , (17)

H
(4,1)
M = −

∑
a=1,2

∑
N=A,B

1

2 MN

∇i
a

(
δij

raN

+ ri
aNr

j

aN

r3
aN

)
∇j

N .

(18)

In our coordinate system, with the center-of-mass at rest and
the origin in the geometric center of the nuclei, H

(4,1)
M takes

the form

H
(4,1)
M = − 1

4μn

∑
a=1,2

∇i
a

(
δij

raA

+ ri
aAr

j

aA

r3
aA

− δij

raB

− ri
aBr

j

aB

r3
aB

)
∇j

R

+ 1

4μn

∑
a=1,2

∇i
a

(
δij

raA

+ ri
aAr

j

aA

r3
aA

+ δij

raB

+ ri
aBr

j

aB

r3
aB

)
∇j

el.

(19)

Potentials E (4,1)
1 and E (4,1)

3 involve �∇R—a gradient with re-
spect to the internuclear vector �R. It should be handled
properly, which is described in the next section.

III. NUCLEAR GRADIENTS

We consider at first �∇R acting on the nonrelativistic
wave function. It can be obtained by differentiation of the
Shrödinger equation

�∇R |ψ〉 = 1

(E − H )′
�∇R (V ) |ψ〉= �n |ψa〉 −�n × | �ψa〉 , (20)

where �n = �R/R and

|ψa〉 = �n · �∇R |ψ〉 = �n
(E − H )′

�∇R (V ) |ψ〉 , (21)

| �ψa〉 = �n × �∇R |ψ〉 = 1

(E − H )′
�n × �∇R (V ) |ψ〉 , (22)

and where

�∇R (V ) = 1

2

(
−�r1A

r3
1A

+ �r1B

r3
1B

− �r2A

r3
2A

+ �r2B

r3
2B

)
−

�R
R3

. (23)

The analogous derivative of ψrel would be quite complicated,
and therefore we recast the expression for E (4,1)

1 into a more
tractable form as follows:

E (4,1)
1 (R) = �∇R 〈ψrel| �∇Rψ〉 − 〈ψrel| �∇2

R|ψ〉 . (24)

The first term above can be evaluated by numerical
differentiation:

�∇R 〈ψrel| �∇R|ψ〉 = 1

R2

∂

∂R
(R2 〈ψrel|ψa〉) . (25)
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In practical application, it is done by polynomial interpolation
of 〈ψrel|ψa〉 and a subsequent derivative.

The second term in Eq. (24) is obtained as follows,

�∇2
R |ψ〉 = |ψna〉 + c |ψ〉 , (26)

where

|ψna〉 = 1

(E − H )′

×
[

�∇2
R (V ) |ψ〉 +2 �∇R (V −E )

1

(E − H )′
�∇R (V ) |ψ〉

]

(27)

is orthogonal to |ψ〉, and

�∇2
R (V ) = π [δ3(r1A) + δ3(r2A) + δ3(r1B ) + δ3(r2B )], (28)

�∇R (E ) = 〈ψ | �∇R (V )|ψ〉 . (29)

The term c |ψ〉 in Eq. (26) would appear next to a reduced
resolvent from |ψrel〉 in Eq. (24), so it does not contribute.

Next, we decompose the second resolvent into � and � parts.
Such partition enables one to represent the resolvent in states
of specific symmetry, which simplifies the numerical imple-
mentation. Gathering it all together, we obtain the following
transformed form of Eq. (24),

E (4,1)
1 (R) = 1

R2

∂

∂R
(R2 〈ψrel|ψa〉) − 〈ψrel|ψna〉 , (30)

where

|ψna〉 = 1�+

(E − H )′
�∇2

R (V ) |ψ〉

+ 2
1�+

(E − H )′
�n · �∇R (V − E ) |ψa〉

+ 2
1�+

(E − H )′
�n × �∇R (V ) | �ψa〉 . (31)

The analogous separation of intermediate states of definite
symmetry is performed for Eq. (19):

E (4,1)
3 (R) =1

4

∑
a=1,2

[
〈ψ |∇i

a

(
δij

raA

+ ri
aAr

j

aA

r3
aA

+ δij

raB

+ ri
aBr

j

aB

r3
aB

)
∇j

el|ψ〉 − 〈ψ |nj∇i
a

(
δij

raA

+ ri
aAr

j

aA

r3
aA

− δij

raB

− ri
aBr

j

aB

r3
aB

)
|ψa〉

− 〈ψ |εmkjnk∇i
a

(
δij

raA

+ ri
aAr

j

aA

r3
aA

− δij

raB

− ri
aBr

j

aB

r3
aB

)∣∣ψm
a

〉]
, (32)

while E (4,1)
2 does not need any further transformations.

IV. REGULARIZATION

The Breit-Pauli Hamiltonian contains singular type op-
erators, like Dirac δ and p4, whose matrix elements have
slow numerical convergence. For this reason, we perform
a regularization that is based on various expectation value
identities [9] (see also Ref. [10]). In the case of Gaussian
basis, due to a poor representation of the wave function at co-
alescence points, the regularization improves the convergence
dramatically [8]. These identities are the following:

4πδ3(r1A) = 4

r1A

(E − V ) − �p1
2

r1A

�p1 − �p2
2

r1A

�p2

+
{

2

r1A

,H − E
}
, (33)

p4
1 + p4

2 = 4(E − V )2 − 2p2
1p

2
2 + 4(H − E )2

+ 4{E − V,H − E}. (34)

Furthermore, should the p2
1p

2
2 in the above expression act on

a wave function that satisfies the Kato’s cusp condition, the
arising δ3(r12) function cancels out exactly with that from the
Breit-Pauli Hamiltonian and the remainder will be denoted
by p̃2

1 p̃2
2. This regularization has been already employed

in calculations of the BO relativistic corrections [8]. The
only, but important, difference is that now the Breit-Pauli
Hamiltonian acts on a wave function other than the reference

state’s, and subsequently the terms in the anticommutators
cannot be neglected.

After making use of the above formulas, we obtain

H (4,0) = [H (4,0)]r + {Q,H − E} − 1

2
(H − E )2, (35)

[H (4,0)]r = − 1

2
(E − V )

(
E − 1

R
− 1

r12

)

+ 1

4

(
p̃2

1p̃
2
2 + p1Ṽ p1 + p2Ṽ p2

)

− 1

2
pi

1

(
δij

r12
+ ri

12r
j

12

r3
12

)
p

j

2 , (36)

and

�∇2
R (V ) = [ �∇2

R (V )
]
r
− 1

2 {Ṽ , H − E}, (37)[ �∇2
R (V )

]
r
= −(E − V )Ṽ + 1

2 p1Ṽ p1 + 1
2 p2Ṽ p2, (38)

where

Q = − 1

2
(E − V ) − 1

4
Ṽ , (39)

Ṽ = − 1

r1A

− 1

r2A

− 1

r1B

− 1

r2B

. (40)
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V. NUMERICAL CALCULATIONS

The calculations were performed with a variational wave
function represented as a linear combination

|ψ〉 =
∑

i

ciψi (�r1, �r2), (41)

ψi = (1 + ı̂)(1 + P1↔2)φi (�r1, �r2), (42)

where ı̂ is an inversion operator and P1↔2 exchanges the
electrons. The basis functions φi (�r1, �r2) are of the explicitly
correlated Gaussian (ECG) type

φ�+ = e−a1Ar2
1A−a1Br2

1B−a2Ar2
2A−a2Br2

2B−a12r
2
12 , (43)

�φ� = �n × �r1A φ�+ , (44)

where the parameters a1A, a2A, a1B , a2B , and a12 were opti-
mized individually for each basis function. In addition, for the
ground-state wave function we employed the so-called rECG
basis

φ′
�+ = (1 + r12/2) e−a1Ar2

1A−a1Br2
1B−a2Ar2

2A−a2Br2
2B−a12r

2
12 , (45)

which satisfies exactly the interelectronic cusp condition. It
significantly improves the numerical convergence and allows
for algebraic cancellation of the δ3(r12) term from the Breit-
Pauli Hamiltonian. Both kinds of Gaussian bases have been
used before in Refs. [5,8]. All the integrals can be performed
either analytically or, in the worst case, numerically with fast
extended Gaussian quadrature [11]. As a consequence, we can
achieve high accuracy with a reasonable low computational
cost.

The method for performing integrals has been already
described extensively in Refs. [8,12], but—for the sake of
completeness—we repeat the main formulas. All the matrix
elements needed can be written down as linear combinations
of f ’s:

f (n1, n2, n3, n4, n5)

= 1

π3

∫
d3r1

∫
d3r2 r

n1
1Ar

n2
1Br

n3
2Ar

n4
2Br

n5
12

× e−c1A r2
1A−c1B r2

1B−c2A r2
2A−c2B r2

2B−c12 r2
12 . (46)

The integrals with even powers of the interparticle distance
can be obtained by differentiation over the variational param-
eters of the “master” integral

f (0, 0, 0, 0, 0) = A−3/2e−R2 B
A , (47)

where

A = (c1A + c1B + c12)(c2A + c2B + c12) − c2
12, (48)

B = (c1B + c1A)c2Ac2B + c1Ac1B (c2A + c2B )

+c12(c1A + c2A)(c1B + c2B ). (49)

If one of the nk indices is odd, the ECG integrals can also
be obtained analytically by differentiation of other master

integrals. As an example, the master integral for n1 = −1 is

f (−1, 0, 0, 0, 0) = 1

A
√

A1
e−R2 B

A F

[
R2

(
B1

A1
− B

A

)]
,

(50)
where A1 = ∂c1A

A, B1 = ∂c1A
B, and F (x) = erf (x)/x.

Molecular ECG integrals, as opposed to the atomic case, have
no known analytic form when two or more nk indices are
odd. In this case, we use the quadrature adapted to the end-
point logarithmic singularity [11], which has fast numerical
convergence.

Eventually, for a given basis size N , we had to optimize
eight different sets. The first two, with and without the cusp,
are for the ground electronic state and correspond to optimiza-
tion of the ground state energy E (R) = 〈ψ |H |ψ〉. The next
four basis sets are for intermediate states with the following
matrix elements:

〈ψ | [H (4,0)]r
1

(E − H )′
[H (4,0)]r |ψ〉 , (51)

〈ψ | �n · �∇R (V − E )
1

(E − H )′
�n · �∇R (V − E ) |ψ〉 , (52)

〈ψ | �n × �∇R (V )
1

(E − H )
�n × �∇R (V ) |ψ〉 , (53)

〈ψ | [ �∇2
R (V )]r

1

(E − H )′
[ �∇2

R (V )]r |ψ〉 , (54)

which can be directly optimized. The last two basis sets are
for intermediate states with

〈ψa| �n · �∇R (V − E )
1

(E − H )′
�n · �∇R (V − E ) |ψa〉 , (55)

〈 �ψa| �n × �∇R (V )
1

(E − H )′
�n × �∇R (V ) | �ψa〉 . (56)

To ensure proper subtraction of the ground state from the
reduced resolvents, we extended each �+ basis with a fixed
sector consisting of N/2 basis functions optimized for the
ground state without a cusp. Its nonlinear variational parame-
ters were kept constant and were not further optimized.

The calculations were performed for three different basis
sizes, N = 128, 256, 512, to observe numerical convergence
and estimate the corresponding uncertainty. The electronic
E (4,1)(R) potential was calculated for 59 points in the range
of 0–8 a.u. Results are presented in Table I and plotted in
Fig. 1. The exact value at R = 0, E (4,1)(0) = −1.079 69 a.u.,
is deduced from the relativistic recoil for helium atom, while
at R → ∞ it behaves like ∼1/R4.

VI. NUCLEAR SCHRÖDINGER EQUATION

To obtain the total energy levels, one represents χ ( �R) as

χ ( �R) = χ (R)

R
Ylm(�n) (57)

and solves the radial nuclear Schrödinger equation for χ (R)
in the following form,

HNχ (R) = E(2,0)χ (R), (58)

HN = − 1

2μn

d2

dR2
+ E (R) + J (J + 1)

2μnR2
, (59)
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TABLE I. The mass-independent nonadiabatic relativistic cor-
rection 2μnE (4,1) (in a.u.) for different values of the internuclear
distance R (in a.u., for 512 basis size). For most of the points, the
last digit is uncertain.

R 2μnE (4,1) R 2μnE (4,1)

0.0 −1.079 69 2.1 −0.122 89
0.05 −0.761 2.15 −0.107 12
0.1 −0.5116 2.2 −0.091 78
0.15 −0.3847 2.3 −0.062 21
0.2 −0.383 85 2.4 −0.034 67
0.25 −0.433 56 2.5 −0.008 80
0.3 −0.505 79 2.6 0.014 69
0.4 −0.630 36 2.7 0.035 88
0.5 −0.702 97 2.8 0.054 42
0.6 −0.725 41 2.9 0.069 94
0.7 −0.713 63 3.0 0.082 16
0.8 −0.681 06 3.2 0.097 14
0.9 −0.637 11 3.4 0.099 47
1.0 −0.587 82 3.6 0.091 98
1.1 −0.537 03 3.8 0.078 60
1.2 −0.486 52 4.0 0.063 08
1.3 −0.437 70 4.2 0.048 65
1.4 −0.390 85 4.4 0.036 55
1.45 −0.368 28 4.6 0.027 37
1.5 −0.346 24 4.8 0.020 32
1.6 −0.304 09 5.0 0.015 45
1.65 −0.283 70 5.2 0.011 82
1.7 −0.263 96 5.4 0.009 19
1.75 −0.244 62 5.6 0.007 30
1.8 −0.225 83 5.8 0.005 90
1.85 −0.207 76 6.0 0.004 91
1.9 −0.189 95 6.5 0.003 13
1.95 −0.172 52 7.0 0.002 05
2.0 −0.155 56 7.5 0.001 43
2.05 −0.139 04 8.0 0.001 11

where J is the rotational quantum number. We solve it numer-
ically with a discrete variable representation (DVR) method
[13] and obtain a numerical representation of χ (R) for a
specific molecular state. Note that in some of our previous
works we used an adiabatically corrected nuclear function,
which may lead to slight differences between the values
presented in this work and the previous ones. The results of
this work clearly demonstrate that, as a result of cancellation

FIG. 1. Mass-independent nonadiabatic relativistic correction
2μE (4,1) for the ground electronic state as a function of the inter-
nuclear distance R.

between different nuclear mass corrections in Eq. (62), the
proper choice for χ is the BO potential without the adiabatic
correction—Eq. (59).

The nuclear wave function χ (R) is subsequently used to
calculate the α4 m relativistic correction, according to the
following formulas:

E(4) = E(4,0) + E(4,1), (60)

E(4,0) = 〈χ |E (4,0)(R)|χ〉 , (61)

E(4,1) = 〈χ |E (4,1)(R)|χ〉 + 2 〈χ |δχ〉 , (62)

where

|δχ〉 = E (4,0)(R)
1

(E(2,0) − Hn)′
E (2,1)(R) |χ〉 . (63)

The electronic potentials E (2,1)(R) from Ref. [7], E (4,0)(R)
from Ref. [8], and E (4,1)(R) from this work were evaluated on
evenly spaced (0.05 a.u.) grid of 200 points and subsequently
used in DVR calculation of matrix elements. After testing
different interpolation schemes, we settled on using the ninth-
order piecewise Hermite interpolation. We observed that the
interpolation introduces a relatively significant error to our
results, which could be removed in future via proper analytic
fits to E (4,0)(R) and E (4,1)(R).

We extrapolate E(4,0), 2 〈χ |δχ〉, and 〈χ |E (4,1)(R)|χ〉 sepa-
rately, from the results with progressing basis size, and utilize
the following model,

E(N ) = A

Nk
+ E(∞), (64)

where N is the basis set size and A and E(∞) are fitted pa-
rameters. We used k = 2 for 〈χ |E (4,1)(R)|χ〉 and k = 3 in the
two other cases. The choice of k is based on the observation
of convergence of individual terms. The extrapolation error is
estimated conservatively to be 50% of the difference between
the results with the two largest basis sets.

VII. RESULTS AND DISCUSSION

The total relativistic contribution E(4) to the dissocia-
tion energy of H2, HD, and D2 in comparison to fully

TABLE II. Convergence of 〈χ |E (4,1)(R)|χ〉 contribution to the
dissociation energy (in cm−1). The remaining components of E(4),
Eq. (60), are also shown for completeness. The uncertainties of the
final E (4) values contain an estimate of the higher order nonadiabatic
effects of the order E (4,1)/μn.

Basis H2 HD D2

128 0.002 376 07 0.001 794 00 0.001 205 590
256 0.002 370 19 0.001 789 61 0.001 202 694
512 0.002 368 67 0.001 788 48 0.001 201 951
∞ 0.002 368(1) 0.001 788(1) 0.001 201 7(4)
2 〈χ |δχ〉 −0.000 451 1 −0.000 342 0 −0.000 230 9

E (4,1) 0.001 917(1) 0.001 446(1) 0.000 970 8(4)
E (4,0) −0.533 130(1) −0.531 334(1) −0.529 179(1)

E (4) −0.531 213(2) −0.529 888(2) −0.528 208(1)
naECG [5] −0.531 215 6(5) −0.529 887 5(2) −0.528 206 1(1)
Difference 0.000 003(2) −0.000 001(2) −0.000 002(1)
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TABLE III. Contributions to the dissociation energy of the first rotationally excited level (v, J ) = (0, 1) and to two selected transitions in
H2 (in cm−1), in comparison to experimental values. E

(2)
rel ∼ α6 m is a second-order correction due to relativistic BO potential, which in former

works was automatically included in α4 m; EFS is the finite nuclear size correction with rp = 0.84087(39) fm [16].

Contribution/(v, J ) (0,1) (3, 5) → (0, 3) (1, 0) → (0, 0) References

α2 m 36 000.312 485 66(6) 12 559.749 918 95(8) 4 161.163 977 09(6) [3], [8], [8]
α4 m −0.533 796(2) 0.065 878(8) 0.023 554(2) [7] + [8] + this work
α5 m −0.194 00(21) −0.065 81(7) −0.021 32(2) [8] + [17]
α6 m −0.002 058(6) −0.000 599(1) −0.000 192 [12]
E

(2)
rel 0.000 009 0.000 004 0.000 001 [8]

α7 m 0.000 117(59) 0.000 037(19) 0.000 012(6) [8]
EFS −0.000 031 −0.000 010 −0.000 003 [8]

Total 35 999.582 73(22) 12 559.749 42(7) 4 161.166 03(2)
Experiment 35 999.582 894(25) 12 559.749 52(5) 4 161.166 36(15) [18], [19], [20]
Difference −0.000 16(22) −0.000 10(9) −0.000 33(15)

nonadiabatic naECG calculations from Ref. [5] is shown
in Table II. The E(4,0) values were obtained as expecta-
tion values of the potential from Ref. [8] with a BO nu-
clear function χ . We used the recommended CODATA val-
ues [14] for the mass ratios mp/me = 1836.152 673 89(17)
and md/me = 3670.482 967 85(13), as well as for the
fine structure α = 7.297 352 566 4(17) × 10−3 and Rydberg
R∞ = 10 973 731.568 508(65) m−1 constants. The uncer-
tainty of theoretical results contains the interpolation and
extrapolation errors, as well as the neglected higher order
nonadiabatic corrections estimated by E(4,1)/μn.

A good agreement between results of the naECG from
Ref. [5] and of NAPT obtained here for the ground molecular
state (see Table II) justifies the perturbative approach, the

main advantage of which is the common potential E (4,1)(R)
for all the rovibrational states of all isotopes of molecular
hydrogen in the ground electronic state.

The αn m contributions with n = 5, 6, 7 in the following
tables are expectation values of the potentials from the ref-
erences given in the last column, with the BO nuclear wave
function χ . While all the αn m contributions are calculated
according to known formulas, the formula for α7 m correction
is yet unknown. Their values presented in Tables III–V are
only estimates, hence the 50% error, based on the leading term
analogous as in atomic hydrogen, namely [15]

H (7) ≈ −[δ3(r1A) + δ3(r2A) + δ3(r1B ) + δ3(r2B )]ln2(α−2).

(65)

TABLE IV. Contributions to selected transitions in HD (in cm−1). E (2)
rel ∼ α6 m is a second-order correction due to relativistic BO potential,

which in former works was automatically included in α4 m. EFS is the finite nuclear size correction with rp = 0.84087(39) fm [16] and
rd = 2.12771(22) fm [21]. There are two additional measurements of (2, 2) → (0, 1) transition, namely 7 241.849 386(3) cm−1 [22] and
7 241.849 345 6(32) [23], which are in disagreement with that in the table.

Contribution/(v, J ) (1, 0) → (0, 0) (0, 1) → (0, 0) (1, 1) → (0, 1) References

α2 m 3 632.158 204 27(1) 89.226 757 95(1) 3 628.302 279 75(1) [24]
α4 m 0.020 999(1) 0.001 950 56(1) 0.020 856(1) [7] + [8] + this work
α5 m − 0.018 64(2) − 0.000 770 9(6) − 0.018 60(2) [8] + [17]
α6 m − 0.000 168 − 0.000 006 74(1) − 0.000 168 [12]
E

(2)
rel 0.000 001 0.000 000 06 0.000 001 [8]

α7 m 0.000 010(5) 0.000 000 43(22) 0.000 010(5) [8]
EFS − 0.000 010 − 0.000 000 43 − 0.000 010 [8]

Total 3 632.160 40(2) 89.227 930 9(6) 3 628.304 37(2)
Experiment 3 632.160 52(22) 89.227 931 6(8) 3 628.304 50(22) [20], [25], [20]
Difference − 0.000 12(22) − 0.000 000 7(10) − 0.000 13(22)

Contribution/(v, J ) (2, 2) → (0, 1) (2, 3) → (0, 2) (2, 4) → (0, 3) References

α2 m 7 241.846 168 22(2) 7 306.479 554 52(2) 7 361.899 285 85(1) [24]
α4 m 0.040 927(4) 0.041 927(3) 0.042 559(3) [7] + [8] + this work
α5 m − 0.037 46(3) − 0.037 97(3) − 0.038 38(3) [8] + [17]
α6 m − 0.000 339 − 0.000 343 − 0.000 347 [12]
E

(2)
rel 0.000 002 0.000 002 0.000 002 [8]

α7 m 0.000 021(11) 0.000 021(11) 0.000 022(11) [8]
EFS − 0.000 021 − 0.000 021 − 0.000 021 [8]

Total 7 241.849 30(3) 7 306.483 17(3) 7 361.903 12(3)
Experiment 7 241.849 356 16(67) 7 306.483 227 84(93) 7 361.903 178 73(93) [26]
Difference − 0.000 06(3) − 0.000 06(3) − 0.000 06(3)
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TABLE V. Contributions to selected transitions in D2 (in cm−1). E
(2)
rel ∼ α6 m is a second-order correction due to relativistic BO potential,

which in former works was automatically included in α4 m. EFS is the finite nuclear size correction with rd = 2.12771(22) fm [21].

Contribution/(v, J ) (2, 4) → (0, 2) (1, 0) → (0, 0) (1, 2) → (0, 2) References

α2 m 6 241.120 920(1) 2 993.614 856 52(4) 2 987.291 387 6(2) [27], this work, this work
α4 m 0.040 173 9(15) 0.017 732 2(2) 0.017 498 [7] + [8] + this work
α5 m − 0.033 167(18) − 0.015 397(8) − 0.015 33(1) [8] + [17]
α6 m − 0.000 298 9(2) − 0.000 138 7(1) − 0.000 138 [12]
E

(2)
rel 0.000 001 9 0.000 000 9 0.000 001 [8]

α7 m 0.000 019(10) 0.000 008 6(43) 0.000 009(4) [8]
EFS − 0.000 031 5 − 0.000 014 6 − 0.000 015 [8]
Total 6 241.127 617(21) 2 993.617 048(9) 2 987.293 41(1)
Experiment 6 241.127 647(11) 2 993.617 06(15) 2 987.293 52(15) [27], [20], [20]
Difference − 0.000 030(24) − 0.000 01(15) − 0.000 11(15)

The expectation values of the Dirac δ were taken from
Ref. [8]. They were used also in the evaluation of the cor-
rection due to the finite nuclear size [15]:

EFS = α4 2π

3
[δ3(r1A) + δ3(r2A) + δ3(r1B ) + δ3(r2B )]

×
(
r2
A + r2

B

)
2

, (66)

where rA/B is the root-mean-square charge radius of the A/B

nucleus. The higher order effects due to the nuclear size or nu-
clear polarizability are negligible at the current precision level,
which we know from the atomic hydrogen and deuterium [15].

In Table III, we present the theoretical predictions for
the dissociation energy of v = 0, J = 1 state of H2, and
two selected transitions in comparison to the most accurate
experimental data. We find an agreement for the dissociation
energy of the former level and for the (3, 5) → (0, 3) transi-
tion energy, whereas for the (1, 0) → (0, 0) transition a 2 σ

disagreement persists. For this reason, the experimental value
for this transition should be verified.

Because all the relativistic and QED corrections are cal-
culated through effective potentials, they can be employed to
obtain all the rovibrational energies of all isotopes of the hy-
drogen molecule for the ground electronic state. In Tables IV
and V, we present results for a selection of transitions in HD
and D2 which have been measured with a high accuracy. In
general, we observe very good agreement between theoret-
ical and experimental data, except for the series of R2(J )
transitions in HD, presented in the lower panel of Table IV,
which requires further investigations.

VIII. CONCLUSIONS

The main achievement of this work is a significant re-
duction of the contribution to the total error budget com-
ing from the nonadiabatic relativistic (recoil) effects. As a
result, the current main source of theoretical uncertainty is
the unknown combined QED and nonadiabatic correction,
which is estimated by the ratio of the electron to the reduced
nuclear masses 1/μn. We have already undertaken calculation
of this missing term. Once this contribution is known, the
main uncertainty will come from the approximate value of
the α7 m term, accurate calculation of which is very challeng-
ing. If these calculations are accomplished, together with the
leading nonadiabatic α6 m correction, one can use precisely
measured transitions in the molecular hydrogen to determine
fundamental physical constants, such as the proton-electron
mass ratio or the nuclear charge radii, for which discrepant
values have been obtained in the literature.
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