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The implementation of a high-fidelity two-qubit quantum logic gate remains an outstanding challenge for
isolated solid-state qubits such as nitrogen-vacancy (NV) centers in diamond. In this work, we show that by
driving pairs of NV centers to undergo photon scattering processes that flip their qubit states simultaneously, we
can achieve a unitary two-qubit gate conditioned upon a single photon-detection event. Further, by exploiting
quantum interference between the optical transitions of the NV centers’ electronic states, we realize the existence
of two special drive frequencies: a “magic” point where the spin-preserving elastic scattering rates are suppressed
and a “balanced” point where the state-flipping scattering rates are equal. We analyzed four different gate
operation schemes that utilize these two special drive frequencies, and various combinations of polarizations
in the drive and collection paths. Our theoretical and numerical calculations show that the gate fidelity can be
as high as 98%. The proposed unitary gate, combined with available single-qubit unitary operations, forms a
universal gate set for quantum computing.
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I. INTRODUCTION

Quantum computers are expected to achieve considerable
speedup as compared to classical computers [1–4]. A spe-
cific set of examples of this speedup ranges from polyno-
mial for Grover’s search algorithm, to subexponential for
Shor’s factorization algorithm, to exponential for Simon’s
algorithm. There has been significant progress on understand-
ing complexity classes of quantum computation and their
relation to the complexity classes of classical computation;
see Refs. [5,6] for a review of this progress. The key resource
that enables quantum speedup is quantum entanglement. In
order to generate and harness this resource, it is essential to
build high-fidelity multiqubit quantum gates.

The electronic spin associated with the nitrogen-vacancy
(NV) centers in diamond is a promising qubit candidate
for solid-state quantum computing. The spin states are well
defined, have long spin relaxation and coherence times, and
can be optically addressed for qubit initialization and read-
out for quantum operations. The qubits can be manipulated
using either optical or microwave drive fields. However, a
key missing ingredient for NV center quantum computing is
an experimental demonstration of a high-fidelity two-qubit
unitary gate between NV centers at remote locations in the
diamond lattice.

There are two main directions that have been investigated
for coupling pairs of NV centers. The first direction, which
has been proposed theoretically [7], relies on collective dy-
namics of spin chains to deterministically generate couplings
between two remote NV centers. The second direction, which
has been investigated both theoretically and experimentally,
generates entanglement between two NV centers using a
heralded method. Cabrillo et al. showed that measurement can

be used to project two-qubit quantum state of atoms into an
entangled state in Ref. [8]. The idea of heralded probabilistic
entanglement generation was also theoretically proposed and
studied in Refs. [9–14]. The quantum entanglement of two NV
centers using the heralded method has also been explored ex-
perimentally. Bernien et al. observed quantum entanglement
of spins of two NV centers [15]. In a related work, Lee et al.
demonstrated the entanglement of vibrational modes of two
macroscopic diamonds (but not NV centers) [16]. Pfaff et al.
experimentally entangled spin states of two NV centers, which
they used for quantum teleportation [17]. Hensen et al. experi-
mentally performed the Bell inequality test via entangling two
separated NV-center spin states [18]. It is important to point
out that the measurement of the photon in Refs. [15,17,18] is
effectively a parity projector that projects the NV centers into
a maximally entangled state. The limitation of this approach
is that while it can be used to generate entanglement, it cannot
be used to construct a two-qubit unitary gate.

Inspiration for our work comes from a previous theoretical
proposal for constructing a heralded probabilistic two-qubit
unitary gate using generic atoms [19]. Specifically, Protsenko
et al. showed that quantum interference can be used to con-
struct a two-qubit unitary gate by controlling the relative phase
of the photons emitted by the two atoms. This interference
principle was later proposed for building two-qubit gates
between a pair of atoms in optical cavities coupled by linear
optics [13].

In this paper, we propose an alternative two-qubit uni-
tary gate for nitrogen-vacancy (NV) centers in diamond
heralded by a single scattered photon. Further, we pre-
dict that there exists a “magic” frequency which suppresses
spin-state-preserving scattering transitions in favor of spin-
flipping scattering transitions and a “balance” point where two
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spin-state-flipping scattering transitions are equal. Utilizing
these frequencies, in combination with a single-mode dia-
mond waveguide to collect and interfere the scattered pho-
tons, enables the proposed two-qubit gate to achieve high
fidelity and high success probability. For success probability
approaching unity, the gate fidelity is ≈92%, while for fidelity
approaching unity the success rate approaches ≈34%.

A key advantage of our scheme is that, unlike the schemes
in Refs. [15,17,18] that rely on two-photon Hong-Ou-Mandel
interference, the success of our entangling unitary gate is
heralded by a single photon detection. For example, if our
protocol were implemented with bulk optics and microfab-
ricated solid-immersion lenses in diamond as has been pre-
viously demonstrated, the detection probability is p ∼ 10−4

[15], and with a conservative repetition rate ≈20 kHz, this
would result in a successful entangling gate operation every
0.5 s. By contrast, entanglement events occur every 10 min
in the two-photon heralded schemes, which represents orders
of magnitude improvement in the clock rate. With further im-
provements in collection efficiency using, e.g., the nanobeam
waveguides that we propose and analyze in this paper and fast
electronics, we can potentially achieve kHz–MHz clock rates
that would be comparable to superconducting qubit quantum
information processors.

This paper is organized as follows. In Secs. II and III, we
describe the main ingredients of our 2-NV center unitary gate.
In Sec. II, we focus on the proposed experimental setup and
how to use interference to construct a unitary gate. In Sec.
III, we argue for the existence of a “magic” frequency at
which qubit state-preserving transitions are suppressed and a
“balance” frequency at which qubit state-flipping transitions
are balanced. We propose four gate operation schemes, three
utilizing the “magic” frequency and one the “balance” fre-
quency, and analyzed their fidelity, success probability, and
unitarity. In Sec. IV, we analyze the success probability and
fidelity of the two-qubit unitary gate with possible experimen-
tal imperfections. We first build a qualitative understanding of
the processes involved in the qubit dynamics and their effects
on gate fidelity. Then we perform a quantitative analysis
using the quantum trajectory method. We draw conclusions
and present an outlook in Sec. V. Details of the proposed
waveguide geometry, photon collection efficiency, transition
rate calculations, and further discussion of gate fidelity can
be found in Appendix A, Appendices B, C and Appendix D
respectively.

II. PROPOSED EXPERIMENTAL SETUP FOR A TWO-NV
UNITARY GATE

In this section, we propose a realization of the scheme of
Ref. [19] adapted for NV centers. The two-qubit unitary gate
that was proposed in Ref. [19] has two main ingredients: (1)
qubit state-flipping transitions that result in the emission of
identical heralding photons and (2) optical path lengths from
the qubits to the detector that differ by a π/2 phase difference.
Ingredient 1 ensures that no matter the initial state of a
qubit, whenever it absorbs a drive photon and flips, it emits
the desired heralding scattered photon. Ingredient 2 ensures
that the measurement of a scattered photon corresponds to a
unitary operation as opposed to a projection (e.g., ingredient 2

FIG. 1. (a) Schematic illustration for the proposed heralded two-
NV-center quantum gate. A sketch of the level diagram of NV centers
is shown in panel (b). The NV centers can undergo scattering transi-
tions to flip the qubit states and emit scattered photons when they are
driven by an off-resonance continuous-wave (CW) pump laser. The
two NV centers with quarter-wavelength separation are in a single-
mode diamond waveguide. The waveguide collects and interferes
the scattered photons emitted from the NV centers. The detectors
monitor the scattered photons collected by the diamond waveguide.
The unitary gate operation is heralded by the detection of a photon.
(c) The coordinate system of an NV center (red spheres, carbon; blue,
vacancy; brown, nitrogen), relative to the crystallographic axes of
the diamond waveguide. The x̂, ŷ, and ẑ directions of the NV center
match those of the waveguide; e.g., the [1̄1̄1̄] direction of diamond
crystal (the red vector from the nitrogen to the vacancy) coincides
with the axial direction of the waveguide.

ensures that disentangled initial states map onto four distinct
Bell states).

The experimental setup that we propose for a two-qubit
unitary gate using spin states of two NV centers is shown in
Fig. 1(a). The two NV centers are embedded into a single-
mode diamond waveguide and are selected so that they are
separated by (2n + 1)/4 wavelengths, where n is an integer.
The separation ensures that the emitted photons have π/2
phase difference when they are captured by the detectors. Both
NV centers are aligned so that their x, y, and z directions
[20] (i.e., the [112̄], [11̄0], [1̄1̄1̄], direction of the diamond
crystal) match the x, y, and z directions of the waveguide
[see Fig. 1(c)]. State-flipping transitions in both NV centers
are pumped by a continuous-wave laser applied transverse to
the waveguide [in Fig. 1(a)]. The diamond waveguide collects
and interferes the state-flipping scattered photons from the
NV centers. Two detectors detect the photons collected by the
waveguide from both ends to improve the detection efficiency.
We note that depending on whether the detector on the left or
on the right captures the photon, we obtain slightly different
unitary gates, which we discuss below.

We begin by reviewing why the π/2 phase is critical to
achieve a unitary gate [19]. Assume that the NV centers
have suitable state-flipping transitions which flip the qubit
state between |0〉 and |1〉 and emit indistinguishable photons
[Fig. 1(b)]. Next, suppose that there is a phase difference
of χ in the optical path from the two NV centers to the
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detector (on the right). Consider the two initial states |0, 0〉
and |1, 1〉. If the detector on the right clicks, the output states
are |0, 1〉 + eiχ |1, 0〉 and |1, 0〉 + eiχ |0, 1〉. In order for our
two-qubit gate to be unitary, these two output states must
be orthogonal; hence χ = π/2 + nπ , where n is an integer.
Similar logic applies to the cases in which the initial states are
|1, 0〉 and |0, 1〉.

When the right detector clicks, the unitary two-qubit gate
is described by the matrix

Gr = 1√
2

⎛
⎜⎝

0 1 i 0
1 0 0 i

i 0 0 1
0 i 1 0

⎞
⎟⎠, (1)

in the |0, 0〉, |0, 1〉, |1, 0〉, and |1, 1〉 basis. On the other hand,
if the left detector clicks we obtain the gate described by the
matrix

Gl = 1√
2

⎛
⎜⎝

0 i 1 0
i 0 0 1
1 0 0 i

0 1 i 0

⎞
⎟⎠. (2)

Note that if we wanted to obtain Gr , but the left detector clicks
instead, we can apply the single-qubit operation X1 ⊗ X2 to
both qubits to convert the gate operation in Eq. (2) to the gate
operation in Eq. (1). We note that Gr can be expressed in terms
of the control-Z (CZ) gate and single-qubit gates as

Gr = 1 + i√
2

(H ⊗ H )(S−1 ⊗ S)CZ(H ⊗ H ), (3)

where H is the Hadamard gate and S is the single-qubit π/2
phase gate

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, (4)

and therefore our two-qubit gate, in combination with the
available NV single-qubit gates, forms a universal gate set.

III. SCATTERING TRANSITIONS OF AN NV CENTER FOR
UNITARY TWO-QUBIT GATES

The main missing ingredient for constructing a two-qubit
gate with NV centers is finding suitable state-flipping transi-
tions between qubit states of NV centers that emit indistin-
guishable scattering photons. In this section, we explore the
electronic structure of NV centers and argue for the existence
of suitable transitions.

Detailed information on electronic structures of NV cen-
ters can be found in Refs. [20,21] and in B of our paper.
The electronic levels, including fine structure, of NV centers
in diamond crystals without strain are shown in Fig. 2(a).
The electronic ground state of NV center is a spin triplet.
The spin-spin interaction breaks the degeneracy of the NV
electronic ground state and splits the state |g1〉 = |g, Sz = 0〉
from the states |g2〉 = 1√

2
(|g, Sz = +1〉 + |g, Sz = −1〉) and

|g3〉 = 1√
2
(|g, Sz = +1〉 − |g, Sz = −1〉) by the zero field

splitting D/h = 2.87 GHz. The manifold of excited states
spans several GHz and consists of four discrete sets of states
with six states in total [see Fig. 2(a)]. These excited states can
be labeled by the irreducible representation of the C3V group
and the Sz quantum number. To simplify notation, we label

FIG. 2. The sketch of the level diagram of NV-center electronic
states is shown in panel (a). The electronic ground state |g〉 and
excited state |e〉 splits due to the spin-orbit (SO) and spin-spin
(SS) interactions with the corresponding irreducible representations
(irrep) of the C3V group and approximated Sz quantum number.
We choose to use state |g2〉 = 1√

2
(|+1〉 + |−1〉) and state |g3〉 =

i√
2
(|+1〉 − |−1〉) as the qubit states. We demonstrate the state-

flipping transitions in panel (b) and state-preserving transitions in
panel (c). The state-flipping transitions are the transitions that flips
between qubit states |g2〉 and |g3〉. The other two transitions that do
not flip NV states are the state-preserving transitions.

them |ej 〉, where j = 1 to 6. We note that in the presence
of spin-spin (SS) interactions, Sz is not a good quantum
number for the lowest four excited states. However, as the SS
interaction results in only a slight mixing between Sz = ±1
states and Sz = 0 states, we label the eigenstates |e1〉, |e2〉,
|e3〉, and |e4〉 by the dominant Sz component.

We propose to use the twofold degenerate Sz = ±1 spin
states, |g2〉 and |g3〉, as the logic 0 and 1 qubit states. We
use scattering transitions pumped by an off-resonant laser to
drive transitions between states |g2〉 and |g3〉 and hence flip
the logic state [Fig. 2(b)]. The scattered photons from the two
state-flipping transitions have the same frequency because the
states |g2〉 and |g3〉 are energetically degenerate. There are
two more scattering transitions that can occur in principle,
i.e., Rayleigh scatterings. These two transitions do not flip
the qubit state [Fig. 2(c)] and hence we call these transitions
state-preserving transitions. The scattered photons emitted
from these two transitions have the same frequency as the ones
from state-flipping transitions. To ensure successful two-qubit
gate operation, we must ensure that the detectors click only on
state-flipping and not state-preserving transitions.
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FIG. 3. The magnitudes of state-preserving and state-flipping
transition amplitudes given in the right-hand side of Eq. (7) [blue
(dark gray) lines] and Eq. (9) [yellow (light gray) lines] as we shift
the driving light frequency νd . There are two frequency points that
draw our attention: (1) the “magic” point (labeled by red dashed
arrow) at which the two state-preserving transition amplitudes are
strongly suppressed and (2) the “balance” point (labeled by blue solid
arrow), where two state-flipping transition amplitudes are balanced.

The two ingredients that go into the calculation of the
optical transition rates are (1) the dipole matrix elements
between NV center ground and excited states and (2) the
interference between virtual excitations of the various excited
states.

The results of the rate calculations for the state-flipping
and state-preserving transitions, as a function of the drive
frequency, are plotted in Fig. 3. We find that as we tune the
drive frequency, the interference between virtual excitation
paths results in the significant variation of the transition
rates. We identify two special frequencies: First, there is a
magic frequency for which the state-preserving transitions are
approximately turned off. Second, there is a balance point
frequency for which the two state-flipping transition rates are
equal. We present the outline of the transition rate calculation
in Sec. III A (the details are presented in B). Next, we discuss
four different schemes for building a two-qubit gate using
the two special drive frequencies and different configurations
of polarizers in the collection path. Specifically, we discuss
how different schemes can be used to optimize gate fidelity,
success probability, and unitarity. In Secs. III B and III C, we
discuss gates schemes M1, M2, and M3 that utilize magic
frequency drive light. The three schemes differ by drive light
polarization and collection path configuration, which let us
optimize either gate success probability or gate unitarity. In
Sec. III D, we discuss the gate scheme B1 that utilizes driving
light frequency, which makes the two state-flipping transitions
balanced. We summarize the configurations of the four gate
operation schemes in Table I.

A. Transition rate calculation:
interference of virtual excitation paths

The dipole moment matrix after taking spin-orbital (SO)
and spin-spin (SS) interaction into account can be written as

p̂
p0

=
(−F21x̂ F21ŷ F22x̂ F22ŷ −F23ŷ F23x̂

F21ŷ F21x̂ −F22ŷ F22x̂ F23x̂ F23ŷ

)
.

(5)

TABLE I. The configurations of the four gate operation schemes.
We list the driving light frequency and polarization and the collection
path polarizer orientation for each scheme. Polarizations that appear
in brackets are alternatives to the ones that appear with no brackets.

Gate Drive Drive Collection path
schemes frequency polarization filter polarization

M1 Magic point x̂ (ŷ) ŷ (x̂)
M2 Magic point x̂ + ŷ (x̂ − ŷ ) x̂ − ŷ (x̂ + ŷ )
M3 Magic point x̂ + ŷ (x̂ − ŷ ) x̂ + ŷ (x̂ − ŷ )
B1 Balanced point x̂ (ŷ) ŷ (x̂)

Here, p0 is the scale of the dipole moment; the matrix is
written in the basis p̂ij = 〈gi | p̂ |ej 〉, where i = 1 for |g2〉,
i = 2 for |g3〉, and j = 1 to 6 for excited states |e1〉 to |e6〉
and the factors F21, F22, and F23 are three dimensionless
parameters from the microscopic NV center Hamiltonian,
F21 = 0.7062, F22 = 0.0363, and F23 = 1/

√
2 (see Ref. [20]

and B for details).
The scattering transition rates between the states |g2〉 and

|g3〉 can be calculated using second-order Fermi’s golden rule.
According to Eq. (5), if the driving light is linearly polarized
along x̂ or ŷ direction, the photons from state-preserving tran-
sitions have the same polarization as the incoming light, while
the photons from the state-flipping transitions have orthogonal
polarization. Therefore, the state-flipping scattering photons
can be distinguished from state-preserving scattering photons
by polarization. In general, the result of perturbation theory
can be expressed as

|gj 〉 |σ̂1〉i Hscatter−−−→ A
σ̂1
p,j |gj 〉 |σ̂1〉o + A

σ̂1
f,j |gk〉 |σ̂2〉o , (6)

where j, k = 1, 2 and j 	= k, A’s represent the transition
amplitudes, the incoming drive light is in the polarization
state σ̂1, and the outgoing light in the waveguide is in the
polarization state σ̂1 or σ̂2 [22].

Let us consider the case in which the driving light is
linearly polarized along either x̂ or ŷ direction, and hence
〈σ̂1|σ̂2〉 = 0. We present the generic case in C. Assuming the
driving light frequency is νd , based on the dipole moment ma-
trix, the state-preserving transition amplitudes can be worked
out as

Ax
p,2

A
(x)
0

= A
y

p,3

A
(y)
0

= 1

�1
F 2

21 + 1

�3
F 2

22 + 1

�6
F 2

23,

Ax
p,3

A
(x)
0

= A
y

p,2

A
(y)
0

= 1

�2
F 2

21 + 1

�4
F 2

22 + 1

�5
F 2

23,

(7)

where the �i = εe,i − εg − hνd is the energy mismatch, εe,i

is the energy of the excited state |ei〉, and εg are the energy
of the ground states |g2〉 and |g3〉. As we shift the driving
light frequency νd , the energy detuning of each excited level
(�i) changes. Two scale factors, A

(x)
0 and A

(y)
0 , are defined as

A
(σ )
0 = p2

0Ed,σE0u0, where Ed,σ is the driving light electric
field along the σ̂ direction, E0 = √

hνd/(2ε0) is the electric
field associated with a single photon in the waveguide, and
u0 is the normalized waveguide mode profile at the location
of the NV centers [see Eq. (C1) in C]. We assume that the
electric fields of the two guided modes have the same u at the
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location of the NV centers. In C, we show that there is a region
inside the waveguide where the two modes have balanced
coupling to the NV centers. See C for details. In the following
discussion, we assume these two parameters, A

(x)
0 and A

(y)
0 ,

are equal. We also notice that the equality relations

Ax
p,2

A
(x)
0

= A
y

p,3

A
(y)
0

,
A

y

p,2

A
(y)
0

= Ax
p,3

A
(x)
0

(8)

hold if | 〈g2| p̂ |ei〉 | = | 〈g3| p̂ |ei〉 | for all excited states.
Similarly, the state-flipping transition amplitudes are

Ax
f,2

A
(x)
0

= A
y

f,3

A
(y)
0

= − 1

�1
F 2

21 − 1

�3
F 2

22 + 1

�6
F 2

23,

Ax
f,3

A
(x)
0

= A
y

f,2

A
(y)
0

= 1

�2
F 2

21 + 1

�4
F 2

22 − 1

�5
F 2

23.

(9)

Note that these two equality relations
Ax

f,2

A
(x)
0

= A
y

f,3

A
(y)
0

and
A

y

f,2

A
(y)
0

=
Ax

f,3

A
(x)
0

do not rely on the special symmetry in dipole moment

elements. We plot the magnitudes of the right-hand side of
Eqs. (7) and (9) in Fig. 3 as we shift the driving light frequency
νd .

B. M1 two-qubit gate scheme: Magic frequency, x̂-polarized
drive light

As we shift the driving light frequency νd , we notice that
there is a magic point where both state-preserving transition
rates are highly suppressed because of the destructive inter-
ference between the virtual paths through the different excited
states (see Fig. 3).

When we use an x̂ polarized driving light, the scattered
photons from state-preserving transitions are polarized along
the x̂ direction, while the polarization of the photons from
state-flipping transitions are orthogonal, i.e., along ŷ. We
can use a polarizer to further filter the state-flipping photons
from the state-preserving photons. Heralding on the photons
coming through the polarizer, we achieve a two-qubit gate on
the NV centers. This is our proposed gate scheme M1.

At the magic frequency, the transition amplitudes satisfy
Ax

p,2 = −Ax
p,3 > 0, Ax

f,2 < 0, and Ax
f,3 > 0. Therefore, we

define Ax
p,2 = −Ax

p,3 = Ap > 0 and define

A1 ≡ ∣∣Ax
f,2

∣∣ = −Ax
f,2, A2 ≡ ∣∣Ax

f,3

∣∣ = Ax
f,3. (10)

Since the state-preserving transition amplitudes satisfies
Ax

p,2 = −Ax
p,3 > 0, we can also define Ap = Ax

p,2 = −Ax
p,3.

At the magic frequency, however, the two state-flipping
transition amplitudes are not balanced. These two unbalanced
transition amplitudes cause the resulting gate to be slightly
nonunitary. Assuming the polarizer is perfect and the right
detector captures the heralding photon, the two-qubit gate is
described by the matrix

G(1),ub
r =

⎛
⎜⎝

0 A2 iA2 0
−A1 0 0 iA2

−iA1 0 0 A2

0 −iA1 −A1 0

⎞
⎟⎠ (11)

in the basis |g2; g2〉, |g2; g3〉, |g3; g2〉, and |g3; g3〉. If we have
two balanced state-flipping transitions, i.e., A1 = A2, after

proper normalization, the gate operation is a two-qubit unitary
gate, and it can be written as

G(1),b
r = 1√

2

⎛
⎜⎝

0 1 i 0
−1 0 0 i

−i 0 0 1
0 −i −1 0

⎞
⎟⎠, (12)

where we write down the gate operation in the same basis as
Eq. (11). Notice that this gate operation is different from the
one shown in Eq. (1). This is because of the negative state-
flipping transition amplitude Ax

f,2. This gate is also equivalent
to CZ gate combining with single qubit gates as

G(1),b
r = 1 + i√

2
[(S−1H ) ⊗ (SH )]CZ[(HS−1) ⊗ (HS)],

(13)

where S, H are the single-qubit phase gate and Hadamard gate
shown in Eq. (4). When the two transition amplitudes are not
balanced, i.e., A1 	= A2, the gate operation shown by Eq. (11)
is not unitary.

We calculate the entanglement fidelity of our two-qubit
gate. Notice that both the entanglement fidelity and the av-
erage fidelity, which can be relatively easily calculated, it is
proven to be related [23,24]. Here, we use the entanglement
fidelity for the quantum channel to evaluate the quality of our
gate [25]. Consider a quantum channel E acting on quantum
system Q. Suppose there is another quantum system R and
there is a maximally entangled state |φ〉 on system QR. The
entanglement fidelity is defined as

Fe(EQ) = 〈φ| [IR ⊗ EQ](|φ〉 〈φ|) |φ〉 , (14)

where IR is the action of the identity operation on the system
R and EQ is the action of the quantum channel on the system
Q. In our scenario, we considered a two-qubit gate operation
instead of a quantum channel to transfer a quantum state. We
adapt the above definition to the entanglement fidelity of an
imperfect quantum gate operation G as compared to the ideal
quantum gate operation U via

Fe(UQ,GQ) = 〈φ| [IR ⊗ (U†
Q ◦ GQ)](|φ〉 〈φ|) |φ〉 , (15)

where UQ is the desired unitary gate operation on system
Q, GQ is the nonideal gate operation, and notation ◦ stands
for composition of gate operations. Note that the quantum
operation G should be trace preserving, though it may be
nonunitary. For example, the quantum operation G, corre-
sponding to the gate G(1),ub

r , on the system density operator
ρ is

G (1),ub
r (ρ) = G(1),ub

r ρ
[
G(1),ub

r

]†
Tr

[
G

(1),ub
r ρ

[
G

(1),ub
r

]†] . (16)

To apply the definition above to a two-qubit system, we
need another two-qubit system in order to construct a max-
imally entangled state over the four qubits. We choose the
state |φ〉 = ∑4

j=1
1
2 |jR〉 |jQ〉, where |j 〉 is |g2; g2〉, |g2; g3〉,

|g3; g2〉, |g3; g3〉 for j = 1 to 4 on corresponding two-qubit
systems. With the transition amplitudes calculated at the
magic frequency as A1 ≈ 0.1696 and A2 ≈ 0.2252, the en-
tanglement fidelity of our gate operation shown in Eq. (11)
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is

Fe

(
G (1),b

r ,G (1),ub
r

) = (A1 + A2)2

2
(
A2

1 + A2
2

) ≈ 0.981. (17)

C. M2 and M3 two-qubit gate schemes:
Magic frequency, x̂ ± ŷ-polarized drive light

In this subsection, we discuss two schemes, M2 and M3, to
perform the two-qubit gate operation at the magic frequency.
In the M2 scheme, we choose (x̂ + ŷ) polarized driving light
with a (x̂ − ŷ) polarizer (mode filter) on the collection path. In
the M3 scheme, we also choose (x̂ + ŷ) polarized diving light
but use (x̂ + ŷ) polarizer. Scheme M2 results in a slightly
nonunitary gate with higher success probability as compared
to scheme M3. Scheme M3, on the other hand, results in a
two-qubit gate that is exactly unitary but has a low success
probability. We note that similar schemes can be constructed
with the alternative choice of (x̂ − ŷ) polarized drive light.

To understand the gate operation when we rotate the driv-
ing light polarization, we need to know the scattered photon
polarization. Suppose the driving photon is in state |σ̂d〉 =
cos(θ ) |x̂〉i + sin(θ )eiφ |ŷ〉i . According to Eq. (6), if an NV
center is initialized in |g2〉 state, the final states of the NV
center and the scattered photon are

|g2〉 ⊗ |σ̂d〉 Hscatter−−−→ |�2;σ̂d
〉

= |g2〉
[

cos(θ )Ax
p,2 |x̂〉 + sin(θ )eiφA

y

p,2 |ŷ〉 ]
+ |g3〉

[
cos(θ )Ax

f,2 |ŷ〉 + sin(θ )eiφA
y

f,2 |x̂〉 ]
, (18)

where we use notation |�2,σ̂d
〉 to show the final state of the NV

center and the scattered photon when the initial state of NV
center is |g2〉 and the drive light is |σ̂d〉. Using the σ̂d polarized
driving light to pump the transition from a single NV center
in state |g2〉, the state-preserving scattered photon is in state
|σ̂ p

2 〉 ∝ cos(θ )Ax
p,2 |x̂〉 + sin(θ )eiφA

y

p,2 |ŷ〉 up to a normaliza-
tion constant, while the state-flipping scattered photon is
in state |σ̂ f

3 〉 ∝ cos(θ )Ax
f,2 |ŷ〉 + sin(θ )eiφA

y

f,2 |x̂〉. Similarly,
the state of the photons from the scattering process with
initial state |g3〉 are |σ̂ p

3 〉 ∝ Ax
p,3 cos(θ ) |x̂〉 + A

y

p,3 sin(θ ) |ŷ〉
for state-preserving photons and |σ̂ f

3 〉 ∝ Ax
f,3 cos(θ ) |ŷ〉 +

A
y

f,3 sin(θ )eiφ |x̂〉 for state-flipping photons.
As we rotate the driving light from the x̂ to ŷ directions,

the scattered photons from two state-flipping transitions do
not have the same polarization, i.e., 〈σ̂ f

2 |σ̂ f

3 〉 	= 1 after the
proper normalization of states |σ̂ f

2 〉 and |σ̂ f

3 〉. This occurs
because the transition amplitudes Ax

f,2 = A
y

f,3 	= A
y

f,2 = Ax
f,3.

Therefore, we need a polarizer on the collection path to erase
the quantum information carried by the state-flipping photons.
If the NV center in state |gi〉 is pumped with |σ̂d〉 drive light
and the polarizer in the collection path only allows photons in
the state |p〉 = − sin(α) |x̂〉o + cos(α)eiβ |ŷ〉o, then the final
state of the NV center heralded by a photon detection is
|ψp̂

i,σ̂d
〉 ∝ 〈p |�i;σ̂d

〉.
By rotating the driving light polarization to the direction

(x̂ + ŷ), i.e., |σ̂d〉i = |+〉 = 1√
2
(|x̂〉i + |ŷ〉i ), we balance the

state-flipping transition rates. In this case, the state-preserving
photons are polarized along (x̂ − ŷ) direction, and the state-
flipping photons are polarized at a small angle ±θ to the

FIG. 4. Polarization diagram for drive light polarized along (x̂ +
ŷ ). State-preserving scattered photons are polarized along (x̂ − ŷ ).
State-flipping scattered photons are polarized in a direction ±θ away
from (x̂ − ŷ ) (the sign being determined by the initial state of the
NV center).

(x̂ − ŷ) direction, the sign being determined by the initial
state of the NV center (see Fig. 4).

In scheme M2, we erase quantum information carried by
the state-flipping photon by inserting a polarizer along the
(x̂ − ŷ) direction in the collection path. In scheme M3, we
use (x̂ + ŷ) polarizer instead.

We now analyze scheme M2 and come back to scheme
M3 below. The polarizer only allows photons in the state
|p〉 = |−〉 = −1√

2
(|x̂〉o − |ŷ〉o) to reach the detector. Using the

relation of the transition amplitudes in Eq. (10), the transfor-
mation of a single NV center state after the detector captures
a heralding scattered photon is described by

Ts = Ā√
A2

p + Ā2

(
Ap/Ā −1

1 −Ap/Ā

)
(19)

in the basis |g2〉 and |g3〉, where Ā is the average state-flipping
transition amplitude defined as Ā = (A1 + A2)/2.

Again, assuming the right detector captures a photon, the
two-qubit gate can be described by the matrix

G(2)
r = Ā

N

⎛
⎜⎜⎜⎝

−(1+i)Ap

Ā
1 i 0

−1 (1−i)Ap

Ā
0 i

−i 0 (i−1)Ap

Ā
1

0 −i −1 (1+i)Ap

Ā

⎞
⎟⎟⎟⎠ (20)

in the basis of |g2; g2〉, |g2; g3〉, |g3; g2〉, and |g3; g3〉, where
the normalization constant is defined as N2 = 2(A2

p + Ā2).
Note that this gate is still not unitary. The nonunitarity is
due to the existence of the residual state-preserving photons
that cannot be filtered out from the scattered light. However,
since we are working at the magic frequency of the driving
light where the state-preserving transitions are highly sup-
pressed, the gate unitarity is only slightly broken. By the same
argument as in Sec. III B, with state-preserving transition
amplitude Ap ∼ 0.0278, the entanglement fidelity of this gate
is

Fe = Ā2

Ā2 + A2
p

∼ 0.981. (21)

Since the polarization of the state-flipping photon is not
aligned to the (x̂ − ŷ) direction exactly, the existence of the
polarizer causes the desired photons to have a loss proba-
bility, which decreases the gate success probability. In an
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ideal experimental setup, the gate operation fails if the first
state-flipping photon fails to pass the polarizer. Therefore, we
calculate the probability that a photon emitted from the NV
centers successfully passes the polarizer to estimate the gate
success probability. This probability is given by

P− = 〈−| TrNV(ρ) |−〉 = Ā2 + A2
p(

A2
1 + A2

2

)
/2 + A2

p

, (22)

where ρ is the density operator for the NV centers and the
scattered photon at the time when the scattering process has
occurred but the photon has not gone through the polarizer,
|−〉 = 1√

2
(− |x̂〉 + |ŷ〉) is the photon state that are allowed to

pass the polarizer, and TrNV is the partial trace over all degrees
of freedom of NV centers. In this case, the success probability
of our gate is 98.1%.

Scheme M3 is similar to scheme M2, except that we orient
the polarizer along (x̂ + ŷ) direction to only allow photons
in state |p〉 = |+〉 = 1√

2
(x̂ + ŷ) to pass the polarizer. In this

case, the gate is perfectly unitary (when operated at the magic
frequency). Following arguments similar to the M2 scheme
above, we find that the two-qubit gate, conditioned on a click
in the right detector, is described by the matrix

G(3)
r = 1√

2

⎛
⎜⎝

0 1 i 0
1 0 0 i

i 0 0 1
0 i 1 0

⎞
⎟⎠. (23)

Note that this gate operation exactly matches Eq. (1).
However, since the scattered photons from state-flipping

transitions are nearly polarized along the (x̂ − ŷ) direction,
the component along the direction (x̂ + ŷ) is small, which
causes a low gate success probability as most state-flipping
photons are stopped by the polarizer. Similar to the previous
case, the gate success probability is calculated as

P+ = 〈+| TrNV (ρ) |+〉 = (A1 − A2)2/4(
A2

1 + A2
2

)
/2 + A2

p

≈ 1.9%.

(24)

D. B1 two-qubit gate scheme: Balance frequency drive light

Because of the orthogonality of the dipole moment matrix
discussed at the beginning of Sec. III B, the scattered photons
from state-preserving and state-flipping transitions can be
fully distinguished by polarization if the driving light is along
x̂ or ŷ directions. Therefore, besides the magic frequency
of the driving light, we can find a frequency point for the
driving light to give us balanced state-flipping transitions and
use a polarizer to discard the state-preserving photons. This
balanced point is shown in Fig. 3 by the blue arrow. If the
driving light is polarized along the x̂ direction, at the bal-
ance frequency, the state-flipping transition amplitudes satisfy
Ax

f,2 = Ax
f,3. Combining this fact with a polarizer along the ŷ

direction in the collection path, if the right detector captures
the scattered photon, the two-qubit unitary gate is described

by the matrix

G(4)
r = 1√

2

⎛
⎜⎝

0 1 i 0
1 0 0 i

i 0 0 1
0 i 1 0

⎞
⎟⎠ (25)

in the same basis as Eq. (11).
Unlike in scheme M3 that was described in the previous

subsection, in scheme B1 the state-preserving transition rate is
comparable to the state-flipping transition rate. We now point
out that the existence of state-preserving transitions, though
the scattered photons from these transitions are completely
filtered out, decoheres the initial states of the NV centers.

To understand the decoherence mechanism associated with
the state-preserving transitions, we construct the master equa-
tion to describe the time evolution of the NV center. We
assume the NV centers are driven by a x̂ polarized light and
the polarizer in the collection path is along ŷ direction. For
simplicity, we assume the emitted photons only couple to
the right propagating modes of the waveguide and are de-
tected by the right detector. Since the state-preserving photons
are polarized along ŷ, while the state-flipping photons are
polarized along x̂, they couple to two different waveguide
modes (see Appendix A for details). We further assume the
driving light is weak and far detuned from the excited states,
so we can construct an effective Hamiltonian to describe the
scattering process where only ground states |g2〉 and |g3〉 of
NV centers appear (see C for details). Therefore, we can treat
each NV center as a two-level system. We further treat the two
waveguide modes as two thermal baths at temperature zero
and trace out the photon degrees of freedom, so that the master
equation for the NV centers is

∂tρ = B(2L̂ρL̂† − L̂†L̂ρ − ρL̂†L̂)

+ B(2ĜρĜ† − Ĝ†ρĜ − ĜρĜ†),

L̂ = A
(x)
f,2

(
iσ

(1)
23 + σ

(2)
23

) + A
(x)
f,3

(
iσ

(1)
32 + σ

(2)
32

)
,

Ĝ = A
(x)
p,2

(
iσ

(1)
22 + σ

(2)
22

) + A
(x)
p,3

(
iσ

(1)
33 + σ

(2)
33

)
, (26)

where L̂ and Ĝ are two jump operators describing the state-
flipping transitions and state-preserving transitions respec-
tively, the operator σ

(i)
jk is the operator acting on ith NV center

and flips NV state from |gj 〉 to state |gk〉, i.e., σ
(i)
jk = |gk〉 〈gj |

for ith NV center, and B = 2πneff

ch̄2 is a constant, where neff is
the mode effective refractive index [see Eq. (C10) in C]. We
find that the second term in the master equation involving
Ĝ causes the off-diagonal elements of the two-NV density
matrix to decay if the state-preserving transitions are not
balanced. This means that if our initial state is prepared in an
entangled state of two NV centers, the entanglement between
the two NV centers is destroyed by these undetected state-
preserving transitions, which will also limit our gate operation
time at this frequency point.

We can also calculate the gate success probability using
a method similar to the one illustrated by Eqs. (22) and (24),
which we find to be 37.4%. Note that the success probability is
a “first-photon” success probability, which means we know in
advance the scatter has happened and a single scattered photon
has already been emitted into the waveguide mode. In the
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more realistic case, we can only monitor the detector and we
have no information whether the state-preserving transitions
happens or not. Gate fidelity and success probability for this
case will be discussed in Sec. IV using quantum trajectory
method.

IV. TWO-QUBIT GATE FIDELITY
AND SUCCESS PROBABILITY

In this section, we analyze the fidelity and success prob-
ability of our proposed two-qubit gate for NV centers with
possible experimental imperfections. First of all, we notice
that NV centers have a phonon sideband which causes Raman
scatterings. However, these scattered photons do not have
same frequencies as the driving light so that we can filter out
and also monitor these photons. The existence of the phonon
sideband decreases the gate success probability but does not
decrease the gate fidelity. In the following discussion, we
ignore the phonon sideband and mainly focus on (1) the im-
perfect scattered photon collection and detection efficiency of
the experimental setup, (2) the unbalanced state-flipping tran-
sition rates, and (3) possible population loss from the |g2〉 and
|g3〉 manifold. We use quantum trajectory simulations with
continuous measurement of the scattered photons to estimate
the output state fidelity and success probability with different
gate operation schemes and photon collection strategies. In the
simulations, we use the transition amplitudes calculated at the
corresponding driving light frequency and take different types
of imperfections together into consideration.

A. Imperfect scattered photon collection and detection efficiency

Unlike the quantum entanglement proposals in
Refs. [8–12], when applying a unitary gate to two NV
centers, in general, we do not know in advance which states
these NV centers are. Therefore, the NV centers cannot be
reset back to initial input state to reapply the gate operation.
It is critical to detect the first state-flipping photon from
the two NV centers to perform the unitary gate operation
successfully. One possible error source in real experiment
for our proposed two-qubit gate is the imperfect photon
collection and detection efficiency of the experimental setup,
which we now discuss.

If the detection efficiency of the setup is imperfect, any
loss of the heralding photons indicates that undetected state-
flipping transitions occurred on either of the two qubits. After
missing one or several scattered photons, a photon detection
projects the NV centers into an undesired two-qubit state,
which degrades the gate fidelity. To estimate the quality of the
gate operation with imperfect photon detection efficiency, we
perform quantum trajectory calculation with continuous mea-
surement of the scattered photons to numerically investigate
the gate fidelity and success probability.

In our model, because we only consider the scattering be-
tween the states |g2〉 and |g3〉, we treat NV centers as two-level
systems by using the effective Hamiltonian for the scattering
process (see Appendix C for details). For simplicity, we ignore
other imperfections; i.e., our two-qubit gate is working at
a fictitious driving frequency at which two state-preserving
transitions are perfectly suppressed and the two state-flipping

transitions are balanced. Therefore, the transition amplitudes
in Eq. (26) satisfy Ax

p,2 = Ax
p,3 = 0 and Ax

f,2 = Ax
f,3 ≡ A and

thus the master equation can be written as

∂ρ

∂t
= −�

2
(L̂†L̂ρ + ρL̂†L̂ − 2L̂ρL̂†),

L̂ = iσ
(1)
23 + σ

(2)
23 + iσ

(1)
32 + σ

(2)
32 , (27)

where � = B|A|2 is the state-flipping transition rates, σ
(i)
jk =

|gk〉 〈gj | is the operator for ith NV transiting from state
|gj 〉 to state |gk〉 with j, k = 2, 3. Because in the present
consideration the two state-flipping transitions are balanced,
the output state fidelity for all possible input states should be
the same and hence the output state fidelity for a certain input
state is the gate fidelity. We choose state |ψi〉 = |g2〉 ⊗ |g2〉
as the input state. We labels the two-NV state |gi〉 ⊗ |gj 〉 as
|gi ; gj 〉.

To calculate the output state fidelity of input state |ψi〉 =
|g2; g2〉, at the beginning of each trajectory, we initialize both
NV centers in |g2〉 state and stochastically evolve the two NV
centers according to the master equation in Eq. (27) condi-
tioned on the measurement result from the detector. When a
photon is emitted from NV center, it has probability η to be
detected by the detector; otherwise, the photon is lost into the
bath. The photon detection is a projection measurement, with
the jump operator L̂ in Eq. (27) as the measurement projector.
When a scattered photon is detected by the detector, the
density matrix collapses to ρ ′ ∝ L̂ρL̂† up to a normalization
constant. It is obvious that if the detection efficiency η = 1,
the gate operation is a two-qubit unitary gate described by Gr

in Eq. (1).
The first strategy to perform the two-qubit unitary gate is

to run the trajectory until we receive a photon by the detector.
In real experiment, it is equivalent to running the experiments
until a photon is detected without limiting the collection time
window. When a photon is detected, we stop the time evolu-
tion of the trajectory and calculate the output state fidelity us-
ing the target state |ψt〉 = Gr |ψi〉 = 1√

2
(|g2; g3〉 + i |g3; g2〉).

Since we do not limit the total time to end the protocol, we
always have a positive detection result and thus the gate is
always considered as success. However, the gate fidelity suf-
fers from the missing photon cases. We ran 1000 independent
trajectories in total to build up statistics for the gate fidelity.
The gate fidelity as a function of overall photon detection
efficiency (η) is shown in Fig. 5(a). The numerical simulation
matches our expectation that as the collection efficiency drops,
it becomes more likely that the first scattered photon is missed,
and hence the overall output state fidelity drops. When the
collection efficiency η = 1, the fidelity is 1. The fidelity drops
to 0.5 when the overall photon detection efficiency drops to
η ≈ 0.45. Based on the proposed geometry of the diamond
waveguide, we calculate the overall collection efficiency of
the diamond waveguide to be 85% (see Appendix A for
details). At the 85% photon collection efficiency, the gate
fidelity is 0.8547 ± 0.0040.

The second strategy aims to improve gate fidelity with an
imperfect photon detection efficiency, by limiting the maxi-
mum photon collection time window. This will help to rule
out missing photon cases and improve the fidelity of the two-
qubit gate operation. However, as we decrease the collection
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FIG. 5. (a) Unitary gate fidelity, F , drops as overall scattered photon collection efficiency, η, decreases with the first gate operation strategy
(see main text). The missing scattered photon cases degrade the gate fidelity when photon detection efficiency is imperfect. Using the second
gate operation strategy (see main text), the gate fidelity (b) and success probability (c) are investigated numerically as a function of maximum
collection time window (�τ ). The overall photon detection efficiency is 85%.

window, it is possible not to detect any photons within the
time bin, and hence the gate success probability is expected
to drop as we shrink the collection window. We numerically
investigate the output state fidelity and success probability as
we change the duration of collection window. We use the same
quantum trajectory method with a collection efficiency η to
stochastically time evolve the master equation in Eq. (27).
We still use the state |ψi〉 = |g2; g2〉 as the input state and
|ψt 〉 = 1√

2
(|g2; g3〉 + i |g3; g2〉) as the target state. If we get a

positive detection result within the collection window, we stop
the trajectory and measure the output state fidelity. Otherwise,
if no scattered photon is detected until the end of the collection
window, we reckon the gate fails and stop the trajectory. The
numerically calculated average gate fidelity and gate success
probability with η = 0.85 as we change the collection window
are plotted in Figs. 5(b) and 5(c), respectively. The average
gate fidelity improves as we shrink the collection window, but
the success probability drops, as we expected. For example,
if we choose the collection window ��τ = 0.1, the fidelity
can be improved to 0.9857 ± 0.0007; however, the success
probability of the gate decreases to 0.155. To conclude, this
gate operation strategy trades the successful probability for
high gate fidelity.

We want to point out that Ref. [26] shows that constructing
a graph or cluster state requires a minimum success probabil-
ity of 1/3. In our numerical simulations, this threshold can be
met by setting the collection window to be ��τ = 0.3, which
results in the gate success probability of 0.397 and an average
output state fidelity of 0.9588 ± 0.0013.

B. Unbalanced state-flipping transitions

In the above calculation, we assumed that the two state-
flipping transition rates are balanced. However, this assump-
tion does not have to hold. For example, in scheme M1,
which we discuss in Sec. III B, the transition rates for the
two state-flipping transitions are different. Furthermore, the
state-flipping transition rates of two NV centers may also be
different (e.g., due to different coupling strength to the waveg-
uide modes). In Sec. III B, we considered the gate fidelity
when the state-flipping transitions rates are not equal, but two
NV centers are identical. In this subsection, we consider a
more general case when the two state-flipping transitions of
two NV centers emit indistinguishable scattered photons, but

the rates can be different. We analyze the gate operation and
the gate fidelity.

When the state-flipping transition rates are different from
one NV center to the other one, we use A

(i)
1 and A

(i)
2 to note

the transition amplitude for state-flipping transitions from |g2〉
to |g3〉 and |g3〉 to |g2〉 of ith NV center. Here we assume there
is no state-preserving transitions and detection efficiency is 1
to only focus on the imperfection caused by the unbalanced
state-preserving transitions. We also assume the state-flipping
transition amplitudes are all positive.

Similar to the previous subsection, we assume the scattered
photons only couples to the right-propagating modes, and thus
the master equation of the two NV centers in this case is
similar to the master equation shown in Eq. (26) as

∂ρ

∂t
= −B

2
(L̂†L̂ρ + ρL̂†L̂ − 2L̂ρL̂†),

L̂ = iA
(1)
1 σ

(1)
23 + A

(2)
1 σ

(2)
23 + iA

(1)
2 σ

(1)
32 + A

(2)
2 σ

(2)
32 . (28)

When a photon is captured by the detector, it corresponded to
a projection measurement onto the NV centers which is de-
scribed by the jump operator L̂. Therefore, the gate operation
can be described by the matrix

L̂ =

⎛
⎜⎜⎜⎜⎝

0 A
(2)
2 iA

(1)
2 0

A
(2)
1 0 0 iA

(1)
2

iA
(1)
1 0 0 A

(2)
2

0 iA
(1)
1 A

(2)
1 0

⎞
⎟⎟⎟⎟⎠ (29)

in the same basis as Eq. (11). We can use the same method
as discussed in Sec. III B to estimate the gate fidelity. We can
define Ā as the average of these four state-flipping transition
amplitudes as Ā = ∑

i,j A
(i)
j /4 and the derivations of each

specific transition amplitude from this average amplitude by
δi,j = A

(i)
j − Ā. When the four transition amplitudes are not

severely unbalanced, i.e., |δi,j /Ā| � 1, we can expand the
output state fidelity in series of δi,j /Ā. In general, the gate
fidelity will drop linearly as δ2

i,j /Ā
2 increases. As we see from

Sec. III B, when A
(1)
i = A

(2)
i , the deviation of the transition

amplitudes δi,1 = −δi,2 ≡ δ. The gate fidelity can then be
expanded as

F = Ā2

Ā2 + δ2
∼ 1 − δ2

Ā2
. (30)
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Let us also discuss the case when two state-flipping transi-
tion amplitudes for a single NV center are balanced; however,
the same transitions for different NV centers have a constant
transition amplitude offset. In this case, we assume A

(1)
j =

Ā − δ, and A
(2)
j = Ā + δ. The gate fidelity is also given by

Eq. (30).

C. Overall output state fidelity

In this subsection, we evaluate the gate quality by numeri-
cally simulating the output state fidelity and success probabil-
ity with the four possible gate operation schemes discussed in
Sec. III combined with the two proposed collection strategies
discussed in Sec. IV A. The four gate operation schemes are
summarized in Table. I. The two collection strategies are
collecting the photon (1) without and (2) with a maximum
collection window �τ .

With all four gate operation schemes, we explore the output
state fidelity when state |ψ1〉 = |g2; g2〉, |ψ2〉 = |g2; g3〉 and
|ψ3〉 = 1√

2
(|g2; g2〉 + i |g3; g3〉) as the gate input states using

quantum trajectory simulation with continuous measurement
on the scattered photons. We set the overall collection ef-
ficiency of the photons through the polarizer to 85%. The
gate average fidelity and gate success probability without
and with a maximum collection time window �τ = 0.1/�̄f

are shown in Table II. Here, �̄f is the average state-flipping
transition rates, �̄f = (A2

1 + A2
2)/2, where A1 and A2 are the

TABLE II. Output state fidelity and gate success probabil-
ity for input states |�1〉 = |g2; g2〉, |�2〉 = |g2; g3〉, and |�3〉 =

1√
2
(|g2; g2〉 + i |g3; g3〉) with the four gate operation schemes, M1,

M2, M3, and B1 (see Table I), when the photon collection efficiency
is perfect (labeled Perfect collection), imperfect with an infinite
photon collection time window (labeled η = 0.85, �̄f �τ = ∞), and
imperfect with a finite photon collection time window (labeled η =
0.85, �̄f �τ = 0.1). Note for the case of perfect collection and the
case of imperfect collection with infinite photon collection time
window that P = 1.

Perfect η = 0.85 η = 0.85
Input collection �̄f �τ = ∞ �̄f �τ = 0.1

state F F F P

M1
|�1〉 1.0 0.848 ± 0.004 0.9896 ± 0.0006 0.106
|�2〉 0.981 0.837 ± 0.005 0.9704 ± 0.0005 0.164
|�3〉 0.981 0.824 ± 0.005 0.9665 ± 0.0006 0.156
M2
|�1〉 0.981 0.819 ± 0.005 0.9683 ± 0.0006 0.172
|�2〉 0.981 0.824 ± 0.005 0.9678 ± 0.0006 0.166
|�3〉 0.981 0.823 ± 0.005 0.9683 ± 0.0006 0.169
M3
|�1〉 1.0 0.255 ± 0.002 0.916 ± 0.004 0.0037
|�2〉 1.0 0.256 ± 0.002 0.902 ± 0.004 0.0035
|�3〉 1.0 0.255 ± 0.002 0.911 ± 0.004 0.0033
B1
|�1〉 1.0 0.859 ± 0.004 0.9870 ± 0.0006 0.172
|�2〉 1.0 0.857 ± 0.004 0.9842 ± 0.0007 0.153
|�3〉 1.0 0.571 ± 0.006 0.906 ± 0.004 0.150

absolute values of the state-flipping transition amplitudes at
the working frequency [see Eq. (6)]. We also listed the output
state fidelity with corresponding gate operation schemes with
perfect photon detection efficiency and infinite pump power
for reference, which set a theoretical upper bound for the
output state fidelity in the corresponding cases.

To estimate the gate fidelity of the different schemes, we
use the worst output state fidelity in Table II. M3 and B1
are two schemes that are perfectly unitary in ideal conditions.
When we do not set up a finite collection window, since the
gate operation scheme M3 suffers low success probability,
even with perfect collection efficiency, the output state fidelity
drops significantly from unity. This is because most of the
detected photons are from the long-time scatter events, i.e.,
the NV center system tends to relax to its steady state before
the heralding photon is detected. Therefore, it is equivalent to
applying the gate to the steady state of the master equation,
which gives an output state fidelity ≈0.25. If we do not limit
the collection window, the gate operation scheme B1 has
significantly different output state fidelity when the input state
is |ψ1〉 (or |ψ2〉) and |ψ3〉. This is because the undetected state-
preserving transitions decohere the input state, even though
they do not flip the NV spin states and their photons are
perfectly separated from the state-flipping photons. The input
state |ψ3〉 decoheres to an equal mixture of states |g2; g2〉
and |g3; g3〉, which makes the output state fidelity drop to
≈0.5. The finite collection time window helps to discard the
long-time detection events, which improves the output-state
fidelity significantly, especially for the gate operation scheme
M3.

Gate operation schemes M1 and M2 are not perfectly
unitary even in the ideal case. However, since the polarizer
setup has little probability to block the state-flipping photons
and the state-preserving transitions are highly suppressed
due to the magic frequency of the driving light, these two
schemes behave much better when the collection time is not
limited. When we have a finite collection window, the output
state fidelity also improves. Compared to the gate operation
schemes M3 and B1, the schemes M1 and M2 have better
output state fidelity.

We comment that schemes M3 and B1 can, in principle,
reach sufficiently high fidelity so as to overcome the error
correction threshold. This would make it possible to imple-
ment error correction codes like the surface code [27,28]. At
present, achieving this goal requires (1) significant progress
in optical single photon detectors and (2) device optimization
that is closely tied to the device fabrication process.

D. Population loss due to the transition out
of the |g2〉, |g3〉 manifold

Any process that transfers population out of |g2〉 and |g3〉
manifold, i.e., to the other states like |g1〉, results in no further
photon detections after this “leakage” transition happens. This
will degrade the success probability of the gate. There are
two possible leakage paths: (1) by the Raman scattering
process to state |g1〉 and (2) by exciting to the NV electronic
excited states then by the nonradiative relaxation through the
metastable states of NV centers to |g1〉.
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FIG. 6. We study the population leakage from state |g2〉 and |g3〉
manifold into state |g1〉 caused by spin-Raman transitions. We plot
the transition rate under the same pumping laser as in Fig. 3. The
magic frequency is pointed out by the red dashed arrow while the
balance frequency is labeled by the blue solid arrow. The population
leakage rate by spin-Raman transition is much slower than the state-
flipping transitions shown in Fig. 3 and hence we do not expect to
see a large population within the detection window.

To examine the effect of spin Raman transition from logic
states |g2〉 and |g3〉 to state |g1〉, we refer to the dipole
matrix in Eq. (B7) in B and calculate the leakage transition
amplitudes as

Ax
l,2

A
(x)
0

= 1

�1
F21F11 − 1

�3
F22F12,

A
y

l,2

A
(y)
0

= − 1

�1
F21F11 + 1

�3
F22F12,

Ax
l,3

A
(y)
0

= − 1

�2
F21F11 + 1

�4
F22F12,

A
y

l,3

A
(x)
0

= − 1

�1
F21F11 + 1

�3
F22F12,

(31)

where F11 = 0.0513 and F12 = 0.9987 are two dimensionless
parameters from the dipole moments between eigenstates of
spin-orbit and spin-spin Hamiltonian of single NV centers
[see Eq. (B7) in B] and �i are the energy mismatch for excited
level |ei〉. If we consider the fact that the excited states |e1〉,
|e2〉, |e3〉, and |e4〉 are energetically degenerate, i.e., �1 = �2,

�3 = �4, these four transition amplitudes satisfy − Ax
l,2

A
(x)
0

=
A

y

l,2

A
(y)
0

= Ax
l,3

A
(y)
0

= A
y

l,3

A
(x)
0

. We plot the magnitude of the right-hand

side of Eq. (31) in Fig. 6, and label the “magic” point and “bal-
ance” point by red dashed and blue solid arrows, respectively.
At the balance point, the leak transition amplitudes are two
orders of magnitudes smaller than the state-flipping transition
amplitudes and hence have little impact on the gate operation
scheme B1. The population of the NV centers in ground states
|g2〉 and |g3〉 decays slowly to |g1〉 because of the existence of
the leakage transitions, which sets a maximum gate operation
window to avoid significant population loss.

At the magic point, the leak transition amplitudes are
comparable to the state-preserving transition amplitudes. Note
that this suppression is not due to the interference. Instead,
it is mainly suppressed by the small mixing of excited spin
Sz = 0 states with spin Sz = ±1 states that are caused by
the spin-spin interaction [20]. Compared to the state-flipping
transition amplitudes, the leakage transition amplitudes are
approximately ten times smaller than the state-flipping tran-
sition amplitudes. The gate operation schemes working at the
magic frequencies are not severely affected.

To quantitatively estimate the effect of the nonradiative
relaxation process, we approximate the dynamics of NV
centers with the metastable spin-singlet states as a three-level
system, ground state |0〉, excited state |1〉, and metastable state
|2〉. The transition between states |0〉 and |1〉 is driven by an
off-resonance classical laser field. The nonradiative relaxation
process from state |1〉 to metastable state |2〉 is modeled by the
coupling to a thermal optical phonon bath with temperature
zero. Therefore, the dynamics can be described by the master
equation

∂tρ = −i(2π )[−δσ00 + �R (σ01 + σ10), ρ] + Lρ,

Lρ = −�NR

2
(σ11ρ + ρσ11 − 2σ21ρσ12),

(32)

where operators σij are defined by σij = |i〉〈j |, hδ = ε1 −
ε0 − hνd is the detuning of the drive field, εi is the energy
of the state |i〉, h�R = p0Ed is the Rabi frequency, p0 is
the dipole moment for the optical transition between |0〉 and
|1〉, which is approximated as p0 ≈ 5.2 Debye (see C and
Ref. [29]), Ed is the driving light electric field, and �NR is
the nonradiative relaxation rate from state |1〉 to |2〉.

We estimate the nonradiative relaxation rate �NR by the
lifetime of the excited levels of NV centers. In Ref. [21],
a six-level model is introduced to describe the NV center
electronic structure. The excited manifold is simplified as
two states with quantum number Sz = 0 and Sz = ±1, with
measured lifetimes 12.0 and 7.8 ns, respectively [30]. We
further assume that the excited state Sz = 0 has no relaxation
path to the metastable state and the radiative relaxation from
excited states back to ground states of NV centers are the
same, and hence the nonradiative relaxation rate from excited
state Sz = ±1 can be estimated using the difference of the
lifetimes of these two excited states as �NR ≈ 44.9 MHz.

We approximate the detuning by the smallest detuning
of our driving light, to one of the four excited states with
Sz ∼ ±1, i.e., |e1〉, |e2〉, |e5〉, and |e6〉. If our proposed gate
is working at the magic frequency of the driving light, the
detuning δ ≈ 3.95 GHz for a ŷ-polarized driving light and
5.11 GHz for a x̂-polarized driving light. Clearly, �NR/δ � 1,
so that we work in the dressed-state basis and then treat the
Lindblad term Lρ in Eq. (32) as a perturbation.

In our previous treatment of scattering transitions, we
implicitly assumed that the Rabi frequency is small com-
pared to detuning, i.e., �R/δ � 1. The dressed-state basis
for the Hamiltonian in Eq. (32) is |−〉 ∼ |0〉 − �R

δ
|1〉 and

|+〉 ∼ |1〉 + �R

δ
|0〉. If all the population is in state |0〉 at

the beginning, we would expect most of the population will
be remain in the state |−〉 after we start driving the Rabi
oscillation. Since the nonradiative relaxation removes the
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TABLE III. Summary of the parameters we used for estimating the effect of the nonradiative relaxations. We also listed the smallest
frequency detuning when the drive light is at the magic frequency and the balanced frequency and the corresponding ratio between lower
state-flipping transition rate vs the nonradiative relaxation rate, �t /�−.

NV-center electronic dipole moment p0 5.2 Debye

Nonradiative relaxation rate for NV excited states �NR 44.9 MHz
x̂-polarized drive at magic frequency Detuning δ 5.11 GHz

Transition rates ratio �t /�− 1.63
ŷ-polarized drive at magic frequency Detuning δ 3.95 GHz

Transition rates ratio �t /�− 0.975
x̂-polarized drive at balance frequency Detuning δ 3.45 GHz

Transition rates ratio �t /�− 0.744
ŷ-polarized drive at balance frequency Detuning δ 2.57 GHz

Transition rates ratio �t /�− 0.412

population in state |1〉 only, the decay rate for the population

in state |−〉 is �− ∼ �NRσ11 |−〉 〈−| σ11 ∼ �NR
�2

R

δ2 ∝ E2
d . As

we show in C, the state-flipping transition rate at the magic
point is �t ∼ �0 ∝ E2

d , and we can calculate the ratio between
the lower state-flipping transition rates versus the nonradiative
relaxation rate as �t /�− ≈ 1.63 and 0.975 for x̂- and ŷ-
polarized driving light respectively, which are independent of
the driving strength Ed . These two ratios set a hard limit on
the collection time window of the scattered photon before the
population is lost.

We perform the same calculation at the balance point,
and determine the hard limit on the collection window. As
the balance point is located between the excited states |e5〉
and |e6〉, this balance frequency for gate operation is more
vulnerable to population loss. The transition ratio �t /�− is
calculated as 0.744 and 0.412 for x̂- and ŷ-polarized driving
light at balance point. We summarize the parameters we used
and the results in Table III for reference.

V. SUMMARY AND OUTLOOK

In this paper, we proposed a two-qubit unitary quantum
gate to achieve quantum logic operations using two NV
centers. We theoretically analyzed how a photon is scattered
by an NV center, taking care of the interference between
different excitation paths. We found that for scattering rates
between two electronic spin states (|Sz = ±1〉) there are two
special frequencies for the driving light: a magic frequency at
which the state conserving scattering rate is suppressed and a
balanced frequency at which the state-flipping transition rates
are equal. We analyzed the gate unitarity, fidelity, and success
probability for each of the schemes with possible experimen-
tal imperfections. When the photon collection efficiency is
≈0.85, the gate fidelity of the most reliable scheme can reach
≈0.97 when we impose a photon collection window 0.1/�̄f ,
where �̄f is the averaged state-flipping transition rate. While
decreasing the photon collection window can improve the gate
fidelity, the corresponding decrease in the success probability
will have to be mitigated by some other means to ensure we
stay above the threshold for cluster or graph-state quantum
computing. The proposed scheme could also be extended to
other qubits such as silicon vacancy in diamond or to localized
vibronic states of the NV or other defect centers where the

larger energy splittings can allow for quantum computing even
at room temperature.
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APPENDIX A: WAVEGUIDE MODES AND THE NV
CENTER COUPLING STRENGTH

In this appendix, we analyze the triangular diamond
waveguide and its mode profiles. The triangular diamond
waveguide we proposed in our paper has a 300-nm edge. The
diamond waveguide can be experimentally fabricate using
anisotropic plasma etching [31]. The mode profiles are cal-
culated by solving the eigenproblem of discretized transverse
Maxwell equation using the Lumerical Mode solution solver.
There are only two degenerate guided modes at the magic
frequency. The mode profiles are shown in Fig. 7. The modes
are normalized according to

∫
dxdyεr (x, y) �E∗

m(x, y) · �En(x, y) = δm,n, (A1)

where indices m and n are for modes and εr is the relative
permittivity.

To calculate the light collection efficiency of the diamond
waveguide, we treat the NV center as a dipole moment �p =
|p| · p̂ located at position �r0, where p̂ is the unit vector along
the dipole moment. We only consider the dipole interaction
between NV centers and the modes inside the waveguide.
If we have a well-defined mode in the cross section, whose
electric field is �En(�r ), the emission rate from the NV center
to this mode �n is proportional to |p|2 · | �En(�r0) · p̂|2. For a
complete set of orthonormal modes in space with frequency
of emission light { �En(�r )}, the total rate can be calculated
as �total = ∑

n |p|2 · | �En(�r0) · p̂|2. Therefore, the collection
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FIG. 7. The mode profiles of the triangular diamond waveguide. The waveguide has a 300-nm edge. The diamond waveguide supports two
degenerate propagating modes. Mode 1 Ex , Ey , and Ez components are plotted in panels (a) to (c), while mode 2 components are plotted in
panels (d) to (f).

efficiency of the waveguide is

η(�r0) =
∑′

n | �En(�r0) · p̂|2∑
n | �En(�r0) · p̂|2 , (A2)

where
∑′

n is the summation over the guided modes only and∑
n is the summation over all the modes in the complete set

of orthonormal modes.
In the numerical approach, we cannot solve an infinite

large region. Instead, we solve the modes using a finite
size cross-section region. The boundary condition around the
region is chosen as perfect matched layer (PML) to simulate
the infinite space. We plot the collection efficiency of the
diamond waveguide with a dipole moment pointing along x,
y, and z directions at different positions in this cross section
in Fig. 8. From the figure, the collection efficiency for a
NV center whose electric dipole moment is along the x or
y direction is η ≈ 0.86. However, when the dipole moment
is pointing along the z direction, the collection efficiency is
poor because a dipole moment pointing along the z direction
mainly radiates in a direction transverse to the direction of the
waveguide.

Assuming the NV center is centered in the waveguide, i.e.,
x, y ∼ 0, and the NV center is orientated as Fig. 1(c) shows,
the optical dipole moment is along the transverse direction
of the waveguide. According to Fig. 8, the NV center optical
transitions with x̂ dipole moment strongly couples to the mode
1 and almost no coupling to mode 2, while the transitions with
ŷ dipole moment strongly couples to the mode 2 and almost
no coupling to mode 1.

APPENDIX B: DIPOLE MOMENT OF NV CENTERS
WITHOUT EXTERNAL MAGNETIC FIELD

In this section, we discuss the NV center dipole moment
matrix for optical transitions between electronic ground and
excited state of NV centers with spin orbit, spin-spin interac-
tions, and strain field in diamond crystal. We assume there is
no magnetic field applied to the NV center. Here, we follow
the notation of Ref. [20], which gives a detailed review of the
electronic properties of negatively charged NV centers. We
want to stress that the directions x̂, ŷ, and ẑ in this section
are the intrinsic directions of an NV center. The direction ẑ is
defined as the axial direction of NV center, i.e., the direction
along the nitrogen atom and the vacancy site, which is the
[111] direction of the diamond crystal.

The NV center electronic fine states structure is shown
in Fig. 3(a) of our main paper. Here we assume the dipole
moment operator �̂p between the molecule orbits of NV centers
are

〈ex | �̂p |a1〉 = p0 · x̂, 〈ey | �̂p |a1〉 = p0 · ŷ, (B1)

where |a1〉, |ex〉, and |ey〉 are molecule orbits of NV centers
[20] and x̂ and ŷ are unit vectors pointing along x or y

directions. We note that the state |ey〉 has intrinsic dipole
moment and 〈ex | �̂p |ey〉 is nonzero. However, since we only
consider the transition between spin-triplet ground states and
excited states of an NV center, the assumption in Eq. (B1) is
enough. The equality of the magnitude of these two dipole
moment is guaranteed by Wigner-Echart theorem.

Using Eq. (B1) with Table 1 (and Table A.1) in Ref. [20],
we can calculate the dipole moment operators between the
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FIG. 8. The diamond waveguide collection efficiency of the Raman photon emitted from a NV center located in the cross section of the
waveguide. The NV center is modeled as a dipole moment. The black triangle labeled in the plot shows the diamond waveguide boundary. The
collection efficiencies of photons when the dipole moment is pointing along x, y, and z directions are plotted in panels (a), (b), and (c).

electronic fine levels of ground and excited states. Here we
only consider spin-1 states whose energy is inside the dia-
mond band gap. Because the dipole transition does not interact
with spin degree of freedom, the spin projection along the
z direction should be invariant. The nonzero dipole moment
operator elements between definite orbital symmetry states
are

〈A2, 1, 0| �̂p|Ex, 1, 0〉 = p0 · ŷ,

〈A2, 1, 0| �̂p|Ey, 1, 0〉 = p0 · x̂,

〈A2, 1,+1| �̂p|Ex, 1,+1〉 = p0 · ŷ,
(B2)〈A2, 1,+1| �̂p|Ex, 1,+1〉 = p0 · x̂,

〈A2, 1,−1| �̂p|Ex, 1,−1〉 = p0 · ŷ,

〈A2, 1,−1| �̂p|Ex, 1,−1〉 = p0 · x̂.

Here the states are labeled as |k, S, Sz〉, where k labels the
lattice symmetry group irreducible representations, S is the
spin quantum number, and Sz is the z direction spin projection
quantum number. These states can be found in Ref. [20],
Tables 1 and A.1. For completeness, we list them using hole
representation here:

|A2, 1, 0〉 = (|exēy〉 + |ēxey〉)/
√

2,

|Ex, 1, 0〉 = (|ā1ex〉 + |a1ēx〉)/
√

2,

|Ey, 1, 0〉 = (|ā1ey〉 + |a1ēy〉)/
√

2,

|A2, 1, 1〉 = |ēx ēy〉 ,

|Ex, 1, 1〉 = |ā1ēx〉 ,

|Ey, 1, 1〉 = |ā1ēy〉 ,

|A2, 1,−1〉 = |exey〉 ,

|Ex, 1,−1〉 = |a1ex〉 ,

|Ey, 1,−1〉 = |a1ey〉 , (B3)

where the bar denotes spin down.
Similarly, we can also find the dipole moment operators be-

tween definite spin-orbital symmetry states, which are shown
in Table 1 of Ref. [20]. The states |g1〉, |g2〉, and |g3〉 are
used to label states �SO

1,A1
, �SO

2,E,x , and �SO
2,E,y in Ref. [20]

respectively. Since these states do not mix under spin-orbit
and spin-spin interactions, we write them down explicitly here
for ease of use later:

|g1〉 = |A2, 1, 0〉 ,

|g2〉 = −1√
2

(|A2, 1, 1〉 − |A2, 1,−1〉),

|g3〉 = −i√
2

(|A2, 1, 1〉 + |A2, 1,−1〉).

(B4)

We also write down the excited fine levels with definite spin-
orbit symmetry, which we label |e1〉 to |e6〉 here (these are
labeled �SO

5,E,x , �SO
5,E,y , �SO

6,E,x , �SO
6,E,x , �SO

7,A2
, and �SO

8,A1
in

Ref. [20]):

|e1〉 = �SO
5,E,x = 1

2 [−i(|Ex, 1, 1〉 + |Ex, 1,−1〉) − (− |Ey, 1, 1〉 + |Ey, 1,−1〉)],

|e2〉 = �SO
5,E,y = 1

2 [−(− |Ex, 1, 1〉 + |Ex, 1,−1〉) + i(|Ey, 1, 1〉 + |Ey, 1,−1〉)],

|e3〉 = �SO
6,E,x = − |Ey, 1, 0〉 , |e4〉 = �SO

6,E,y = |Ex, 1, 0〉 ,

|e5〉 = �SO
7,A2

= 1
2 [(− |Ex, 1, 1〉 + |Ex, 1,−1〉) + i(|Ey, 1, 1〉 + |Ey, 1,−1〉)],

|e6〉 = �SO
8,A1

= 1
2 [−i(|Ex, 1, 1〉 + |Ex, 1,−1〉) + (− |Ey, 1, 1〉 + |Ey, 1,−1〉)]. (B5)
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The nonzero dipole moment operator matrix elements can be calculated for states of definite spin-orbital (SO) symmetry using
the molecular orbitals. The dipole moment operators between the SO ground and excited states are labeled �̂pi,j = 〈gi | �̂p |ej 〉,
and can be represented as a matrix:

�̂pi,j = p0 ·

⎛
⎜⎜⎝

0 0 x̂ ŷ 0 0

− x̂√
2

ŷ√
2

0 0 − ŷ√
2

x̂√
2

ŷ√
2

x̂√
2

0 0 x̂√
2

ŷ√
2

⎞
⎟⎟⎠. (B6)

Here 0 indicates forbidden in dipole transitions. Note that this
dipole moment operator matrix is consistent with the group
symmetry prediction shown in Table A.4 of Ref. [20].

Furthermore, the spin-orbit interaction and spin-spin (SS)
Hamiltonian given in the basis of SO states can be found
in Ref. [20], Tables 2 and 3. Because of the large energy
separation between the electronic ground states and excited
states, the matrix elements out of the block of ground states
or excited states are ignored, i.e., the perturbation theory
can applied to the electronic ground states and excited states
separately. The perturbation Hamiltonian for SO and SS inter-
actions in ground-state manifold, Vg = V (SO)

g + V (SS)
g , is diag-

onal, which means the states |g1〉, |g2〉, and |g3〉 are still the
eigenstates of the NV center with SO interaction (V (SO)

g ) and
SS interaction (V (SS)

g ). However, the perturbation Hamiltonian
in the excited state manifold, Ve = V (SO )

e + V (SS)
e , is not

diagonal. Besides affecting the level splitting, the perturbation
interaction Hamiltonian results in mixing of the excited state.

We can find a unitary matrix Ue to diagonalize the excited-
state perturbation Hamiltonian Ve by UeVeU

†
e . The eigenstates

of the new basis can be transformed from the SO basis by
applying the unitary matrix Ue to the SO basis. Therefore,
the dipole moment operator between the ground states and
the new excited states can be found by treating ( �̂pi,j ) in
Eq. (B6) as a matrix and applying ( �̂pi,j ) · U

†
e . After taking the

SS interactions into consideration, the excited state |e1〉 mixes
with state |e3〉 and state |e2〉 mixes with |e4〉, which results
in small but nonzero dipole moment matrix elements between
ground states |g2〉 and |g3〉 to the excited states |e3〉 and |e4〉.
The eigenstates that diagonalize the SO and SS interaction
Hamiltonian in NV electronic excited states are noted as SS
basis of the NV center excited states and they are labeled as
|ẽi〉 for i = 1 to 6. Note that the notation |ei〉 in our main
paper refers to the SS basis states instead. The dipole moment
operator between NV ground states and SS basis states of
excited states is

�̂p
p0

=
⎛
⎝−F11x̂ −F11ŷ F12x̂ F12ŷ �0 �0

−F21x̂ F21ŷ −F22x̂ F22ŷ −F23ŷ F23x̂

F21ŷ F21x̂ F22ŷ F22x̂ F23x̂ F23ŷ

⎞
⎠,

(B7)

where F11 = 0.0513, F12 = 0.9987, F21 = 0.7062, F22 =
0.0363, and F23 = 1/

√
2.

The strain field (�ξ ) can also affect the NV electronic states.
The strain field interactions to the NV electronic ground states
are much smaller than the interactions to the excited states.
Therefore, we ignore the strain interaction to the NV ground
states and only consider the excited state mixing due to the

strain field. According to Ref. [20], axial strain field (ξz)
does not mix the excited states; it only shifts the energy
of the excited states and hence the dipole moment matrix
does not change. However, the interaction Hamiltonian due
to transverse strain fields ξx and ξy has off-diagonal matrix
elements in the SO basis of excited states, which means the
transverse strain field mixes the SO basis of excited states.

Assume the transverse strain field is small so that the group
symmetry of the NV center is still preserved. The interaction
Hamiltonian for x̂-direction strain field is

H (ξx ) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −E

0 0 0 0 E 0
0 0 E 0 0 0
0 0 0 −E 0 0
0 E 0 0 0 0

−E 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

(B8)

in the basis of the SO basis states, where E is the interaction
strength introduced by x̂ direction strain field. From the
Hamiltonian, the excited state |e1〉 mixes with state |e6〉 and
state |e2〉 mixes with state |e5〉. Since the dipole moment
between the states |e1〉, |e6〉, and ground states has the same di-
rection, we should expected that the dipole moment elements
between SS basis states 〈ẽ1| �̂p |gj 〉 and 〈ẽ6| �̂p |gj 〉 for j = 2, 3
do not change directions, which can be easily checked after
diagonalizing the SO and SS with the strain field coupling
Hamiltonian, similar to the 〈ẽ2| �̂p |gj 〉 and 〈ẽ5| �̂p |gj 〉. Besides,
due to the perturbation introduced by x̂-direction strain field,
the degeneracy of excited states |ẽ1〉 and |ẽ2〉 as well as the
degeneracy of states |ẽ3〉 and |ẽ4〉 is broken.

The Hamiltonian for small ŷ-direction strain field in dia-
mond crystal is

H (ξy ) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 −E 0
0 0 0 0 0 −E

0 0 0 −E 0 0
0 0 −E 0 0 0

−E 0 0 0 0 0
0 −E 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (B9)

where E is the interaction energy due to the ŷ-direction strain
field. The ŷ-direction strain field mixes the excited state |e1〉
with |e5〉, state |e2〉 with |e6〉, and state |e3〉 with |e4〉. The
dipole moment 〈ẽi | �̂p |gj 〉 for i = 1 to 6 and j = 2, 3 does
not point along x̂ or ŷ directions any more. Instead, the
dipole moments between the same excited state and the two
ground states |g2〉 and |g3〉 are no longer orthogonal. This
feature of the dipole moment matrix causes the scattering light
from state-preserving and state-flipping transitions to be not
polarized along perpendicular directions.
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APPENDIX C: TRANSITION RATES AND SCATTERED
PHOTON POLARIZATION

In this appendix, we present the details of the scattering
rate calculation. To estimate the magnitude of the dipole
moment, we modeled the relaxation from the electronic ex-
cited state with Sz = 0 (e.g., |e3〉), back to ground state
with Sz = 0 (e.g., |g1〉) as a two-level system spontaneous
relaxation process. If we ignore the slow relaxation processes
from state |e3〉 to the other two ground-state levels |g2〉 and
|g3〉, then the lifetime of state |e3〉, which is 13 ns [21], can be
used to estimate the value of dipole moment. The magnitude
of dipole moment estimated based on this method is |p| =
e|d| = 5.2 Debye [29], where e is the electron charge.

As we pointed out in Appendices A and B, the NV center
dipole moments for optical transition between ground and
excited states are along the transverse direction. Therefore,
we choose to match the axial direction of NV centers (ẑ
direction) to the waveguide ẑ direction to have optimum
coupling efficiency. We also choose to match the NV center
intrinsic transverse directions x̂ and ŷ with the waveguide
transverse direction x̂ and ŷ as Fig. 1(c) shows.

To calculate the scattering transition rates between ground
states |g2〉 and |g3〉, we consider a single NV center residing

inside an infinitely long waveguide shown in Appendix A. The
quantized guided waveguide mode in a length L waveguide,
with wave vector along the waveguide axial direction kz and
mode index m is [32]

Êkz,m = E0(kz)�ukz,m(x, y)akz,m

1√
L

eikzz−iωkz t + H.c., (C1)

where akz,m is the annihilation operator for photons with
kz and mode m, ωkz

is the angular frequency of the mode
photon, which can be determined by the waveguide dispersion
relations, E0(kz) = √

h̄ωkz
/2ε0 in which ε0 is the vacuum

permittivity, and �ukz,m(x, y) is the mode profile on the cross
section of the waveguide. The mode profile is normalized
according to the normalization condition,

∫
dxdy εr (x, y)�u∗

kz,m
(x, y) · �ukz,n(x, y) = δm,n. (C2)

To simplify the calculation, we assume the NV centers only
couple to the driving light and the waveguide modes and ig-
nore the coupling to the nonguided modes. We further assume
the driving light is a classical field while the waveguide modes
are quantized. The interaction Hamiltonian is

Hint = Hdrive + Hguide, Hdrive =
⎡
⎣∑

i,j

�E∗
d (�r0) · �̂pi,j |gi〉 〈ej | ei(ωd−ωej,gi )t + H.c.

⎤
⎦,

Hguide =
⎡
⎣∑

i,j

∑
kz

∑
mk

E0(kz)(�ukz,mk
(�r0) · �̂p∗

i,j )akz,m |ej 〉 〈gi | ei(ωej,gi−ν�k,λ ) + H.c.

⎤
⎦. (C3)

Hdrive is for the interaction between the NV center and the driving light. The classical electromagnetic field, �E(�r )eiωd t , is the
driving laser light. �̂pi,j is defined as 〈gi | �̂p |ej 〉, where |ej 〉 is the eigenstates of the electronic excited state of the NV center.
Hguide is for the interaction with the waveguide-guided modes, and �r0 is the position of the NV center. The summation index
i = 1 to 3, while index j = 1 to 6. The mode index m goes through all the guided modes in the waveguide with wave vector kz.

Note that the photon scattering process from ground state |gi〉 to the ground state |gi ′ 〉 is a second-order process. We use
second-order Fermi’s golden rule to calculate the transition rates. Assuming that initially there are no photons in the guided
modes, the initial state is |�i〉 = |gi〉 ⊗ |0〉, where |0〉 is the vacuum guided mode fields, while the scattering final state is
|�f 〉 = |gi ′ 〉 ⊗ |1m〉, where |1m〉 is the state for one photon inside the guided mode m. Based on the second-order Fermi’s golden
rule, the transition rate from initial state |gi〉 ⊗ |0〉 to final state |gi ′ 〉 ⊗ |1m〉 is

�i→i ′ = 2π

h̄
δ(εf − εi )

∣∣∣∣∣∣
6∑

j=1

〈�f | Hguide |ej 〉 |0〉 〈0| 〈ej | Hdrive

h̄ωd + εg,i − εe,j

|�i〉
∣∣∣∣∣∣
2

, (C4)

where εg,i and εe,j are for the energy of NV states |gi〉 and |ej 〉, and ωd is the driving light angular frequency. We define an
effective Hamiltonian for Raman transition as

Heff =
6∑

j=1

Hguide |ej 〉 |0〉 〈0| 〈ej | Hdrive

h̄ωd + εg,i − εe,j

=
∑
kz,m

6∑
j=1

Akz,m(�r0)

�j

(ûkz,m · p̂i ′,j )∗(λ̂d · p̂i,j )a†
kz,m

, (C5)

where Akz,m(�r0) is a constant defined as E0(kz)u∗
kz,m

Edp
2
0, and energy mismatch �j is defined as h̄ωd + εg,i − εe,j . The variable

ukz,m is the magnitude of the waveguide mode with wave vector kz and mode index m at the NV position �r0, ûkz,m is the unit
vector along the electric field of the mode at the NV center location, and p̂i,j is defined as p̂i,j = �pi,j /p0 in which �pi,j is the
dipole moment operator elements between ground state |gi〉 and excited |ej 〉. The driving field magnitude at the NV location is
noted as Ed , while its polarization direction is labeled as λ̂d . The transition amplitude can be written as 〈�f | Heff |�i〉.

As we pointed out in Appendix A, at the magic frequency, there are only two guided modes supported by the diamond
waveguide. Further, modes 1 and 2 only have nonzero Ex or Ey components respectively (when the NV center is centered in the
waveguide, x, y ∼ 0). Therefore, the transitions with x̂ dipole and transitions with ŷ dipole couple to different modes. If we also
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assume that at the NV center location, Ex (�r0) of mode 1 is equal to Ey (�r0) of mode 2, and the constant A does not depend on
mode number m. If we only considered the modes which respect the energy conservation and use x̂ polarized light to drive the
transitions, the effective Hamiltonian can be written as

Heff,kz0/Akz0 =
(

F 2
21

�1
+ F 2

22

�3
+ F 2

23

�6

)
|g2〉 〈g2| a†

kz0,2 +
(

F 2
21

�2
+ F 2

22

�4
+ F 2

23

�5

)
|g3〉 〈g3| a†

kz0,2

+
(−F 2

21

�1
+ −F 2

22

�3
+ F 2

23

�6

)
|g3〉 〈g2| a†

kz0,1 +
(

F 2
21

�2
+ F 2

22

�4
+ −F 2

23

�5

)
|g2〉 〈g3| a†

kz0,1,

(C6)

where we adopt the dipole moment operator expression in
Eq. (B7). The first and second terms give the state-preserving
transitions, while the third and fourth terms give the state-
flipping transitions. According to Eq. (C6), photons from
state-preserving transitions and state-flipping transitions have
perpendicular polarizations and hence they couple to two
different modes. Similarly, if the driving light is polarized
along the ŷ direction, following the same argument, it is easy
to show that the photons from state-preserving transitions
are coupled to mode 2, while photons from state-preserving
transitions are coupled to the mode 1 instead. The orthogonal
polarization of photons is a feature that originates in the
orthogonal dipole moment between the ground states |g2〉,
|g3〉 and the same excited state |ej 〉, i.e.,

〈g2| �̂p |ej 〉 · 〈g3| �̂p |ej 〉 = 0 (C7)

for j = 1 to 6 (we call this property orthogonality). The
perturbation on the excited-state energy, the dipole moment
elements and the x̂ direction strain field interaction, does not
change this dipole moment property, and hence orthogonal
polarization of photons is still expected from state-preserving
and state-flipping transitions. If this feature does not persist,
e.g., adding ŷ direction strain field, the photons coming
from state-flipping and state-preserving transitions become
nonorthogonally polarized.

The magic point is the point where both state-preserving
transitions are highly suppressed. According to the Eq. (C6),
this requires

F 2
21

�1
+ F 2

22

�3
+ F 2

23

�6
= 0,

F 2
21

�2
+ F 2

22

�4
+ F 2

23

�5
= 0.

(C8)

However, there is no driving light frequency that can satisfy
both equations. Instead, we choose to minimize the larger
rates of these two transitions to improve the gate fidelity, i.e.,
to minimize

Max

[∣∣∣∣F
2
21

�1
+ F 2

22

�3
+ F 2

23

�6

∣∣∣∣,
∣∣∣∣F

2
21

�2
+ F 2

22

�4
+ F 2

23

�5

∣∣∣∣
]
.

We found this is equivalent to solving the equation
(

F 2
21

�1
+ F 2

22

�3
+ F 2

23

�6

)2

=
(

F 2
21

�2
+ F 2

22

�4
+ F 2

23

�5

)2

, (C9)

which gives the frequency of the magic point used in the main
paper.

The transition rates at the magic point can be calculated
using Fermi’s golden rule. We sum over all the possible kz

and m to get the transition rate from the initial state |gi〉 to
final state |gi ′ 〉:

�i→i ′ = πneffωdp
4
0|u|2|Ed |2

ch̄ε0

×
∣∣∣∣∣∣
∑
j,m

1

�j

(ûm · p̂i ′,j )∗(λ̂d · p̂i,j )

∣∣∣∣∣∣
2

. (C10)

Here, neff is the effective refractive index for the modes at
the frequency of the driving light, and the dispersion relation
of the guided modes at the driving light frequency is ω =
(c/neff )kz. We also assume the NV center is located at a point
where the Ex field of mode 1 is equal to the Ey field of
mode 2, which is represented as u, while the Ey of mode
1 and Ex of mode 2 are zero. The unit vectors ûm and λ̂d

show the direction of the guided field in waveguide and the
driving field at the NV location. To convert the term inside
| · · · |2 to a dimensionless parameter, we define �j = hν0�̃j ,
where ν0 = 1 GHz. Therefore, we can define a rate constant
�0 and a dimensionless parameter Gi,i ′ so that the transition
rate �i→i ′ = �0Gi,i ′ (ωd ), where

�0 = neffωdp
4
0|u|2|Ed |2

4πch̄3ε0ν0
, (C11)

Gi,i ′ =
∣∣∣∣∣∣
∑
j,m

1

�̃j

(ûm · p̂i ′,j )∗(λ̂d · p̂i,j )

∣∣∣∣∣∣
2

. (C12)

By solving the mode profiles at the magic frequency, the
effective refractive index of these two modes is neff = 1.580.
At x = 0, after properly normalizing the mode fields using
Eq. (C2), we can find a point which satisfies our assump-
tions, i.e., Ex,1(y0) = Ey,2(y0) (see Fig. 9). At this point,

FIG. 9. Ex component of mode 1 and Ey component of mode
2 at x = 0 of the waveguide. We can find a point (red circle) that
satisfies Ex,1 = Ey,2.
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FIG. 10. Tolerance of the magic point to shifts of the fine levels of the NV excited states. We perturb the energy of each level (�Ee,i) by
±1 GHz. In panel (a), we plot the shift of the magic frequency relative to the unperturbed case as we perturb the energy of each excited state.
Shifting the energy of excited states also affects the state-preserving and state-flipping transition rates. In panel (b), we plot the gate infidelity
of scheme M1 due to the imbalance in the state-flipping transition rates as we perturb the energy of each excited state. In panel (c), we plot the
gate infidelity of scheme M2 caused by the leakage of the state-preserving photons as we perturb the energy of each excited state.

u = 2.4847 μm−1. We estimate the electric field of the driving
light by a 1-μW plane wave focused with a 1-μm2 region. The
transition rate constant is calculated as �0 = 20.78 MHz.

APPENDIX D: GATE FIDELITY AND TOLERANCE OF
THE MAGIC POINT AGAINST NV ELECTRONIC STATE

PERTURBATION

In this section, we provide a more detailed discussion and
analysis of how perturbations to NV electronic states affect
the drive frequency (especially the magic frequency) and the
gate fidelity. We focused on three types of perturbations: (1)
shifts of the excited state energy and effect of an NV center,
(2) perturbation of the dipole moment matrix elements, and
(3) small transverse strain fields inside the diamond crystal.
We also analyze how each of the perturbation affects the
polarization of the emitted photons. We mainly focus on the
effect of perturbation at the magic point and explore how
these perturbations affect gate fidelity for the gate operation
schemes M1, M2, and M3.

First, we consider perturbations that shift the energy of
NV excited states. Since this type of perturbations does not
affect the dipole moment between the ground states and
excited states, the orthogonal property of scattered photon
polarizations that are utilized by M1 and B1 are preserved.
However, shifts of the excited-state energies changes the
transition amplitudes and hence may shift the position of the
magic point. Changes in the state-flipping amplitudes affect
the imbalance of the two state-flipping transitions rates and
thus affect gate fidelity in scheme M1. Changes of the state-
preserving transition amplitudes affect the suppression at the
magic frequency, which affects the gate fidelity of scheme
M2.

To quantitatively explore the effects of the shifting of NV
center electronic excited states, we artificially shift the energy
of the excited states |e1〉 to |e6〉 one by one by ±1 GHz,
while leaving the dipole moments unchanged. With the en-
ergy level perturbation, we search around the original magic
frequency to find a new magic frequency that minimizes both
state-flipping transition amplitudes. The shift of the magic
frequency as we shift each of the excited state energies is
plotted in Fig. 10(a).

Assuming that the imbalance of the two state-flipping
transition amplitudes is small, i.e., |A1−A2|

A1+A2
� 1, where A1 and

A2 are defined in Eq. (10), enables us to expand the gate
fidelity of scheme M1 as

Fe,1 = (A1 + A2)2

2
(
A2

1 + A2
2

) = Ā2

Ā2 + �A2
∼ 1 − �A2

Ā2
, (D1)

where Ā = (A1 + A2)/2 and �A = |A1 − A2|/2. We cal-
culate the gate infidelity (1 − Fe1) in each case with gate
operation scheme M1 and show it in Fig. 10(b). As we shift
each excited state energy of the NV center by ±1 GHz, the
gate fidelity of gate operation scheme M1 is only slightly
affected. In the worst case, when we shift the energy of state
|e2〉 by +1 GHz, the gate fidelity drops to ≈0.96.

The gate operation scheme M2 is not affected by the
imbalance of state-flipping transitions. However, because

the state-preserving transition relation
Ax

p,2

A
(x)
0

= A
y

p,3

A
(y)
0

= −A
y

p,2

A
(y)
0

=
−Ax

p,3

A
(x)
0

holds, when drive light is polarized along the (x̂ + ŷ)

direction, the state-preserving scattered photons are still along
the (x̂ − ŷ) direction, which causes leakage of the state-
preserving photons to the detector. Since we are working
at the magic point where the state-preserving transitions are
highly suppressed, we can also expand the gate fidelity of gate
operation scheme M2 as

Fe,2 = Ā2

Ā2 + A2
p

∼ 1 − A2
p

Ā2
, (D2)

where Ap is the magnitude of the state-preserving transition
amplitudes. In Fig. 10(c), we plot the gate infidelity of the
scheme M2. When shifting energy of state |e1〉 by +1 GHz,
the gate infidelity increases by ≈0.04. Again, the gate op-
eration fidelity is only slightly affected by the excited-state
energy level shifting.

Scheme M3 is not effected by shifting the excited state
levels. Because the dipole moment is not affected, when the
drive light is polarized along the (x̂ + ŷ) direction, the state-
preserving photons are still polarized along the (x̂ − ŷ) di-
rection. The collection path polarizer along (x̂ + ŷ) can fully
eliminate the state-preserving photons. The polarizations of
the two types of state-flipping photons still deviated from the
(x̂ − ŷ) direction by ±θ (see Fig. 4), where θ is determined by
the imbalance of the state-flipping transitions. However, since
these two directions are centered on the direction (x̂ − ŷ),

052342-18



SINGLE-PHOTON HERALDED TWO-QUBIT UNITARY … PHYSICAL REVIEW A 98, 052342 (2018)

FIG. 11. We plot the entanglement gate fidelity for gate operation schemes M1 to M3 at the magic frequency of the drive light when we
add dipole moment mismatch in panel (a). If the NV centers are driven by a (x̂ + ŷ) polarized light, because the four transition amplitudes
are not all balanced, the two kinds of state-preserving photons, i.e., |g2〉 → |g2〉 and |g3〉 → |g3〉, are no longer polarized along the (x̂ − ŷ )
direction. We plot the polarization angle of the state-preserving photons with respect to the (x̂ − ŷ) direction as a function of dipole mismatch
in panel (b).

after the polarizer, the two state-flipping transition rates are
balanced.

Second, we explore the effect of perturbations that modify
the dipole moments of the NV centers. In Sec. B, we con-
structed the dipole moment using Eq. (B1). Let 〈ex | �̂p |a1〉 =
p0x · x̂, 〈ey | �̂p |a1〉 = p0y · ŷ; then C3v symmetry in
combination with the Wigner-Eckart theorem guarantees
that p0x = p0y , which is consistent with the assumptions in
Eq. (B1). Here we assume there might be certain types of
perturbations that break this relation and give p0x/p0y 	= 1.
Notice that these perturbations break the state-preserving
amplitude relation, i.e., | 〈g2| p̂ |ei〉 | 	= | 〈g3| p̂ |ei〉 |, which
voids the origin of the equality of state-preserving transition
amplitudes in Eq. (8). Therefore, we will have four different
state-preserving transition amplitudes. If we assume
p0y = p0, as we shift p0x , in the dipole moment matrix
in Eq. (B7), the components along the ŷ direction do not
change, while the components along x̂ change by a factor
Ox = p0x/p0 and hence the state-preserving transition
amplitudes become Ãx

p,2 = O2
xA

x
p,2 and Ãx

p,3 = O2
xA

x
p,3.

At the unperturbed magic point, the state-preserving tran-

sition amplitudes satisfy
Ax

p,2

A
(x)
0

= A
y

p,3

A
(y)
0

= −A
y

p,2

A
(y)
0

= −Ax
p,3

A
(x)
0

. Under

the dipole moment perturbation, we obtain

Ãx
p,2

A
(x)
0

= − Ãx
p,3

A
(x)
0

= O2
x

Ã
y

p,3

A
(y)
0

= −O2
x

Ã
y

p,2

A
(y)
0

. (D3)

Even through we cannot suppress all four state-preserving
transition amplitudes to the same level, we can still achieve
a good suppression for Ãx

p,2 and Ãx
p,3 at the original magic

point if the dipole mismatch factor Ox is close to identity and
hence we still use this drive frequency point as a magic point
under perturbation.

We also notice that the orthogonality property of the dipole
matrix persists, i.e., 〈g2| p̂ |ej 〉 · 〈g3| p̂ |ej 〉 = 0 for j = 1 to
6. Because of this feature, if the drive is polarized along
the x̂ or ŷ direction, the state-flipping photons are polarized
along the direction perpendicular to state-preserving photons.
Hence, the drive and polarizer setup in M1 can fully elim-
inate the state-preserving Raman photons from the collec-
tion path. Moreover, according to the state-flipping transition
amplitudes in Eq. (9), when the perturbation gives mismatch

factor Ox 	= 1, the state-flipping transition amplitudes are all
enhanced (or shrunk) by a factor of Ox . Based on Eq. (D1),
the gate fidelity for scheme M1 is not affected by the dipole
moment perturbation, as shown in Fig. 11(a).

When the drive is polarized along the (x̂ + ŷ) direc-
tion, because the four state-preserving transition amplitudes
in Eq. (D3) are not all equal at the magic point, the
state-preserving photons are not polarized along (x̂ − ŷ). We
plot the deviation of the state-preserving transition photon
polarization direction from (x̂ − ŷ) as the dipole mismatch
changes in Fig. 11(b). Because of the rotation of the polariza-
tion direction of state-preserving photons, the state-preserving
transition amplitudes seen after a (x̂ − ŷ) polarizer also vary.
However, as the state-flipping transition amplitudes after the
polarizer are much larger than the state-preserving transition
amplitudes, the gate operation scheme M2 is tolerant of small
dipole mismatch, as shown in Fig. 11(a). When the dipole
moment mismatch is large (e.g., ∼0.5), the gate fidelity of
M2 drops by ≈0.01.

The gate fidelity of scheme M3 is strongly affected by
the dipole moment perturbation as shown in Fig. 11(a).
The polarizer setup in M3 is along the (x̂ + ŷ) direction,
which blocks most of the state-flipping photons. However,
under the dipole moment perturbation, the state-preserving
photons are not polarized along the (x̂ − ŷ) direction, which
breaks the unitarity of scheme M3. Further, the leakage of
the state-preserving photons through the polarizer can be as
strong as the state-flipping photons, which strongly affects the
gate fidelity. Since the two kinds of state-preserving photons
are linearly polarized along the same direction, it is possible
to rotate the polarizer on the collection path to completely
eliminate the state-preserving photons. However, the two
state-flipping transitions seen after the polarizer are not
balanced anymore. In this way, we can improve the fidelity of
scheme M3, but the gate is no longer perfectly unitary.

Third, we consider perturbations due to a strain field in
the diamond crystal. A strain field applied along the x̂ (ŷ)
direction mixes the NV excited states via the perturbation
Hamiltonian Eq. (B8) [Eq. (B9)]. The strain field also
acts on the ground-state manifold; however, it only shifts
the energy of the |g2〉 and |g3〉 states. Here, we ignore
the impact of the strain fields on the ground states and
only focus on the excited states. Because of the mixing
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FIG. 12. We add x̂ (ŷ) direction strain fields in diamond crystal to induce interaction with strength E(ξx ) [E(ξy )] [see Eqs. (B8) and
(B9)]. The gate entanglement fidelity of schemes M1, M2, and M3 are plotted in panel (a) for the x̂-direction strain field and panel (b)
for the ŷ-direction strain field. In panel (c), we apply x̂ polarized driving light and plot the transition amplitudes (trans. amp.) as a function
of the x̂-direction strain field, ξx . We observe that the two state-flipping transition amplitudes are unbalanced and weakly affected by the
strain. In panel (d), we apply (x̂ + ŷ ) polarized driving light and plot the polarization angles of state-preserving and state-flipping photons
with respect to the (x̂ − ŷ ) direction (top panel) and the magnitude of the state-preserving and state-flipping transition amplitudes (bottom
panel) as a function of the x̂-direction strain field. Note that the magnitudes of two state-flipping transition amplitudes (top lines in the
bottom panel) are the same as we perturb the x-direction strain field. In panel (e), we apply x̂ polarized driving light and plot the polarization
angles of the state-preserving and state-flipping photons with respect to the x̂ direction (top panel) and the magnitude of the state-preserving
and state-flipping transition amplitudes (bottom panel) as a function of the ŷ-direction strain field. In panel (f), we apply (x̂ + ŷ ) polarized
driving light and plot the polarization angles of the state-preserving and state-flipping photons to the (x̂ − ŷ ) direction (top panel) and the
magnitude of the state-preserving and state-flipping transition amplitudes (bottom panel) as a function of the ŷ-direction strain field. Note that
the curves for the magnitudes of the two state-flipping transition amplitudes are overlapped (top curves in the bottom panel). The curves of
two state-preserving transition amplitudes are overlapped (bottom curves in the bottom panel).

of the excited states, the dipole moment matrix does not
preserve the property | 〈g2| p̂ |ei〉 | = | 〈g3| p̂ |ei〉 | and hence
we expect the four state-preserving transition amplitudes
to be different. Moreover, in the presence of a strain field,
it is impossible to find a frequency point to make all four
transitions balanced. Instead, in the vicinity of the unperturbed
magic frequency, there is a window of drive frequencies
in which the state-preserving transitions are suppressed.
Therefore, we can still use the unperturbed magic point as the
drive frequency in the presence of a weak strain field.

Strain field applied in the x̂ direction mixes the states
|e1〉 ↔ |e6〉, and |e2〉 ↔ |e5〉. Note that the dipole moments
between a certain ground state and the two excited states that

are being mixed have the same direction. Hence, while the
magnitude of the dipole moment between ground and excited
states is affected by strain, its direction is not. Therefore, the
orthogonal properties of the dipole moment [see Eq. (C7)] are
preserved with the x̂ direction strain field perturbation.

In Fig. 12(a), we plot the gate entanglement fidelity for
schemes M1, M2, and M3 as a function of strain in the x̂

direction [expressed via the matrix element E in Eq. (B8)].
We observe that strain has essentially no effect on the M1
scheme, weak effect on the M2 scheme, and strong effect on
the M3 scheme.

To understand the effect of the x̂ strain field on the
gate fidelity, we begin by plotting its effect on the nonzero
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state-preserving and state-flipping transition amplitudes at the
magic frequency [see Fig. 12(c)]. We observe that in the
presence of a small x̂ strain field the state-flipping transi-
tions are only slightly affected [see the bright green (the top
and bottom) lines in Fig. 12(c)], while the state-preserving
transition amplitudes are still suppressed [see the middle four
lines in Fig. 12(c)].

In scheme M1, state-preserving photons can be blocked
by the polarizer on the collection path due to the orthog-
onality property of the dipole moment matrix elements. As
the state-flipping transitions are only slightly affected by the
x̂-direction strain field, the gate fidelity of M1 is almost flat
[see the blue curves with dots in Fig. 12(a)].

When the drive is polarized along (x̂ + ŷ) direction, since
the transition amplitudes Ax

f,2 and Ax
f,3 are only slightly

affected by the x̂ strain field [see Fig. 12(c)], neither the rates
nor the polarizations of the state-flipping photons are heavily
affected [see green curve with diamond markers and red curve
with triangles in Fig. 12(d), top panel]. However, the x̂ strain
field shifts the four state-preserving transition amplitudes a
lot, which causes the increase of the state-preserving transition
rates [see blue solid line and orange dashed line in Fig. 12(d),
bottom panel]. Note that the polarization of the state-
preserving photons points along the (x̂ − ŷ) direction without
strain field is because that the state-preserving transition am-
plitudes satisfy Ax

p,2 = A
y

p,3 = −A
y

p,2 = −Ax
p,3 at the magic

point. The nonzero x̂ strain field destroys this feature, which
causes the polarization of the state-preserving photons to de-
viate from the (x̂ − ŷ) direction [see blue curves with dots and
orange curve with square markers in Fig. 12(d), top panel].

In M2, the polarizer on the collection path is along the
(x̂ − ŷ) direction, which still allows most of the state-flipping
photons to pass through. In the nonperturbed case, the state-
preserving photons are polarized along the (x̂ − ŷ) direction,
which can pass the collection path polarizer for certain. With
the x̂ strain field perturbation, the more the polarization of the
state-preserving photons deviates from (x̂ − ŷ) direction, the
less probable the photon can pass the collection path polarizer.
However, the x-direction strain field also boost the generation
rates of the state-preserving photons [see Fig. 12(d), bottom
panel]. Combining these two factors, the overall gate fidelity
for scheme M2 drops to ≈0.95 as the x-direction strain field
increases to 1 GHz [see Fig. 12(a)].

However, in scheme M3, the collection path (x̂ + ŷ) polar-
izer blocks most of the state-flipping photons, which makes
this scheme fragile to the leaking state-preserving photons.
The key for the success of M3 in the nonperturbed case is
the fact that state-preserving photons are polarized along the
(x̂ − ŷ) direction. However, as we increase the x̂ strain field,
the polarization of the state-preserving photons are not exactly
aligned in the (x̂ − ŷ) direction [see Fig. 12(d), top panel],
which deteriorates the gate fidelity, as shown in Fig. 12(a).

The entanglement gate fidelity Fe when ŷ-direction strain
field is applied to the diamond crystal is plotted in Fig. 12(b).
The ŷ-direction strain field mixes the states |e1〉 ↔ |e5〉,
|e2〉 ↔ |e6〉, and |e3〉 ↔ |e4〉. The mixing of the states results
in the loss of the dipole moment orthogonality property.
Therefore, for drive photons polarized along the x̂ direction,
the state-preserving photons are not necessarily polarized
along x̂, nor the state-flipping photons along ŷ. The polar-

ization of both state-preserving photons and state-flipping
photons relative to the ŷ direction is plotted in Fig. 12(e), top
panel. As we vary the ŷ-direction strain field, the polarization
of the two kinds of state-flipping photons remains nearly
along the ŷ direction [see the green curve with diamond
markers and the red curve with triangle markers in Fig. 12(e),
top panel], but the polarization of state-preserving photons
changes significantly [see the blue curve with dots and the
orange curve with square markers in Fig. 12(e), top panel].

For scheme M1 (with x̂ polarized drive), there are two
main sources of error: (1) unbalanced state-flipping transitions
as before and (2) ŷ photons from state-preserving transitions
that leak past the polarizer. We plot the polarization angle
with respect to the ŷ direction and the magnitude of the tran-
sition amplitudes for both state-preserving and state-flipping
transitions in Fig. 12(e). As we increase the perturbation
of the y-direction strain field, the state-preserving transition
amplitudes are slightly increased [see the blue solid line and
the orange dashed line in Fig. 12(e), bottom panel]. Combined
with the fact that polarization of the state-preserving photons
is no longer along the x̂ direction exactly [see the blue curves
with dots and the orange curves with square markers in
Fig. 12(e), top panel], the leaking state-preserving photons to
the detector decreases the gate fidelity to ≈0.95 as we change
ŷ-direction strain field to approximately ±1 GHz.

Similarly, when the drive is along the (x̂ + ŷ) direction,
the polarization features that were utilized in gate operation
schemes M2 and M3 are no longer valid. We plot the devi-
ation of the polarization angle of all scattered photons with
respect to the polarizer direction in M2, i.e., (x̂ − ŷ), in the
top panel of Fig. 12(f). The polarization of the state-flipping
photons are slightly affected by the ŷ-direction strain field,
while the state-preserving photon polarization rotates ≈54◦
as we increase ŷ-direction strain field to ±1 GHz. The ampli-
tudes of the state-preserving and state-flipping transitions are
plotted in the bottom panel of Fig. 12(f). We observe that the
transition amplitudes are only slightly affected by the applied
ŷ-direction strain field. Therefore, to understand the effect of
y-direction strain field on schemes M2 and M3, we mainly
focus on the rotation of the scattered photon polarizations.

The main error source in scheme M2 without perturbation
is the leakage of state-preserving photons past the polarizer
in the collection path. As we change the ŷ-direction strain
field, the state-preserving transitions are only slightly affected,
while the polarization of the state-preserving photons rotates
away from the collection path polarizer direction, i.e., (x̂ − ŷ)
direction [see Fig. 12(h)]. The state-preserving photons thus
have a smaller probability to get past the polarizer in the
collection path. Consequently, the gate fidelity for scheme
M2 slightly improves as a result of ŷ-direction strain field
perturbation, as we show in Fig. 12(b).

On the other hand, the perfect gate fidelity of scheme M3
in the absence of perturbation is based on the fact that all state-
preserving photons are polarized along the (x̂ − ŷ) direction
and hence are stopped by the polarizer in the collection path
(along with most of the state-flipping photons). Large rotation
angle of the state-preserving photon polarization makes the
leakage rate of the state-preserving photons comparable to
that of the state-flipping photons. This quickly degrades the
gate fidelity, as we show in Fig. 12(b).
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