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The security of quantum key distribution (QKD) has been proven for different protocols, in particular for
the BB84 protocol. It has been shown that this scheme is robust against eventual imperfections in the state
preparation, and sending only three different states delivers the same secret key rate achievable with four states.
In this work, we prove in a finite-key scenario that the security of this protocol can be maintained even with
fewer measurement operators on the receiver. This allows us to implement a time-bin encoding scheme with a
minimum amount of resources.
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I. INTRODUCTION

The most popular protocol used in quantum key distri-
bution (QKD) is without any doubt the BB84 protocol, first
presented by Bennett and Brassard in 1984 [1]. The security
of this protocol against general attacks has been proven in
various scenarios [2–6]. A more realistic scenario of imperfect
sources (state preparation errors) was considered at first by
Gottesman, Lo, Lütkenhaus, and Preskill (GLLP) [7]. After-
wards Tamaki et al. [8] proved that the security could be
achieved also in a loss-tolerant scenario (Eve cannot use the
loss of the channel to enhance her attack in the presence of
state preparation imperfections). This work also demonstrated
that not all four BB84 states are actually needed and an
equal secret key rate (SKR) can be achieved with only three
prepared states.

However in all these security proofs of the BB84 protocol,
it was always considered the possibility of measuring, at Bob’s
side, the received states in the Z and X basis. In our paper
we relax this condition by showing, in a finite-key scenario,
that projections on only three states at Bob’s side are enough
to precisely estimate all security parameters. This protocol
simplification is then applied to a recent time-bin encoding
scheme that allows for a simple and practical experimental im-
plementation. For instance our protocol can be implemented
by using only one modulator at Alice’s side and two detectors
at Bob’s side [9]. Although it is true that even in a standard
BB84 protocol, any experimental scheme with only two de-
tectors could be implemented thanks to active detection basis
choice or detection multiplexing, this simplification always
comes with additional practical limitations. For instance, the
active choice of basis requires an active modulator which
increases the complexity of the system and introduces addi-
tional insertion loss. On the other hand, temporal multiplexing
the output increases the complexity, the loss and possibly
reduces the maximum achievable repetition rate. Our scheme,
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however, is implementable with passive basis choice and can
exploit the maximum rate of acquisition of the system [10].

II. THREE-STATE BB84 AND SIMPLIFIED
MEASUREMENT ON BOB’S SIDE

In our scheme we suppose that Alice sends to Bob two
states in the basis Z and only one in the basis X, as in the three-
state BB84 protocol [11–14]. The Z basis (data line) is used
to exchange the secret key and the X basis (monitoring line)
has the purpose of estimating the information leaked to a third
malicious party (Eve). However, we allow Bob to measure the
incoming signals in the Z basis or project them onto only
one state in the X basis, taking always into account that a
possible measurement result is the no-detection event. In this
scenario, in the monitoring line, Alice sends one eigenstate
[|+〉 = (|0〉 + |1〉)/

√
2] of the X basis and Bob measures only

the state orthogonal to it [|−〉 = (|0〉 − |1〉)/
√

2].
With these premises, the protocol can be presented as Alice

sends to Bob three possible states, i.e., |0〉, |1〉, and |+〉. Since
the channel or the adversary can introduce loss, a no-detection
event is represented by the state |∅〉. As in most QKD security
analysis, we conservatively assume that Eve can completely
control this eventuality. The only thing that limits her is the
basis independent detection efficiency condition. This means
that Eve is unable to control the efficiency of detection de-
pending on Bob’s basis choice.

In the GLLP security analysis [7] the phase error rate (ex)
is given by

ex = p(−|+) + p(+|−)

p(−|+) + p(+|+) + p(+|−) + p(−|−)
, (1)

where p(jB |jA) is the probability of Bob detecting the state jB

when Alice sent the state jA. In our protocol we have no direct
way to measure the probabilities where either Alice sends the
state |−〉 or where Bob measures the state |+〉. However, in
a scenario where an attacker is limited to collective attacks
and the probabilities of choosing the bases Z and X are (for
the moment) equal, it can be shown that the phase error ex is
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estimated precisely by the available probabilities:

ex = p(−|+)∑
i,j=0,1 p(i|j )

+M
(

1+ p(−|+)−∑
i=0,1 [p(−|i) + p(i|+)]∑
i,j=0,1 p(i|j )

)
, (2)

where M(y) ≡ max(0, y).
To obtain Eq. (2), note that in the framework considered the

attack of Eve can be modelled with a unitary transformation
in the Hilbert space HA ⊗ HE where HA is the space of states
sent by Alice and received at Bob’s side and HE is the space
of ancilla states possessed by Eve. The states take the form of

UAE|jA〉A|φ〉E = |0〉A
∣∣φ0

jA

〉
E

+ |1〉A
∣∣φ1

jA

〉
E

+ |∅〉A
∣∣φ∅

jA

〉
E
,

(3)

where jA ∈ {0, 1} and |φj ′
Z

jA
〉
E

are unnormalized states in Eve’s
hand. Hereafter we will omit the subsystems labels whenever
the context allows it. The transformation UAE|±〉|φ〉 is just
a linear combination of the two previous relations given by
Eq. (3). In the framework of collective attacks, the eavesdrop-
per is constrained to do the same transformation on each pulse,
but she can delay her measurement (by storing her states
in a quantum memory) until the classical communication
between Alice and Bob has been finished. We remark that
the attack considered by Eq. (1) is not the most general
collective attack possible. In fact, Eve, in principle, could
send states to Bob with multiple photons. However, the high
number of parameters to consider makes an analytical result
difficult to calculate. The analysis carried out here, even if not
completely general, might be proven to be enough for security
once a squashing model [15–19] for the detection scheme is
provided.

To prove that Eqs. (1) and (2) are equivalent, it is sufficient
to evaluate the conditional probabilities (after the considered
collective attack from the eavesdropper) in case of a perfect
BB84, which in our protocol are given by the general expres-
sion

p(jB |iA) = |〈jB |UAE|iA〉|φ〉|2. (4)

III. TIME-BIN ENCODING

The simple implementation presented in the previous sec-
tion gives already an understanding of the limitation and
capabilities of eliminating one of the typical measurement
projections from the original BB84 scheme. Although such
analysis is already complete it has some minor drawbacks:
the previous formula of the phase error rate [Eq. (2)] depends
on detection events on both the data and monitoring lines.
From a practical point of view, it might be more convenient
to estimate the phase error rate by only using the monitoring
basis, where all the bits are usually disclosed between Alice
and Bob.

In the detection scheme that we propose, we overcome
this limitation. This method is based on a time-bin encoding
scheme, where the states sent by Alice corresponds to |0〉 =
|1〉e|0〉l , |1〉 = |0〉e|1〉l , and |+〉 = 1√

2
(|1〉e|0〉l + |0〉e|1〉l )

FIG. 1. State generated by Alice and measured by Bob in a
standard time-bin protocol.

(Fig. 1) where the subscripts e and l represent the early and
late time bins, respectively.

Bob’s detections in the Z basis correspond to a detection
in one of the corresponding time bins, while the monitoring
line is composed by an unbalanced interferometer, as shown
in Fig. 2, that allows us to measure the coherence between
the two time bins within a state. The action of the optical
elements in front of the detectors, in the data and monitoring
lines, can be described by the unitary transformations UZ

B and
UX

B respectively (see Fig. 1). The data line transformation
corresponds, trivially, to the identity, since no optical element
appears before the detector. The monitoring line maps the
incoming state into six different possible states. The new
states are encoded in two spatial modes, given by the two
outputs of the interferometer (t, r), and three temporal modes
ti labeled by the subscript i = 0, 1, 2. This detection scheme
can be modelled by the unitary transformation UX

B as follows:

UX
B |0〉A = 1

2 [|t0〉B − |t1〉B] + 1
2 [|r0〉B + |r1〉B],

UX
B |1〉A = 1

2 [|t1〉B − |t2〉B] + 1
2 [|r1〉B + |r2〉B],

UX
B |∅〉A = |∅〉B. (5)

FIG. 2. Experimental setup of a three-state BB84 time-bin en-
coding protocol. Alice has a pulsed laser source and encodes the
states in two possible time bins. Bob, after a passive basis choice
done by a beam splitter (BS) can measure in two different bases. In
the Z basis, the measurement consists only in measuring the arrival
time of the photons. Instead, the X basis consists in measuring the
interference of the two time bins. In this scheme, only one output port
of Bob’s Michelson interferometer is monitored. The interferometer
is composed by a beam splitter and two Faraday mirrors (FM).
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Since the only output monitored is the one corresponding
to the states |ti〉, a projection in one of the |ri〉 states results in
a no-detection event. Considering Eve’s transformation, given
by Eq. (1), the states received at Bob’s monitoring line have
the form

UX
B UAE|jA〉A|φ〉E = 1

2 (|t0〉B − |t1〉B + |r0〉B + |r1〉B )
∣∣φ0

jA

〉
E

+ 1
2 (|t1〉B − |t2〉B+|r1〉B + |r2〉B )

∣∣φ1
jA

〉
E

+ |∅〉∣∣φ∅
jA

〉
. (6)

In this scenario the conditional probabilities p(jB |iA) can
be calculated as in Eq. (4) and the phase error rate can be
expressed as

ex = p(t1|+)

2
∑

i=0,1

∑
j=0,2 p(tj |i)

+M
(

1 +
1
2 [p(t1|+) − p(t1|Z)] − p(tside|+)∑

i=0,1

∑
j=0,2 p(tj |i)

)
, (7)

where p(t1|Z)=p(t1|0)+p(t1|1) and p(tside|+)=p(t0|+) +
p(t2|+) [see Sec. VI for the derivation of Eq. (7)].

It can be easily verified that all the terms in Eq. (7) depend
only on the possible detections in the monitoring line at Bob’s
side, b ∈ {t0, t1, t2}. The reason why this is possible becomes
clear when we express explicitly the POVM elements of the
monitoring line measurement, Mb:

Mt0 = 1
4 |0〉〈0| = 1

4 |1, 0〉〈1, 0|,
Mt1 = 1

2 |−〉〈−| = 1
4 (|1, 0〉 − |0, 1〉)(〈1, 0| − 〈0, 1|),

Mt2 = 1
4 |1〉〈1| = 1

4 |0, 1〉〈0, 1|,
M∅ = 1

21 + 1
2 |0, 0〉〈0, 0| + 1

4 (|0, 1〉〈1, 0| + |1, 0〉〈0, 1|).
(8)

From this expression we can directly see that the POVM’s
elements Mt0 and Mt2 correspond to projections on the Z basis,
with the exception of a renormalization factor. This opens the
possibility of a further simplification of our scheme. Indeed,
what we defined in our scheme as the monitoring line could
be used both as the monitoring and data lines. The side peaks
of the interferometer (i.e., the pulses at the times t0 and t2)
could be regarded directly as the data line and the estimation
of the phase error rate would be unchanged. This gives the
possibility of using only one detector for the whole scheme.

IV. EFFICIENT ENCODING SCHEME

In a time-bin encoding scheme one important parameter to
consider is the size of the temporal mode. Once this parameter
is fixed, the minimum temporal width of the qubit state is
limited at two temporal modes (see Fig. 3). Although this
solution [Fig. 3(b)] is the most efficient in terms of qubit
repetition rate it raises some difficulties in our analysis. The
problem appears in the monitoring line where, if we define
a pair of states sent by Alice as |jm−1〉|j ′

m〉, we have that
the detections |t2,m−1〉 and |t0,m〉 are indistinguishable (they
overlap in time). This fact does not allow us to directly mea-
sure all the probabilities of the form p(b|j ) where b ∈ {t0, t2}
and j ∈ {0, 1,+}. However, assuming that two identically

encoded states are indistinguishable one from the other, we
can evaluate the sum of the detection probabilities corre-
sponding to the states |t0〉 and |t2〉 when two consecutive
identical states are prepared. More precisely, we define in the
monitoring line the possible detections as early (|em〉) and
late (|lm〉) where this two time bins have the same temporal
separation as the preparation state [see Fig. 3(b)]. It can be
easily verified that the late detection |lm〉 depends only on the
state sent in the mth round. On the other hand the detection
in the early bin |em〉 depends both on the current mth round
and on the previous one (m − 1). When we send two identical
states |j 〉 one after the other, i.e., |jm−1〉|jm〉 ≡ |j 〉|j 〉, and we
have the following relation:

p(t0|j ) + p(t2|j ) = p(e|j, j ), (9)

where on the left side the probabilities p(t0|j ) and p(t2|j )
are the probabilities of detection due only to one preparation
state. In this way we can express the phase error rate given by
Eq. (7) as follows:

ex = p(l|+)

2
∑

i=0,1 p(e|i, i)

+M
(

1+
1
2p(l|+)∑

i=0,1 p(e|i, i)
−

1
2p(l|Z) + p(e|+,+)∑

i=0,1 p(e|i, i)

)
,

(10)

where we consider only detection events in the early or late
time bins of the monitoring line and where p(l|Z) = p(l|0) +
p(l|1).

The difference between evaluating each probability in-
dependently and coupling the states in pairs appears only
when we pass from conditional probabilities to joint proba-
bilities (this passage is convenient for the decoy-state analysis
presented in the next section). In fact, to evaluate the joint
probabilities we apply the following relations for the early (e)
and late (l) time bins, respectively:

p(e, j, j ) = p(e|j, j )p(j, j ) = p(e|j, j )p(j )2, (11)

p(l, j ) = p(l|j )p(j ). (12)

We can now rewrite the phase error formula with these new
definitions:

ex = α

2

p(l,+)∑
i=0,1 p(e, i, i)

+ M
(

1 + α

2

p(l,+)∑
i=0,1 p(e, i, i)

− βp(l, Z) + αp(e,+,+)∑
i=0,1 p(e, i, i)

)
, (13)

where α = p2
z /[4(1 − pz)], β = pz/4, and pz, px are the

probabilities that Alice emits a state in the Z and X bases,
respectively.

Note that, instead of using p(t0|+)+p(t2|+)=p(e| + +)
as indicated in Eq. (9), it is possible to use an equivalent
relation (in case of perfect state preparation), given by

p(t0|+) + p(t2|+) = p(e|0+) + p(e| + 1). (14)

This holds since the state |0〉 should in principle give no
contribution in the detection time bin |t2〉 and the state |1〉
should behave in the same way for the detection time bin
|t0〉. This correction is done in order to increase the available
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FIG. 3. (a) The simplest implementation of a time-bin encoding scheme. The time difference between two different states is greater than
three times the time-bin duration. In this way the three possible detection times on the monitoring line are not overlapped. (b) The most efficient
time-bin scheme: in this case the time difference between two different states is exactly the total time duration of a state (two time bins). In
this case the early detection time bin in the monitoring line depends on both the current pulse and the previous one.

number of events to estimate these probabilities since the
probability to send a state in the X basis is usually much lower
than the probability to send a state in the Z basis in order to
maximize the SKR.

V. DECOY-STATE PARAMETER ESTIMATION

The analysis carried out until now considers a single-
photon source. Unfortunately, such a source, which produces
single photons deterministically and with high repetition rate,
is not yet available. In QKD and related technologies, this
kind of sources is typically replaced by weak coherent pulses,
which opens possible side channels exploitable by an eaves-
dropper, due to the presence of multiphoton pulses [20,21].

Among the different possible solutions to solve this is-
sue [22–25], the most frequently employed and most practical
is the decoy-state method [26–28], where Alice sends to
Bob phase-randomized weak coherent pulses with different
intensities in order to bound the number of detections at
Bob’s side due to single photons (D1). The security of this
protocol has been proven in different kinds of configurations
with limited number of intensities [29–31]. For our analysis
we choose the implementation with only one decoy [29,32].
With this analysis we can upper bound the phase error rate as-
sociated with the single-photon contributions by the following
expression:

D1(ex ) = α

2

D1(n(l,+))

D1(n(e, ZZ))
+ M

(
1 + α

2

D1(n(l,+))

D1(n(e, ZZ))

−β
D1(n(l, 0) + n(l, 1))

D1(n(e, ZZ))

−α
D1(n(e, 0+) + n(e,+1))

D1(n(e, ZZ))

)
, (15)

where n(e, ZZ) = n(e, 00) + n(e, 11) and n(b, j ) is the
number of experimentally observed detections at Bob’s side

when Alice sent a weak coherent pulse encoded in the |j 〉
state. In the considered one-decoy state protocol with finite-
key corrections [32], two different intensities k ∈ {μ1, μ2} are
chosen for each state. In the finite-key regime, the number of
detections associated with single-photon events D1(n), where
n = ∑

nk could be any kind of detection at Bob’s side, is
bounded by the following equations:

D1(n) = τ1μ1

μ2(μ1 − μ2)

[
n−

μ2
− μ2

2

μ2
1

n+
μ1

+
(
μ2

1 − μ2
2

)
μ2

1

×
(

D0(n)

τ0

)]
, (16)

D1(n) = τ1

μ1 − μ2
(n+

μ1
− n−

μ2
), (17)

where τ0 and τ1 are the total probabilities to send a vacuum
state and a single-photon state, respectively, n±

k is the finite-
key correction obtained by using the Hoeffding’s inequal-
ity [33] of the number of detections due to the state of intensity
k ∈ {μ1, μ2}:

n±
k := ek

pk

(
nk ±

√
n

2
log2

1

ε

)
, (18)

where pk is the probability to send a state of intensity k. The
number of vacuum events D0(n) is estimated by using the
sequence of states |01〉 and measuring in the late time bin |l〉
in the monitoring line:

D0(n(b, j, j )) = p(j, j )

p(01)
n(e, 01) + δ

(
p(j, j )

p(01)
n(e, 01), ε

)
,

(19)

where δ(n, ε) = √
(n log2 ε−1)/2.

We chose this sequence because, in case of perfect prepa-
ration of the state, the only contribution to this event is a
vacuum state detection (where Alice sends a vacuum state and
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Bob has a detection). In case of possible preparation errors
in these two states, the detections considered could depend
also on nonvacuum events; however, this poses no threat to
the security of the protocol since the quantity considered is
still an upper bound on the considered events.

Then the SKR is given by the following formula [32]:

l � D0Z
+ D1Z

[1 − h(D1(ez))] − λEC − 6 log2(19/εsec)

− log2(2/εcor), (20)

where D0Z
and D1Z

are the lower bounds of the vacuum
events and single-photon events when Alice and Bob choose
to send and to measure in the Z basis, D1(ez) is the upper
bound on the phase error rate associated with the single-
photon contributions (obtained following the procedure in
Ref. [32] and we omit it here for simplicity), λEC is the number
of disclosed bits in the error correction stage and εsec and εcor

are the secrecy and correctness parameters. The phase error
rate in the Z basis D1(ez) is obtained from the error rate in the
monitoring line D1(ex ) by a finite key correction given by the
formula [31]:

D1(ez) � D1(ex ) + γ
(
εsec,D1(ex ),D1Z

,D1(n(e, ZZ))
)
,

(21)

where

γ (a, b, c, d ) =
√

(c + d )(1 − b)b

cd log2 2
log2

(
c + d

cd(1 − b)b

212

a2

)
.

(22)

VI. SECURITY PROOF

In this section we show the procedure to obtain Eq. (7).
According to Eq. (3), when Alice sends a state in the Z basis
we have

UAE|0〉|φ〉 = |0〉∣∣φ0
0

〉 + |1〉∣∣φ1
0

〉 + |∅〉∣∣φ∅
0

〉
,

UAE|1〉|φ〉 = |0〉∣∣φ0
1

〉 + |1〉∣∣φ1
1

〉 + |∅〉∣∣φ∅
1

〉
, (23)

and for the X basis:

UAE|±〉|φ〉 = 1√
2

[|0〉(∣∣φ0
0

〉 ± ∣∣φ0
1

〉) + |1〉(∣∣φ1
0

〉 ± ∣∣φ1
1

〉)
+ |∅〉(∣∣φ∅

0

〉 ± ∣∣φ∅
1

〉)]
, (24)

where |φj

i 〉 for i, j = 0, 1,∅ are Eve’s quantum states (not
necessarily normalized). By using the state transformation at
Bob’s monitoring line given by the Eq. (5), we can calculate
the probability that Bob detects |b〉, with b ∈ {∅, t0, t1, t2},
when Alice prepares |a〉, with a ∈ {0, 1,+}. In fact the states
received by Bob after Eve’s attack have the form given by
Eq. (6).

Knowing the explicit form of these states and using Eq. (4),
we can express all the possible conditional probabilities in the
monitoring line (corresponding to measurable events) in terms
of Eve’s ancilla states:

p(t0|0) = 1
2

〈
φ0

0

∣∣φ0
0

〉
,

p(t1|0) = 1
2

[〈
φ0

0

∣∣φ0
0

〉 + 〈
φ1

0

∣∣φ1
0

〉 − 2Re
(〈
φ0

0

∣∣φ1
0

〉)]
,

p(t2|0) = 1
2

〈
φ1

0

∣∣φ1
0

〉
,

p(∅|0) = 〈
φ∅

0

∣∣φ∅
0

〉
,

p(t0|1) = 1
2

〈
φ0

1

∣∣φ0
1

〉
,

p(t1|1) = 1
2

[〈
φ0

1

∣∣φ0
1

〉 + 〈
φ1

1

∣∣φ1
1

〉 − 2Re
(〈
φ0

1

∣∣φ1
1

〉)]
,

p(t2|1) = 1
2

〈
φ1

1

∣∣φ1
1

〉
,

p(∅|1) = 〈
φ∅

1

∣∣φ∅
1

〉
, (25)

and

p(t0|+) = 1
4

[〈
φ0

0

∣∣φ0
0

〉 + 〈
φ0

1

∣∣φ0
1

〉 + 2Re
(〈
φ0

0

∣∣φ0
1

〉)]
,

p(t1|+) = 1
4

[〈
φ0

0

∣∣φ0
0

〉 + 〈
φ0

1

∣∣φ0
1

〉 + 〈
φ1

0

∣∣φ1
0

〉 + 〈
φ1

1

∣∣φ1
1

〉
−2Re

(〈
φ0

0

∣∣φ1
0

〉) + 2Re
(〈
φ0

0

∣∣φ0
1

〉) − 2Re
(〈
φ0

0

∣∣φ1
1

〉)
−2Re

(〈
φ1

0

∣∣φ0
1

〉) + 2Re
(〈
φ1

0

∣∣φ1
1

〉) − 2Re
(〈
φ0

1

∣∣φ1
1

〉)]
,

p(t2|+) = 1
4

[〈
φ1

0

∣∣φ1
0

〉 + 〈
φ1

1

∣∣φ1
1

〉 + 2Re
(〈
φ1

0

∣∣φ1
1

〉)]
,

p(∅|+) = 1
2

[〈
φ∅

0

∣∣φ∅
0

〉 + 〈
φ∅

1

∣∣φ∅
1

〉 + 2Re
(〈
φ∅

0

∣∣φ∅
1

〉)]
. (26)

Now we estimate the phase error probability in the ideal
case, where Alice is able to send the |+〉 and |−〉 states and
Bob is able to measure both of them in the X basis. In this
case, following the formalism introduced before, the phase
error rate can be expressed as a function of Eve’s ancilla states
as

ex = p(−|+) + p(+|−)

p(−|+) + p(+|−) + p(+|+) + p(−|−)

= 1 − 2Re
(〈
φ0

0

∣∣φ1
1

〉 + 〈
φ1

0

∣∣φ0
1

〉)
〈
φ0

0

∣∣φ0
0

〉 + 〈
φ0

1

∣∣φ0
1

〉 + 〈
φ1

0

∣∣φ1
0

〉 + 〈
φ1

1

∣∣φ1
1

〉 . (27)

In our scenario where the POVM’s elements on the mon-
itoring line are defined following Eq. (8), we can perfectly
reproduce the given formula using the conditional probabili-
ties of Eqs. (25) and (26) (evaluated on measurable events).
After a straightforward algebraic calculation it can be verified
that the phase error rate in our protocol has the form given by

FIG. 4. Comparison between a standard BB84 protocol with a
single-photon source (blue line) and our protocol with a single-
photon source (yellow line) and phase-randomized weak coherent
pulses (red line) with one decoy state [32]. For all curves was
considered an intrinsic error of 1% and a probability of dark counts
of 10−10 with security and correctness parameters (εsec and εcor,
respectively) equal to 10−9.
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Eq. (7), where the second term is constrained to be positive
since it corresponds to the probability p(+|−).

Finally, in Fig. 4 we show the achievable SKR of our
protocol in comparison to a standard BB84 with a single-
photon source. If we consider the single-photon-source case,
there is almost no difference except for really high attenuation.
In this regime, where the errors increase due to the dark
counts of the detectors, our protocol is more affected, in the
phase error estimation than a standard BB84 protocol. This
is due to the fact that, in our protocol, there are three time
bins considered instead of two. However, this difference is
well compensated by the simplification of the implementation
and allows, anyway, to achieve record breaking distances for
QKD [10]. Moreover, by implementing our protocol with
phase-randomized weak coherent pulses and one decoy, we
achieve a high SKR compared with that of single-photon
sources (see Fig. 4).

VII. CONCLUSION AND OUTLOOKS

We have presented a simple and practical scheme
that not only employs a limited amount of preparation

states (three states and two pulse intensities when im-
plemented with coherent pulses) but also allows us to
use a simpler detection scheme. The next step in the
security proof would be to introduce a complete anal-
ysis against coherent attacks. However, we can already
state that, since this protocol uses a phase-randomized
source, techniques such as Azuma’s inequality [25,34] and
the quantum De Finetti’s theorem [35] can be directly
applied.
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