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Adiabatic quantum computing (AQC) is an approach for solving optimization problems and has advantages
against environmental decoherence and certain kinds of random unitary perturbations; however, long coherence
time of quantum systems is required to meet the adiabatic criteria for the implementation of AQC. To break the
dilemma of evolution time in AQC, the method of shortcuts to adiabaticity (STA) is employed to speed up the
evolution process and suppress the nonadiabatic transitions. In this work we demonstrate the application of STA
in AQC by implementing a fast two-bit Grover’s algorithm with STA in an ion trap system, and the method here
is also applicable for realizing Grover’s algorithm with more entries.
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I. INTRODUCTION

Adiabatic quantum computing (AQC) is one of the good
models for building quantum computers [1–3]. In AQC the
solution of a computational problem is encoded in the ground
state of a Hamiltonian, which can be acquired by slowly
evolving an easily prepared Hamiltonian as long as the adi-
abatic condition holds to guarantee the system follows the
instantaneous ground state. Since only ground state relates
to the computation, AQC is robust against environmental
decoherence and a certain class of unitary perturbations [4].
However, the evolution time requirement of adiabatic passage
is the obstacle for realizing AQC in physical systems. There
are two solutions. One is prolonging coherence time of the
quantum systems so that the evolution time can be long
enough to meet the adiabatic condition. But long coherence
time is not easily obtained since the quantum systems may
suffer from decoherence, noise, or losses. The other is speed-
ing evolution process up while suppressing the nonadiabatic
excitations, which may be the ideal way to actually implement
AQC experimentally. To speed up the adiabatic process and
avoid the nonadiabatic transitions, Demirplak and Rice [5]
and Berry [6] proposed the shortcuts to adiabaticity (STA)
method, in which a time-dependent compensating term can be
added into the original Hamiltionian to suppress nonadiabatic
transitions; therefore, the adiabaticity of the original Hamili-
tonian holds without following adiabatic condition [7,8].

Grover’s search algorithm [9] is one of the great examples
to prove the power of quantum computers, by which searching
marked one out of N entries can be quadratically faster
than classic computers; in other words searching attempts
are only on the order of

√
N on quantum computers. For

implementation of the algorithm on quantum systems, an
initial uniform superposition of all possible states is prepared
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as the database, and the target state is obtained by rotating the
initial state step by step with appropriate unitary logic gates.
The operated state is checked by an oracle function which
returns for instance 1 if the state is target state and returns
zero otherwise. The original Grover’s algorithm is designed
for a quantum circuit model. For the past years, there were
experiments that had successfully demonstrated the search
algorithm with two qubits (N = 4) in quantum systems of
NMR [10,11], optics [12,13], and trapped ions [14]. There
also had been proposals employing cavity QED to realize
the quantum gates dynamics in search algorithm [15,16], and
continuous version of Grover’s algorithm [17,18], in which
the Hamiltonian is continuously driven to rotate the initial
state to the energy marked target state. Adiabatic quantum
computation versions of Grover’s algorithm [2,19], which
has been proven to be equivalent to the quantum circuit
versions [3,20,21], is implemented by continuously driving
the designed Hamiltonian in time. They connect initial super-
position state |w〉 and the target state |m〉 via the Hamilto-
nian H0 = [1 − u(t )]Hi + u(t )Hf , where Hi = I − |w〉〈w|,
Hf = I − |m〉〈m|, and u(t ) is a monotonic function of time.
The search process starts from u(t = 0) = 0 and the target
state |m〉 is reached at u(t = tf ) = 1. In this representation,
the marked state and all other computational basis states can
be described as the eigenstates of Pauli operator σz; therefore,
Grover’s algorithm can be simplified as a two-dimensional
problem regardless of the number of the entries.

In this paper we follow the proposal in Ref. [22] and
demonstrate the application of STA in AQC by implementing
an N = 2 adiabatic search algorithm using STA with a single
trapped ion. We show that the adiabaticity of the searching
process is retained by applying the STA, the searching time
is far less than the requirement of conventional versions of
adiabatic evolution, and the target state is found with fidelity
over 98%. Though we only demonstrate the two entries case
with a single ion, the method we use in this paper can be
extended to the multiple ion qubits.
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FIG. 1. (a) Relevant energy levels of 40Ca+. The qubit states
are S1/2(m = −1/2) and D5/2(m = −5/2) with lifetime of about
1 s. The narrow linewidth 729 nm laser beam is used to coher-
ently couple the qubit states. Laser 397 nm is for Doppler cooling,
optical pumping, and quantum state detection. 854 nm and 866
nm laser beams repump ion out of D states. (b) The experimental
parameters for realizing the quantum adiabatic search algorithm,
�1 = 2π×50 kHz, �1 = 2π×50 kHz, and � = �1[1 − u(t )], � =
�1u(t ), u(t ) = t/T , and counteradiabatic term β/T .

II. EXPERIMENTAL HAMILTONIAN AND SETUP

In our experiment, a single 40Ca+ is loaded in a
blade-shaped linear Paul trap working at radio frequency
2π×13.3 MHz. The secular frequencies used in this work
are 2π×1.6 MHz and 2π×1.4 MHz in the radial and axial
direction, respectively. A Zeeman splitting of about 8.8 MHz
is created by a magnetic field between the Zeeman levels
in S1/2 and D5/2, and the sublevels S1/2(mj = −1/2) and
D5/2(mj = −5/2) are chosen as the qubit states |0〉 and |1〉,
respectively, as shown in Fig. 1(a). Initially the ion is Doppler
cooled with laser light at 397 nm yielding average phonon
number at round 19; afterward the axial motional mode is
prepared to its ground state (n̄ ≈ 0.015) by resolved side-
band cooling [23]. A 397 nm laser beam with right-circular
polarization is shined on the ion for 20 μs to pump the ion
in electronic state S1/2(m = −1/2). State manipulation of
qubit is achieved by laser pulses from a stabilized diode laser
with wavelength at 729 nm and linewidth about 20 Hz. The
quantum operations and laser beam modulation are realized
by sending rf signals generated by signal generators or an
arbitrary waveform generator (AWG) to an acousto-optical
modulator (AOM). The ion’s electronic state is detected by
using an electron shelving technique [23] and the states (S1/2

and D5/2) can be distinguished with almost perfect fidelity
within detection time of 600 μs.

We realize the adiabatic searching Hamiltonian using the
carrier [S1/2(mj = −1/2) ↔ D5/2(mj = −5/2)] transition.
When the 729 nm laser beam interacts with ion, the interaction
Hamiltonian in the rotating reference frame of laser can be
written as

H = h̄/2[�σz + �σx cos(φ) + �σy sin(φ)], (1)

where detuning � = ωL − ω0, ωL is the frequency of 729 nm
laser, and ω0 is the frequency between the energy levels
S1/2(mj = −1/2) and D5/2(mj = −5/2). � is the Rabi fre-
quency of carrier transition and φ is the initial phase of 729 nm
laser beam; σα (α = x, y, z) are the Pauli spin matrices. By
precisely controlling the Rabi frequency, detuning, and laser
phase, we can realize an arbitrary Hamiltonian for a single ion
qubit.

In the N = 2 case, the database of search algorithm is
(|0〉 + |1〉)/

√
2, which is the eigenstate of σx , and the target

state we set is state |0〉, an eigenstate of σz. Therefore, the adi-
abatic Hamiltonian connecting the initial superposition state
and the target state can be written as H0 = [1 − u(t )]σx +
u(t )σz. Since all the coherent operations in ion experiments
take the initial phase of the laser beam as reference, we
can take the laser initial phase as zero, and the interaction
Hamiltonian can be rewritten as H0 = h̄/2[�σz + �σx]. To
realize the Hamiltonian for implementing the adiabatic search
algorithm, we need to modulate the Rabi frequency and
detuning simultaneously. Hence we implement the equivalent
Hamiltonian H0 = h̄/2{�1[1 − u(t )]σx + �1u(t )σz} by set-
ting the detuning � = �1u(t ), Rabi frequency � = �1[1 −
u(t )], monotonic function u(t ) = t/T , and we choose �1 =
�1 = 2π×50 kHz. The Rabi frequency and detuning modu-
lation are controlled by the rf signals generated by AWG and
an AOM with double pass configuration. A sequence starting
with a π/2 pulse prepares the qubit in ground superposition
state (|0〉 + |1〉)/

√
2. Afterwards the predesigned 729 nm

laser pulses are sent to implement the adiabatic Hamiltonian
and quantum state tomography [24]; finally a 397 nm laser
pulse is applied to detect the population of the ion’s internal
state.

To realize the adiabatic evolution of the quantum system,
the adiabatic criteria [7] has to be met; therefore, long co-
herence time is normally required for the quantum system;
usually the evolution time could be as long as tens times that
of Rabi oscillation periods. However, due to limited coher-
ence time in our system, this method is hardly applicable in
practice. To finish the searching process within the coherence
time, we use the STA method, in which a time-dependent
counter or transitionless driving term HD (t ) added to the
original Hamiltonian H0 makes a quantum system evolution
follow the adiabatic path exactly with arbitrarily short time
theoretically. According to the STA theory, the transitionless
tracking term for adiabatic Grover’s algorithm should be
HD = −h̄

2T

σy

[1−2u(t )]2+2u(t )[1−u(t )] ; however, this term makes the
overall Hamiltonian too complicated; in practice we can take
the approximation of this term as a constant [22]. As shown in
Fig. 1(b), in addition to the Rabi frequency and detuning mod-
ulations, the time-independent counteradiabatic term HD =
− h̄

2
β

T
σy with constant amplitude instead of a time-dependent

term is applied to suppress the nonadiabatic transition; the
constant parameter β can be found by numerical simulation.
Now the Hamiltonian we need to realize is

H = H0 + HD = h̄/2[�σz + �σx − β/T σy]. (2)

To realize the Hamiltonian Eq. (2) in an ion trap system, we
need to write this Hamiltonian similar to Eq. (1) in the new
form

H = h̄/2[�σz + �′σx cos(φ′) + �′σy sin(φ′)], (3)

where the effective Rabi frequency �′ =
√

�2 + (β/T )2,
phase φ′ = arccos(�/�′). With AWG modulating the detun-
ing, Rabi frequency, and laser phase, we can implement the
Hamiltonian Eq. (3) with arbitrarily short searching time.
Since we have the Rabi frequency modulation during the
searching process, the time-dependent ac Stark shift induced
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FIG. 2. (a) Quantum adiabatic search algorithm implemented
with running time T = 20 μs. (b) The quantum state evolution of
(a) is plotted on the Bloch sphere. (c) Quantum adiabatic search
algorithm implemented with STA and running time T = 20 μs, β

set at 2.5. (d) The quantum state evolution of (c) is plotted on the
Bloch sphere. Note that all the markers are for experimental data
points and the solid curves are the simulations without adjusting
fitting parameters to the data points.

by the laser-atom interaction cannot be neglected. To com-
pensate the ac Stark shift, instead of using another far off-
resonant laser beam as in Ref. [25], we simply track the time-
dependent carrier transition resonance. The ac Stark shifts as
a function of Rabi frequencies are determined by measuring
ac Stark shifts under different Rabi frequencies. Based on the
predetermined Rabi frequency in the experiment, the ac Stark
shift can be compensated by setting the laser frequency to
shifted carrier resonance.

III. EXPERIMENTAL RESULTS AND ANALYSIS

With the experimental setup in the previous section, we
implement the quantum adiabatic search algorithm by first
preparing the ion in ground superposition state of all possible
states. Here the state (|0〉 + |1〉)/

√
2 is prepared using a π/2

pulse with fidelity better than 98%. Afterwards the adiabatic
search process sweeps from t = 0 to t = T , and quantum
state tomography [24] at truncated time is applied to acquire
the state evolution. At each truncated time, the experimental
sequence is repeated by 200 times to get the probability
of D5/2 state and also maximum likelihood estimation [24]
is utilized in the postprocess to reduce the statistical and
systematic errors.

In the first experiment we implement the quantum
adiabatic search algorithm with running time T = 20 μs,
Fig. 2(a) shows the experimental results without STA, and
Fig. 2(b) shows the state evolution of Fig. 2(a) on the Bloch
sphere. Since the evolution time 20 μs is far from the require-
ments of adiabatic criteria and we can see that the Hamiltonian
does not evolve adiabatically, therefore, the final state totally
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FIG. 3. (a) STA assisted quantum adiabatic search algorithm
implemented with running time T = 10 μs, and counteradiabatic
term coefficient β at 1.5. (b) The quantum state evolution of (a) is
plotted on the Bloch sphere. (c) Quantum adiabatic search algorithm
implemented with STA, running time T = 5 μs, and β at 1.2. (d) The
quantum state evolution of (c) is plotted on the Bloch sphere. Note
that all the markers are for experimental data points, and the solid
curves are the simulations without adjusting fitting parameters to the
data points.

deviates from the desired state |0〉. As a comparison, in the
second experiment, we apply STA by adding a counteradia-
batic field with β setting at 2.5; the corresponding quantum
tomography results, simulations [26,27], and state evolution
on the Bloch sphere are shown in Figs. 2(c) and 2(d). It can
be seen that the searching process almost perfectly follows
the adiabatic path indicated by solid lines and the target state
|0〉 can be searched with fidelity better than 95%. Since the
counteradiabatic term is used to suppress the nonadiabatic
transitions, the constant β should be properly chosen; incor-
rect value of β could cause insufficient suppression or induce
extra nonadiabatic transitions to the system.

To further investigate the speed of the search algorithm
with STA, we also implement the experiments at the π pulse
time (T = 10 μs) and π/2 pulse time (T = 5 μs); the exper-
imental results and simulations are shown in Fig. 3. In those
two experiments the coefficients of counteradiabatic term β

are set at 1.5 and 1.2, respectively. With the help of STA, the
evolution of the quantum system still follows an adiabatic path
very well with shorter running time, and the target state is
searched with fidelity better than 98%. As the Rabi frequency
we set is 50 kHz, the π pulse time for the system should be
10 μs; here in Fig. 3(c) we show that the time for searching
out the target state with high fidelity can be as short as 5 μs
(π/2 pulse time), which is far shorter than the requirement of
the adiabatic condition.

In adiabatic quantum search algorithm, the searching pro-
cess shown in Figs. 2 and 3 is similar to the evolution of a
π/2 pulse of Rabi oscillation, in which Rabi frequency has to
be adjusted to achieve state transfer in different time, while
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in the STA method state evolution is an adiabatic process and
can be implemented in arbitrary time only by adjusting the
compensating term.

Theoretically the searching time can be arbitrarily short
by applying the STA; however, there are some potential
limitations in practice that prohibit arbitrary searching time.
The AWG has a limited sample rate but precise control
of laser pulse requires a higher sample rate and AOM has
limited time resolution. At the same time as the searching
time T becomes very short, the counteradiabatic term and
the corresponding effective Rabi frequency �′ would be very
large; finally, the maximum Rabi frequency sets the searching
time limit as well.

IV. CONCLUSION

In this paper, we demonstrated the application of STA
by implementing the quantum adiabatic search algorithm
with the STA method. We compared searching experiments
with and without STA to verify that the STA method is a

appropriate tool for suppressing the nonadiabatic transitions.
In our work the counteradiabatic term is found by using
numerical simulation, but in experiments it can always be
determined by iterative attempts based on the experimental
results. Although we just realized the quantum adiabatic
search algorithm with a single ion qubit, this method can be
applied to multiple ion qubits with the single ion addressing
technique; it would be interesting to demonstrate the STA
assisted adiabatic search algorithm with multiple qubits in the
future.
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