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Polarizabilities of Rydberg states of Rb atoms with n up to 140
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Up to the present, although experimental studies about the polarizabilities of alkali-metal Rydberg atoms have
involved the states with principal quantum numbers n � 80, theoretical calculations are limited to the states with
n � 50. In this work, we calculate the scalar and tensor polarizabilities of the nS1/2, nP1/2,3/2, and nD3/2,5/2

Rydberg states of Rb with principal quantum number n up to 140 employing a model potential and the B-spline
expansion technique. We obtain the polarizabilities that are in good agreement with the existing theoretical and
experimental data.
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I. INTRODUCTION

The Rydberg state refers to the highly excited state with a
large principal quantum number n. Such states have attractive
properties including large size, long radiative lifetime, strong
dipole-dipole interaction, and large polarizability [1]. The
polarizability, the fundamental property of an atom, can be
described as the response of the atom to an external electric
field and plays a significant role in the collision process
and many other aspects of research [2]. In addition, the
accurate values of the polarizabilities can be used to verify
the consistency of oscillator strengths and the behavior of the
outer region of a wave function itself [3]. Therefore, many
theoretical methods have been applied to the calculations of
the polarizabilities [4,5].

We have known that sufficient progress has been made
in the studies about the polarizabilities of rubidium highly
excited Rydberg atoms both theoretically and experimentally
[6–19]. First, the polarizability of the 6 2P 3/2 Rydberg state of
Rb has been measured and calculated by Khadjavi et al. [6].
Later on, experimental investigations of the polarizabilities
with rubidium for the nS (n = 15–80) and nD (n = 13–55)
states were performed [12,13], and accurately calculated by
Wijngaarden [14] for Rb nS and nD Rydberg states with n �
13 using the Coulomb approximation method [20]. Subse-
quently, several groups have calculated and measured polariz-
abilities of Rb Rydberg states with low n [5,16,19]. Recently,
calculations of the polarizabilities of rubidium nS, nP1/2,3/2,
and nD3/2,5/2 Rydberg atoms with n = 8–50 were made by
Yerokhin et al. [18] using one-electron approximation and
they also presented the theoretical values obtained by using
the Coulomb approximation, which are in good agreement
with each other. Up to the present, although experimental
studies about the polarizabilities of alkali-metal Rydberg
states have involved states with relatively high principal quan-
tum numbers n � 80 [12,13], theoretical calculations have
mainly involved the states with n � 50 [18]. Hence, it is
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interesting to extend the range of n from 50 to 80 for the
theoretical calculations of the polarizabilities of alkali-metal
Rydberg atoms. Actually, we calculate the polarizabilities of
Rb with principal quantum number n up to 140 in this work.

The aim of the present work is to overcome the difficulties
of the traditional Coulomb approximation [20] in calculating
the radial matrix elements of the high Rydberg states of
alkali-metal atoms and to use the model potentials and the
B-spline expansion technique to calculate the radial matrix
elements with the principal quantum number n up to 145. The
obtained results are then used to calculate the polarizabilities
of the nS, nP1/2,3/2, and nD3/2,5/2 Rydberg states of Rb with
n � 140. The remainder of the paper is organized as follows.
The general theory describing the scalar a0 and tensor a2

polarizabilities of a state (n, l, j ) of Rb, the theoretical meth-
ods including the B-spline expansion technique, a parametric
model potential, and quantum defect energies are presented
in Sec. II. In Sec. III, the obtained results of the numerical
calculations of the polarizabilities of the nS, nP1/2,3/2, and
nD3/2,5/2 states of the Rb are presented and compared with
the available theoretical and experimental values.

II. METHOD

A. Atomic polarizabilities

In term of the theory of the quadratic Stark effect, the scalar
a0 and tensor a2 polarizabilities of the Rydberg states are
calculated by [6]

a0 = −2

3

∑
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(2j ′ + 1)
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l j 1/2
j ′ l′ 1

}2

l>
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,
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[
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TABLE I. The parameters for the l-dependent model potential of the Rb.

Rb a1 a2 a3 a4 rc αc

l = 0 3.69628474 1.64915255 −9.86069196 0.19579987 1.66242117
l = 1 4.44088978 1.92828831 −16.79597770 −0.81633314 1.50195124 9.0760
l = 2 3.7817363 1.57027864 −11.65588970 0.52942835 4.86851938
l � 3 2.39848933 1.76810544 −12.07106780 0.77256589 4.79831327

where l> is the larger of l and l′. We can obtain the specific
expressions of the scalar and tensor polarizabilities of the nS,
nP, and nD states as follows:

a0(nS1/2) = − 1
3

[
4
3P (3/2) + 2

3P (1/2)
]
, (2a)

a0(nP1/2) = − 1
9 [4D(3/2) + 2S(1/2)], (2b)

a0(nP3/2) = − 2
5D(5/2) − 2

45D(3/2) − 2
9S(1/2), (2c)

a2(nP3/2) = 2
25D(5/2) − 8

225D(3/2) + 2
9S(1/2), (2d)

a0(nD3/2) = − 2
45 [P (3/2) + 5P (1/2)] − 2

5F (5/2),

(2e)

a0(nD5/2) = − 1
9

[
12
5 P (3/2) + 6

35F (5/2) + 24
7 F (7/2)

]
,

(2f)

a2(nD3/2) = 2
9P (1/2) − 8

225P (3/2) + 2
25F (5/2),

(2g)

a2(nD5/2) = 4
15P (3/2) − 16

735F (5/2) + 20
147F (7/2).

(2h)

The following abbreviated symbols are used in the equa-
tion:

O(j ) = e2
∑
n′

|〈nl|r|n′l′〉|2
E(nlj ) − E(n′l′j ′)

≡ e2
∑
n′

∣∣Rnl
n′l′

∣∣2

E(nlj ) − E(n′l′j ′)
. (3)

Here O denotes S, P, D, F corresponding to l = 0, 1, 2, 3,
respectively; E(nlj) and E(n′l′j ′) are zero-field energies of the
(nlj) states and the intermediate (n′l′j ′) states, respectively.
The energies of Rydberg levels [1] are expressed in terms of
the effective quantum number, and 〈nl|r|n′l′〉 is a radial matrix
element, whose calculation is also the focus of this paper.

The sum in Eq. (3) implies the summations in principle
over all allowed discrete and continuum intermediate states.
However, in the actual calculations, the summations can be

truncated to include only neighboring intermediate states con-
tributing to the polarizability. From Eq. (3), we know that the
calculation of the scalar a0 and tensor a2 polarizabilities of the
Rydberg states is reduced to the calculation of the energies and
the radial matrix elements.

B. Model potential and B-spline expansion technique

The Hamiltonian in the absence of the field for an alkali-
metal atom is given by (in atomic units)

Ĥ0 = − 1
2∇2 + V (r ), (4)

where the one-electron parametric model potential V(r) devel-
oped by Marinescu et al. [21] is written as

Vl (r ) = −Zl (r )

r
− ac

2r4
[1 − e−(r/rc )6

], (5)

where ac is the static dipole polarizability, rc is the cutoff
radius, and the radial charge Zl (r ) is expressed as

Zl (r ) = 1 + (z − 1)e−a1r − r (a3 + a4r )e−a2r , (6)

where z is the nuclear charge of the neutral atom. Obviously,
the potential in Eq. (5) is l dependent. The optimized parame-
ters (a1, a2, a3, a4, rc, ac), as shown in Table I, are taken from
Ref. [21].

The wave function of the Hamiltonian (4) in a zero field
can be written as

ψn,l,m(r ) = Rn,l (r )

r
Ym

l (θ, φ), (7)

where Ym
l (θ, φ) is a spherical harmonic function and Rn,l (r )

is the radial wave function.
Substituting Vl (r ) and ψn,l,m(r ) into the Schrödinger equa-

tion of the Hamiltonian (4), we can obtain[
− d2

2dr2
+ l(l + 1)

2r2
+ V (r )

]
Rn,l (r ) = En,lRn,l (r ). (8)

In our calculations, using the B splines as a basis set
[22,23], the radial wave function Rn,l (r ) can be expanded as

TABLE II. The parameters in Eqs. (11) and (12).

Level R∗ (cm−1) E∞ (cm−1) δ0 δ2 Reference

n 2S1/2 3.1311807(8) 0.1787 (2) [25]
n 2P1/2 2.6548849(10) 0.2900 (6) [27]
n 2P3/2 2.6416737(10) 0.2950 (7) [27]
n 2D3/2 109736.623 33690.94644(1) 1.3480948(11) −0.6054(4) [25]
n 2D5/2 1.3464622(11) −0.5940(4) [25]
n 2F5/2 0.0165192(9) −0.085 (9) [26]
n 2F7/2 0.0165437(7) −0.086 (7) [26]
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TABLE III. Comparison of the contributions to polarizability under the conditions of |n–n′| � 2 and |n–n′| � 5. For each n, the upper
line represents the calculated polarizabilities under the condition of |n–n′| � 2, whereas the lower line represents the polarizabilities under the
condition of |n–n′| � 5. All values are given in Hz/(V/cm)2. a[b] indicates a × 10b.

n a
1/2
0 (S) a

1/2
0 (P) a

3/2
0 (P) a

3/2
0 (D) a

5/2
0 (D) a

3/2
2 (P) a

3/2
2 (D) a

5/2
2 (D)

15 8.10[3] 2.91[4] 3.08[4] 2.11[4] 2.02[4] −3.11[3] 9.48[3] 1.52[4]
8.10[3] 2.91[4] 3.07[4] 2.12[4] 2.03[4] −3.12[3] 9.38[3] 1.51[4]

25 3.80[5] 1.71[6] 1.81[6] 7.07[5] 6.64[5] −1.63[5] 5.23[5] 8.26[5]
3.79[5] 1.70[6] 1.81[6] 7.08[5] 6.66[5] −1.63[5] 5.19[5] 8.21[5]

45 2.50[7] 1.41[8] 1.49[8] 3.87[7] 3.55[7] −1.23[7] 4.13[7] 6.48[7]
2.49[7] 1.40[8] 1.49[8] 3.87[7] 3.55[7] −1.23[7] 4.10[7] 6.45[7]

65 3.26[8] 2.06[9] 2.19[9] 4.76[8] 4.32[8] −1.73[8] 5.94[8] 9.30[8]
3.25[8] 2.05[9] 2.18[9] 4.74[8] 4.30[8] −1.73[8] 5.91[8] 9.26[8]

85 2.10[9] 1.42[10] 1.51[10] 2.98[9] 2.69[9] −1.18[9] 4.07[9] 6.37[9]
2.09[9] 1.42[10] 1.51[10] 2.97[9] 2.67[9] −1.17[9] 4.05[9] 6.34[9]

105 9.12[9] 6.47[10] 6.89[10] 1.27[9] 1.14[10] −5.28[9] 1.84[10] 2.87[10]
9.10[9] 6.45[10] 6.87[10] 1.26[9] 1.13[10] −5.26[9] 1.83[10] 2.86[10]

125 3.06[10] 2.24[11] 2.39[11] 4.23[10] 3.77[10] −1.81[10] 6.36[10] 9.94[10]
3.05[10] 2.23[11] 2.38[11] 4.21[10] 3.75[10] −1.80[10] 6.33[10] 9.90[10]

135 5.22[10] 3.88[11] 4.13[11] 7.20[10] 6.41[10] −3.12[10] 1.09[11] 1.71[11]
5.20[10] 3.86[11] 4.12[11] 7.16[10] 6.36[10] −3.11[10] 1.09[11] 1.71[11]

140 6.72[10] 5.03[11] 5.35[11] 9.25[10] 8.23[10] −4.04[10] 1.42[11] 2.22[11]
6.69[10] 5.01[11] 5.33[11] 9.20[10] 8.17[10] −4.03[10] 1.41[11] 2.21[11]

TABLE IV. Calculated polarizabilities n 2S [in Hz/(V/cm)2] of the Rb Rydberg states, a comparison with the experimental [12] and
previous theoretical [18] results. “This work” represents our calculated values. “Expt. and “Calc.” represent the experimental and the previous
theoretical results, correspondingly. a[b] indicates a × 10b.

Level n2S a
1/2
0 (Expt.) a

1/2
0 (Calc.) a

1/2
0 (This work)

15 7.93[3] 7.98[3] 8.10[3]
20 7.22[4] 7.19[4] 7.33[4]
25 3.74[5] 3.70[5] 3.79[5]
30 1.39[6] 1.38[6] 1.41[6]
35 4.20[6] 4.13[6] 4.24[6]
40 1.06[7] 1.06[7] 1.09[7]
45 2.49[7] 2.41[7] 2.49[7]
50 5.06[7] 5.06[7] 5.22[7]
55 9.64[7] 1.01[8]
60 1.71[8] 1.86[8]
63 2.49[8] 2.61[8]
65 3.18[8] 3.25[8]
67 3.80[8] 4.01[8]
70 5.34[8] 5.45[8]
75 8.02[8] 8.80[8]
80 1.34[9] 1.37[9]
85 2.09[9]
90 3.12[9]
95 4.54[9]
100 6.48[9]
105 9.10[9]
110 1.25[10]
115 1.71[10]
120 2.29[10]
125 3.05[10]
130 4.00[10]
135 5.20[10]
140 6.69[10]
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Rn,l (r ) = ∑N
i=1 cnl

i Bi,k (r ). Here Bi,k (r ) is the ith B spline of
order k. Substituting Rn,l (r ) = ∑N

i=1 cnl
i Bi,k (r ) into Eq. (8),

one can obtain

[
−1

2

d2

dr2
+ l(l + 1)

2r2
+ V (r )

] N∑
i=1

cn
i Bi,k (r )

= En

N∑
i=1

cn
i Bi,k (r ). (9)

Both sides of Eq. (9) are multiplied by Bj,k (r ) and integrated
over r; then we can obtain the matrix equation

H̄ C̄ = ES̄C̄, (10)

where H̄ is the Hamiltonian matrix, and S̄ is the overlap
matrix of the B splines. E and C̄ are the eigenvalues and
eigenvectors, respectively. Hence, solving this generalized
eigenvalue equation, we can obtain the radial wave functions
and then the radial matrix elements 〈nl|r|n′l′〉.

Due to the good behavior of the B splines, these radial wave
functions have the correct number of nodes and good conver-
gence behaviors. The method described here for obtaining the
radial matrix elements is suitable for any alkali-metal atom.

C. Quantum defect energies

Schrödinger introduced the quantum defect nearly a cen-
tury ago [24]. Since then, the concept of the quantum defects
has been widely used in atomic physics, mostly (but not only)
for calculation with respect to the energy levels of the Rydberg
atoms. The energies of the Rydberg levels [1] are expressed in
terms of the effective quantum number (n − δn,l,j ) as

En,l,j = E∞ − R∗

(n − δn,l,j )2 , (11)

where R∗ is the Rydberg constant, E∞ is the ionization
limit, and δn,l,j is the quantum defect of the nlj Rydberg
states and can be approximated by the modified Rydberg-Ritz
coefficients for sufficiently large n [25]:

δn,l,j ≈ δ0 + δ2

(n − δ0)2 . (12)

The modified Rydberg-Ritz coefficients (δ0, δ2) of the
nS1/2, nP1/2,3/2, nD3/2,5/2, and nF5/2,7/2 states; the ionization
limit E∞; and the Rydberg constant R∗ for the Rb atoms, as
summarized in Table II, are taken from Refs. [25–27]. Thus,
we can calculate the energies by making use of Eqs. (11)
and (12).

TABLE V. Calculated polarizabilities n2P [in Hz/(V/cm)2] of the Rb Rydberg states, a comparison with the previous theoretical results
[18]. “This work” and “Calc.” represent our calculated and the previous theoretical results, correspondingly. a[b] indicates a × 10b.

Level n 2P a
1/2
0 (Calc.) a

1/2
0 (This work) a

3/2
0 (Calc.) a

3/2
0 (This work) a

3/2
2 (Calc.) a

3/2
2 (This work)

13 8.53[3] 8.66[3] 9.33[3] 9.16[3] −1.03[3] −0.97[3]
15 2.86[4] 2.91[4] 3.13[4] 3.07[4] −3.33[3] −3.12[3]
20 2.93[5] 2.99[5] 3.23[5] 3.17[5] −3.23[4] −2.99[4]
25 1.67[6] 1.70[6] 1.84[6] 1.81[6] −1.76[5] −1.63[5]
30 6.70[6] 6.85[6] 7.39[6] 7.28[6] −6.89[5] −6.36[5]
35 2.13[7] 2.18[7] 2.35[7] 2.32[7] −2.15[6] −1.98[6]
40 5.75[7] 5.89[7] 6.37[7] 6.26[7] −5.72[6] −5.24[6]
45 1.37[8] 1.40[8] 1.52[8] 1.49[8] −1.34[7] −1.23[7]
50 2.96[8] 3.04[8] 3.28[8] 3.24[8] −2.88[7] −2.64[7]
55 6.11[8] 6.49[8] −5.24[7]
60 1.15[9] 1.22[9] −9.78[7]
65 2.05[9] 2.18[9] −1.73[8]
70 3.51[9] 3.73[9] −2.94[8]
75 5.77[9] 6.14[9] −4.82[8]
80 9.19[9] 9.78[9] −7.63[8]
85 1.42[10] 1.51[10] −1.17[9]
90 2.14[10] 2.28[10] −1.76[9]
95 3.15[10] 3.35[10] −2.58[9]
100 4.55[10] 4.84[10] −3.72[9]
105 6.45[10] 6.87[10] −5.26[9]
110 8.99[10] 9.58[10] −7.32[9]
115 1.23[11] 1.31[11] −1.00[10]
120 1.67[11] 1.78[11] −1.35[10]
125 2.23[11] 2.38[11] −1.80[10]
130 2.95[11] 3.15[11] −2.38[10]
135 3.86[11] 4.12[11] −3.11[10]
140 5.01[11] 5.33[11] −4.03[10]
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III. RESULTS AND DISCUSSIONS

Using the procedures mentioned above, the radial wave
functions which are convergent in highly excited states with
n = 145 and have the correct number of nodes are obtained.
Then the radial matrix elements 〈nl|r|n′l′〉 of the n-l alkali-
metal Rydberg states in Rb with the principal quantum num-
ber n up to 145 are calculated by direct numerical integration
[28]. Previously, Song and Li calculated the radial matrix ele-
ments 〈nl|r|n′l′〉 with n up to 145 using the model potentials
and the B-spline expansion technique described above [28].
The results from Ref. [28] showed that this method is reliable
and effective.

In order to verify the contributions of the neighboring
intermediate states to the polarizabilities of the (n, l, j ) states,
we carry out approximate calculations of polarizabilities us-
ing model potentials and the B-spline expansion technique,
and compare the results calculated under the conditions of
|n–n′|� 2 and |n–n′|� 5, respectively. Computed results are
presented Table III. By comparison, we can see that the error
between the two cases is in the range of 1%. In this paper, all
of the following results are the approximate values computed
under the condition of |n–n′|� 5.

For a given S state, only the intermediate P states contribute
to the scalar polarizabilities, and more than 99% of the scalar

polarizability is contributed by the neighboring intermediate
states. The calculated scalar polarizabilities with n from 15
to 140 are listed in Table IV. To facilitate comparison, the
available theoretical values [18] and experimental data [12]
are also presented in Table IV. As can be seen from Table IV,
there is good agreement with the existing theoretical values
[18] and experimental data [12].

For the P states, only intermediate S and D states con-
tribute to the scalar and tensor polarizabilities. Furthermore,
more than 99% of the scalar and tensor polarizabilities are
contributed by the mostly neighboring intermediate states
with n′ = n ± 2. The scalar and tensor polarizabilities of the
nP1/2,3/2 Rydberg states with n = 13 − 140 for the Rb are
summarized in Table V which compares our results with the
theoretical values [18]. We can see that our values agree well
with the theoretical values [18], and the deviation is less
than 5% for all the states considered. For now, we have not
found any available experimental data. Consequently, the cal-
culations of such polarizabilities of highly excited nP1/2 and
nP3/2 states of Rb with 13 � n � 140 will provide excellent
benchmark tests of the experimental measurement.

For a given D state, only intermediate P and F states
can contribute to the scalar and tensor polarizabilities.
The calculated results from the n 2D states are shown in

TABLE VI. Calculated polarizabilities n 2D3/2 [in Hz/(V/cm)2] of the Rb Rydberg states, a comparison with the experimental [13] and
previous theoretical [18] results. “This work” represents our calculated values. “Expt.” and “Calc.” represent the experimental and the previous
theoretical results, correspondingly. a[b] indicates a × 10b.

n a
3/2
0 (Expt.) a

3/2
0 (Calc.) a

3/2
0 (This work) a

3/2
2 (Expt.) a

3/2
2 (Calc.) a

3/2
2 (This work)

13 7.81[3] 7.81[3] 7.79[3] 2.69[3] 2.73[3] 2.85[3]
15 2.14[4] 2.13[4] 2.12[4] 8.80[3] 8.98[3] 9.38[3]
20 1.60[5] 1.56[5] 1.54[5] 8.90[4] 8.93[4] 9.32[4]
25 7.40[5] 7.24[5] 7.08[5] 5.00[5] 4.98[5] 5.19[5]
30 2.60[6] 2.51[6] 2.45[6] 1.95[6] 1.97[6] 2.05[6]
35 7.40[6] 7.19[6] 7.00[6] 6.20[6] 6.19[6] 6.47[6]
37 1.08[7] 1.02[7] 9.20[6] 9.76[6]
40 1.85[7] 1.78[7] 1.73[7] 1.60[7] 1.66[7] 1.73[7]
45 4.20[7] 3.98[7] 3.87[7] 3.90[7] 3.93[7] 4.10[7]
50 8.50[7] 8.18[7] 7.92[7] 8.20[7] 8.48[7] 8.85[7]
55 1.64[8] 1.51[8] 1.63[8] 1.76[8]
60 2.74[8] 3.32[8]
65 4.74[8] 5.91[8]
70 7.87[8] 1.00[9]
75 1.26[9] 1.65[9]
80 1.96[9] 2.62[9]
85 2.97[9] 4.05[9]
90 4.40[9] 6.10[9]
95 6.38[9] 8.98[9]
100 9.07[9] 1.29[10]
105 1.26[10] 1.83[10]
110 1.74[10] 2.55[10]
115 2.37[10] 3.50[10]
120 3.18[10] 4.74[10]
125 4.21[10] 6.33[10]
130 5.52[10] 8.37[10]
135 7.16[10] 1.09[11]
140 9.20[10] 1.41[11]
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TABLE VII. Calculated polarizabilities n 2D5/2 [in Hz/(V/cm)2] of the Rb Rydberg states, a comparison with the experimental [13] and
previous theoretical [18] results. “This work” represents our calculated values. “Expt.” and “Calc.” represent the experimental and the previous
theoretical results, correspondingly. a[b] indicates a × 10b.

n a
5/2
0 (Expt.) a

5/2
0 (Calc.) a

5/2
0 (This work) a

5/2
2 (Expt.) a

5/2
2 (Calc.) a

5/2
2 (This work)

13 7.04[3] 7.36[3] 7.50[3] 4.70[3] 4.75[3] 4.61[3]
15 1.98[4] 1.99[4] 2.03[4] 1.51[4] 1.54[4] 1.51[4]
20 1.45[5] 1.44[5] 1.46[5] 1.49[5] 1.50[5] 1.48[5]
25 6.60[5] 6.56[5] 6.66[5] 8.11[5] 8.33[5] 8.21[5]
30 2.33[6] 2.26[6] 2.28[6] 3.20[6] 3.28[6] 3.24[6]
35 6.29[6] 6.42[6] 6.49[6] 1.04[7] 1.03[7] 1.02[7]
37 9.60[6] 9.45[6] 1.53[7] 1.53[7]
40 1.67[7] 1.58[7] 1.60[7] 2.62[7] 2.76[7] 2.72[7]
45 3.80[7] 3.50[7] 3.55[7] 6.40[7] 6.54[7] 6.45[7]
50 7.20[7] 7.16[7] 7.25[7] 1.34[8] 1.40[8] 1.38[8]
55 1.39[8] 1.38[8] 2.55[8] 2.77[8]
60 2.49[8] 5.20[8]
65 4.30[8] 9.26[8]
70 7.12[8] 1.57[9]
75 1.14[9] 2.59[9]
80 1.77[9] 4.11[9]
85 2.67[9] 6.34[9]
90 3.95[9] 9.55[9]
95 5.72[9] 1.41[10]
100 8.13[9] 2.02[10]
105 1.13[10] 2.86[10]
110 1.56[10] 3.99[10]
115 2.11[10] 5.47[10]
120 2.83[10] 7.41[10]
125 3.75[10] 9.90[10]
130 4.91[10] 1.30[11]
135 6.36[10] 1.71[11]
140 8.17[10] 2.21[11]

Tables VI and VII. Our calculated results of the Rb Rydberg
states are compared with the theoretical [18] and experi-
mental [13] values, which are in good agreement with each
other.

By a qualitative analysis, there is the strong n7 dependence
of the polarizabilities [1]. In order to demonstrate whether
our calculated polarizability values of the Rydberg states
are approximately proportional to n7, we use the following
formula to represent the relationship between polarizabilities
and n for the best fit:

a = Anb, (13)

where the A and b parameters, obtained from a numerical
fit of the calculated values of the scalar a0 and tensor a2

polarizabilities for the nS1/2, nP1/2,3/2, and nD3/2,5/2 states

to Eq. (13), are summarized in Table VIII. The exponent b’s
obtained are all close to 7 for the cases of the nS1/2, nP1/2,3/2,
and nD3/2,5/2 states, which is the value expected. Figures 1(a)
and 1(b) show a comparison between the theory and the fitting
for the scalar a0(nD3/2) and tensor a2(nD5/2) polarizabilities,
respectively. Good agreement between the theory and the fit-
ting is observed. It is also clearly shown that there are smooth
dependences of the scalar a0 and tensor a2 polarizabilities on
the principal quantum number n from Fig. 1.

The approximate constant ratios for the D state were found
by O’Sullivan [13] with a0(nD5/2)/a0(nD3/2) 
 0.78(4) and
a2(nD3/2)/a2(nD5/2) 
 0.62(2). This rule of constant ratios
can be explained from our fitting formula a = Anb. From
Table VIII, we can see that the exponent b’s of the a0(D3/2)

TABLE VIII. Scaling coefficients A and b in Eq. (13).

a0S1/2 a0 (P1/2) a0 (P3/2) a0 (D3/2) a0 (D5/2) a2 (P3/2) a2 (D3/2) a2 (D5/2)

A 8.19[−5] 2.49[−4] 2.67[−4] 1.48[−4] 1.47[−4] −2.52[−5] 8.82[−5] 1.27[−4]
b 6.94 7.13 7.13 6.89 6.87 7.08 7.08 7.09
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FIG. 1. (a) The scalar a0(D3/2) and (b) tensor a2(D5/2) polariz-
abilities. The squares are the calculated data. The solid represents the
numerical fit of the polarizabilities to Eq. (13).

and a0(D5/2) are 6.89 and 6.87, respectively—almost the
same. Therefore, we have

a0(nD5/2)/a0(nD3/2) = 1.47 × 10−4

1.48 × 10−4

n6.87

n6.89
≈ 1.47 × 10−4

1.48 × 10−4

= 0.99. (14)

Similarly, for the ratio of the tensor polarizabilities we have

a2(nD3/2)/a2(nD5/2) = 8.82 × 10−5

1.27 × 10−4

n7.08

n7.09
≈ 8.82 × 10−5

1.27 × 10−4

= 0.69. (15)

In addition to the constant ratios for the D state, we find
that the constant ratio for the P state also holds; that is,

a0(nP1/2)/a0(nP3/2) = 2.49 × 10−4

2.67 × 10−4

n7.13

n7.13
= 2.49 × 10−4

2.67 × 10−4

= 0.93. (16)

IV. SUMMARY

We have calculated the scalar and tensor polarizabilities of
the nS1/2, nP1/2,3/2, and nD3/2,5/2 Rydberg states of Rb with
the principal quantum number n up to 140. In the numeri-
cal calculations, the employment of the B-spline expansion
technique and the model potentials makes it feasible to obtain
dipole transition matrix elements of the high Rydberg states.
The results in this work are in good agreement with theo-
retical [18] and experimental values [12,13]. These studies
provide in-depth understanding of the structure of atoms and
molecules of highly excited Rydberg states.
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