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Self-testing using only marginal information
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The partial states of a multipartite quantum state may carry a lot of information: in some cases, they determine
the global state uniquely. This result is known for tomographic information, that is for fully characterized
measurements. We extend it to the device-independent framework by exhibiting sets of two-party correlations
that self-test pure three-qubit states.
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I. INTRODUCTION

One of the most basic tasks in quantum information pro-
cessing is to describe the state in the experiment, also known
as state tomography. In the usual tomographic scenario, one
would have access to a set of well characterized measurement
devices. By repeating the experiment, expectation values of
an informationally complete set of measurements allows us
to reconstruct the density operator that describes the quantum
state. In a multipartite scenario, it is sometimes possible to
reconstruct the state with only marginal statistics [1–5]. For
example, the three-qubit W state

|W 〉 = 1√
3

(|001〉 + |010〉 + |100〉) (1)

is the only state, pure or mixed, with partial states ρAB =
ρAC = TrB |W 〉〈W |. Thus, given those partial states, the
global state can be inferred.

Remarkably, even when the devices are completely unchar-
acterized, an analog of tomography may be possible in the
presence of Bell nonlocality: device-independent (DI) self-
testing [6]. Indeed, some nonlocal statistics identify one pure
state and one set of measurements, up to local isometries; and
if the observed statistics deviate from the ideal ones, one can
estimate how far the actual state and measurements are from
the ideal ones, a property known as robustness. Among several
recent results, it was proved that every pure bipartite entangled
state can be self-tested [7]. For multipartite pure states, only
examples are known: the self-testing of the W state was first
reported in Refs. [8,9]; for an updated list, see Refs. [10,11]
and references therein. All these examples exploit correlations
involving all the parties. In this paper, we show that, as
it happens for tomography, it is possible to self-test some
multipartite states using only marginal information.

The possibility of obtaining relevant information from
partial correlations is paramount in many-body physics, where
usually even three-body correlators are hard to measure. In
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this context, Bell inequalities that use only few-body cor-
relators have recently attracted a lot of attention [12,13].
At a more fundamental level: the proof, that if one were
to simulate quantum entanglement with communication, this
communication should travel at infinite speed, also relies
on finding Bell inequalities using only marginal informa-
tion [14,15]. Our work makes DI self-testing relevant for such
studies.

Before presenting our four specific results of self-testing
using only marginal information, we review the so-called
SWAP method, developed in [16,17] and based on a semidef-
inite optimization, that we are going to use.

II. TOOL: THE SWAP METHOD

Let us consider a Bell-type experiment involving a num-
ber of noncommunicating parties—for definiteness and for
the sake of our specific results, we stay with three par-
ties. Each has access to a black box with inputs x, y, z ∈
{0, 1, . . . , M − 1} and outputs a, b, c ∈ {0, 1, . . . , m − 1}.
Assuming quantum mechanics, one could model these boxes
with an underlying state |�〉A,B,C and measurement projectors
{Ma

x }
x,a

, {Mb
y }

y,b
, and {Mc

z }z,c, which commute for different
parties. The state can be taken pure and the measurement
projective without loss of generality, because the dimension
of the Hilbert space is not fixed and the possible purification
and/or auxiliary systems can be given to any of the parties.
After sufficiently many repetitions of the experiment one can
estimate the joint conditional statistics, also known as the
behavior, p(a, b, c|x, y, z) = 〈�| Ma

x Mb
y Mc

z |�〉.
A device-independent certification is one that extracts non-

trivial information on the state and the measurements from
the behavior, without assumptions on the underlying degrees
of freedom. In the case of device-independent self-testing, one
wants to quantify the closeness of the unknown state used in
the experiment |�〉 to a desired target state |ψ〉. The idea of
the SWAP method is to “swap” out the essential information
on to auxiliary systems with the same dimensionality as the
local systems of the target state (here, we assume qubits).
Specifically, the virtual protocol that one considers is the
following.
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(1) Distribute the state |�〉ABC , which produces the ob-
served behavior, to Alice, Bob, and Charlie.

(2) Alice, Bob, and Charlie also have access to an auxiliary
qubit, initialized in the state |000〉A′B ′C ′ .

(3) Alice, Bob, and Charlie apply a local unitary, U =
UAA′ ⊗ UBB ′ ⊗ UCC ′ , between their part of the unknown sys-
tem and their auxiliary qubit.

The closeness of the unknown resource to the target state
can be then captured by the fidelity

f = 〈ψ | ρswap |ψ〉 ,

where

ρswap = TrABC (U |�〉〈�|ABC ⊗ |000〉〈000|A′B ′C ′U †).

The unitaries UAA′ must be formally constructed with
the unknown measurement operators. Then, f becomes a
linear combination of two types of terms: some that enter
the observed behavior and some nonobservable correlations
which involve different measurements on the same party, for
example, 〈�| Ma

x Ma′
x ′ |�〉 with x �= x ′, and which are left

as variables. Finally, with the aid of the Navascués-Pironio-
Acín (NPA) hierarchy characterization of the quantum be-
haviors [18], a lower bound on f can be computed as a
semidefinite program (SDP):

min f = 〈ψ | ρswap |ψ〉 ,

such that � � 0,

Tr (αi�) = δi, i = 1, 2, . . . , K,

where � is the moment matrix of a certain level and matrices
αi and real number δi specify the observed behavior. In
self-testing by marginals, only marginal information on the
behavior is specified in the constraints: all terms involving
three or more measurements, including observable ones, are
left as SDP variables.

III. FOUR RESULTS

Result 1. The W state (1) can be self-tested using only
two-party statistics, with three measurements per party. More-
over, the self-testing is robust.

We consider the scenario in which each party (Alice,
Bob, and Charlie) performs three dichotomic measurements
denoted Z, X, and D, with outcomes denoted as ±1. Suppose
that the observed behavior exhibits the following one- and
two-body statistics:

〈Zm〉 = 1

3
, 〈Xm〉 = 0, 〈Dm〉 = 1

3
√

2
,

〈ZmZn〉 = −1

3
, 〈ZmXn〉 = 0, 〈ZmDn〉 = − 1

3
√

2
,

〈XmXn〉 = 2

3
〈XmDn〉 =

√
2

3
, 〈DmDn〉 = 1

6
, (2)

where m, n ∈ {A,B,C} and m �= n [19]. These are the statis-
tics that one would obtain for the W state if Z ≡ σz, X ≡ σx ,
and D ≡ 1√

2
(σz + σx ). To investigate the robustness of self-

testing induced by these statistics, we shall consider mixing
them with white noise, that is by multiplying each term by
(1 − ε). We consider the same isometry as Ref. [18] as shown

|Ψ ABC

|0 a

|0 b

|0 c

H

H

H

Z

Z

Z

H

H

H

X

X

X

FIG. 1. SWAP circuit. The local isometry used to self-test the W

state. H is the standard Hadamard gate; Z and X are controlled by
the auxiliary qubit. The trusted ancillary qubits are prepared in the
state |0〉.

in Fig. 1. After this isometry, the trusted auxiliary systems will
be left in the state

ρswap = TrABC[UρABC ⊗ |000〉 〈000|A′B ′C U †]

=
∑

Cijklst |i〉 〈j | ⊗ |k〉 〈l| ⊗ |s〉 〈t | ,
where

Cijklst = 1
64 TrABC

[
MA

(j,i) ⊗ MB
(l,k) ⊗ MC

(t,s)ρABC

]

and MA
(j,i) = (I + ZA)j+1(XA − XAZA)j (I + ZA)i+1(XA −

XAZA)i for i, j ∈ {0, 1}, and the expressions for B and C

are analogous. Finally, we shall be able to express the fidelity
f = 〈W | ρswap |W 〉 as a linear function of correlators.

Due to the symmetry present in |W 〉, the measure-
ments as well as the SWAP operation, the constraints and
the objective function are also symmetric. Hence we can
reduce the number of variables in the SDP by solving
it in a symmetric space [20,21]. Let G = {gi}i=0,...,5 =
{(), (ab), (ac), (bc), (acb), (abc)} be the permutation group
of three elements. The effect of g on the operators are as ex-
pected: for example, g5[f (ZA,XB,DC )] = f (XA,DB,ZC ).
The effect of the operator is overloaded to the matrix � as
permutations of rows and columns. So now one can solve the
SDP with a symmetrized NPA matrix:

�̃ = 1

6

5∑

i=0

gi[�].

Then we solve the following SDP:

min f = 〈W | ρswap| |W 〉 ,

such that �̃ � 0, (3)

[Eqs. (2)] × (1 − ε),

where � is a 125 × 125 NPA matrix of so-called local level
one and augmented by necessary terms to express the fidelity.
The fidelity is 99.991% when ε = 0 and for other ε up to 0.01
is shown in Fig. 2. Unfortunately, the tolerance of noise is so
low that this lower bound is hardly relevant to experimental
realization.

From the dual of the SDP (3) in the ideal case ε = 0, we
can extract a permutationally invariant Bell inequality B with
three measurements and two outputs per party that achieves its
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FIG. 2. Swap bound on the fidelity of the W3 state for different
ε. ε represents the deviation of the observed behavior from the ideal
values. Notice that although the SWAP circuit does not contain the
measurements DA, DB , and DC , their appearance in the NPA matrix
is crucial for the bound on the fidelity.

maximal value for the observed correlations (2). The generic
form of such an inequality is

B = αS0 + βS1 + γ S2 + λ0T00 + λ1T11

+ λ2T22 + ω0T01 + ω1T02 + ω2T12, (4)

where Si = 〈MA
i 〉 + 〈MB

i 〉 + 〈MC
i 〉, Tii = 〈MA

i MB
i 〉 +

〈MB
i MC

i 〉 + 〈MC
i MA

i 〉, and Tij = 〈MA
i MB

j 〉 + 〈MB
i MC

j 〉 +
〈MC

i MA
j 〉 + 〈MA

j MB
i 〉 + 〈MB

j MC
i 〉 + 〈MC

j MA
i 〉 for i, j ∈

{0, 1, 2} and i �= j . By inspection, the dual yields α ≈ −λ0

and much smaller values for all the other coefficients [22].
The resulting guess B ≈ S0 − T00 defines a positivity facet,
hinting that the correlation (2) is a nonexposed extremal point
of the quantum set [23]. We strengthen the evidence in favor
of this conjecture by plotting (Fig. 3) the quantum set on a
slice of the no-signaling polytope. We take the slice defined
by P (q0, q1) = q0Plocal + q1PW + (1 − q0 − q1)Pnoise, where
PW are the marginal statistics (2) and Pnoise is the maximally
mixed behavior, and Plocal is the one obtained by taking the
local deterministic point ZA = −XA = DA = −ZB = XB =
DB = −ZC = XC = −DC = −1 and applying all the six
permutations of the parties. This plot provides graphical
evidence that the self-testing of that behavior cannot be
associated to the maximal violation of a single inequality.

Result 2. For all real λ ∈ (0, 1], the three-qubit state

|ψλ〉 = 1√
2 + λ2

(|100〉 + |010〉 + λ|001〉) (5)

can be self-tested with only two-body correlators with three
measurements per party.

Self-testing of these states with three-body correlators was
proved in Ref. [8] using two measurements per party. To self-
test them with only one- and two-body marginals, we consider
the statistics associated to the measurements (Z,X,D) as
above; the explicit expressions are written in Appendix A. As
before, the fidelity function is written as a linear combination
of observables and SDP variables. Notice that, since the target

FIG. 3. Slice of the no-signaling polytope contains PW . The
point PW is not exposed in this slice, which means that it is not
exposed in the polytope (since an exposed point would be exposed in
every slice).

state depends on λ, the fidelity is also a function of λ. Then we
minimize the fidelity for various λ ∈ (0, 1] using a moment
matrix � of size 83 × 83. For all λ, the SDP returns f >

99.8% (Fig. 4): we believe that the deviation from 1 is due
to the limitation of the SDP relaxation.

Result 3. For three parties with two dichotomic measure-
ments, Ref. [24] proved that only one nontrivial translationally
invariant Bell inequality can be built on one- and two-party
statistics. We prove that the maximal violation of that inequal-
ity self-tests a three-qubit state. Moreover, the self-testing is
robust.
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FIG. 4. Blue line represents the lower bound on the fidelity
obtained with varying λ from zero to 1. When λ = 0, the state
becomes a product of a Bell state with a qubit state, so the fidelity
under the marginal is higher than the other points.
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FIG. 5. Minimal fidelity of the state swapped out of the operators
defined above. The blue line represents the lower bound on the
fidelity obtained from SDP hierarchy on level-1 with size 88 × 88.

The three-partite Bell inequality proposed under study
reads B � 9 with

B = −S0 − 3S1 − T00 + 3T11 + T01 + 2T10, (6)

where Tij = 〈MA
i MB

j 〉 + 〈MB
i MC

j 〉 + 〈MC
i MA

j 〉, so that the
inequality is translationally but not permutationally invariant.
Since each party has only two dichotomic measurements, the
maximal quantum violation can be achieved with projective
measurements on qubits [25], which of course does not mean
a priori that it could not be achieved also by other resources:
this is what we set out to prove. Writing the qubit measure-
ments as

M
(i)
j = cos θ

(i)
j σz + sin θ

(i)
j σx,

where j ∈ {0, 1}, i ∈ {A,B,C}, and θ
(i)
j ∈ [−π

2 , π
2 ], for θ i

0 ≈
−1.1946 and θ i

1 ≈ 0.0957 one obtains the maximal violation
B ≈ 10.02. We are going to prove that this self-tests the
corresponding eigenvector

|ψ〉 ≈ − 0.08(|000〉 + |111〉)

− 0.5628(|001〉 + |010〉 + |100〉)

+ 0.1108(|011〉 + |110〉 + |101〉). (7)

Let us first look at the ideal quantum realization to design
our SWAP circuit. We can rotate the local bases so that
M1 = σx for Alice, Bob, and Charlie. This sets M0 = sin(θ0 +
θ1)σz + cos(θ0 + θ1)σx .

In order to construct the SWAP circuit, we’d rather need σz,
which in the ideal case is [M0 − cos(θ0 + θ1)M1]/ sin(θ0 +
θ1). However, written with the unknown measurement op-
erators, this expression may not define a unitary operator.
A method to circumvent this obstacle has been presented
in previous works [8,16,17]: one defines a third dichotomic
operator M2 such that

M2
M0 − cos(θ0 + θ1)M1

sin(θ0 + θ1)
� 0. (8)
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FIG. 6. Swap bound on the fidelity of the W4 state for different ε.

Since this equation is not a SDP constraint, one relaxes it to
the positivity of a “localizing matrix.”

We ran the SDP, with matrix size 88 × 88 and augmented
by three localizing matrices (one per party), minimizing
the fidelity with the maximal violation states, for different
magnitude of violation of the inequality (6). The result is
summarized in Fig. 5.

Result 4. For n = 4 parties, the state

|W4〉 = 1√
4

(|0001〉 + |0010〉 + |0100〉 + |1000〉) (9)

can be self-tested with three-body correlations and three mea-
surements per party. Moreover, the self-testing is robust.

Like the W3 state, we still use measurements {Z,X,D}
each party to construct the SWAP circuit. The correla-
tors for the ideal case are given in Appendix B. Then
the entries of ρswap are expressed as linear combina-
tions of correlation terms from the set c = {I, Tr(ρZA),
Tr(ρZAXB ), . . . , Tr(ρZAXAZBZCXCZD )}. We ran the SDP
program with the NPA moment matrix with size 167 × 167.
The fidelity f > 99.998% without noise and the robustness is
given by all correlations for ideal values multiplied by (1 − ε),
where ε represents the deviation of the observed behavior
from the ideal values (Fig. 6).

If we were to use only the two-body correlators for the
same measurements, the fidelity would drop below 30%.

In view of these observations, we conjecture that the state
|Wn〉 can be self-tested using these three measurements if (n −
1)-body correlators are given. Whether the same state can be
self-tested from fewer-body correlators, using different (and
possibly more) measurements, remains an open question.

IV. CONCLUSION

In a multipartite entangled state, a lot of information may
be encoded in the partial state—at times, all of it. This
observation was known in the context of entanglement theory
for characterized degrees of freedom. We have shown that it
carries over to the device-independent framework of unchar-
acterized devices.
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The examples we presented all deal with the multipartite
scenario and end up self-testing states of three or four qubits.
Our work calls for generalization both in local dimensionality
and in number of parties. In the tomographic scenario, it it
known that N -qubit W states can be determined by their
bipartite marginals [26] and multipartite W -type state is deter-
mined by its single-particle reduced density matrices among
all W -type states [27]. A question that may be asked is the
following: up to which number of parties N can one find states
that can be self-tested with only marginal information on
two-party correlators? This would be important in the context
of many-body physics, where the quantities that are routinely
measured don’t go beyond functions of two-body correlations.
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APPENDIX A

This appendix provides the details of two-body corre-
lations of the state (5) in Result 2 with three dichotomic
measurements for each party for λ ∈ (0, 1].

The state being symmetric in A and B, it is convenient to
list the correlators in three sets.

Set 1. For the parties A and B, with m, n = {A,B} and
m �= n:

〈Zm〉 = λ2

λ2 + 2
, 〈ZmZn〉 = λ2 − 2

λ2 + 2
,

〈ZmDn〉 = λ2 − 2√
2(λ2 + 2)

, 〈XmXn〉 = 2

λ2 + 2
,

〈DmDn〉 = λ2

2(λ2 + 2)
.

Set 2. For either A or B together with C, i.e., with m ∈ {A,B}:

〈ZC〉 = 2 − λ2

λ2 + 2
, 〈ZmZC〉 = −λ2

λ2 + 2
,

〈ZmDC〉 = −√
2λ2

2(λ2 + 2)
, 〈XmXC〉 = 2λ

λ2 + 2
,

〈XmDC〉 =
√

2λ

λ2 + 2
, 〈DmZC〉 = −

√
2λ2

2(λ2 + 2)
.

Set 3. For any two parties, i.e., m, n ∈ {A,B,C} and m �= n:

〈Xm〉 = 0, 〈Dm〉 = 〈Zm〉√
2

,

〈DmXn〉 = 〈XmXn〉√
2

, 〈ZmXn〉 = 0,

〈ZmDn〉 = 〈ZmZn〉√
2

, 〈DmDn〉 = 〈ZmZn〉 + 〈XmXn〉
2

.

APPENDIX B

The state (9) in Result 4 is symmetric for four parties. So
the correlations can be divided into three sets.

Set 1. For any one party, i.e., m ∈ {A,B,C,D}:

〈Zm〉 = 1

2
, 〈Xm〉 = 0, 〈Dm〉 = 1

2
√

2
.

Set 2. For any two parties, i.e., m, n ∈ {A,B,C,D} and
m �= n:

〈ZmZn〉 = 0, 〈XmXn〉 = 1

2
, 〈DmDn〉 = 1

4
,

〈ZmXn〉 = 0, 〈XmDn〉 = 1

2
√

2
, 〈DmZn〉 = 0.

Set 3. For any three parties, i.e., m, n, k ∈ {A,B,C,D} and
m �= n �= k:

〈ZmZnZk〉 = −1

2
, 〈XmXnXk〉=0, 〈DmDnDk〉= 1

2
√

2
,

〈ZmZnXk〉 = 0, 〈ZmZnDk〉 = − 1

2
√

2
, 〈XmXnZk〉 = 1

2
,

〈XmXnDk〉 = 1

2
√

2
, 〈DmDnZk〉 = 0, 〈DmDnXk〉 = 1

2
,

〈ZmXnDk〉 = 1

2
√

2
.
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