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Detecting nondecomposability of time evolution via extreme gain of correlations
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Noncommutativity is one of the most elementary nonclassical features of quantum observables. Here we
propose a method to detect noncommutativity of interaction Hamiltonians of two probe objects coupled via
a mediator. If these objects are open to their local environments, our method reveals nondecomposability of
temporal evolution into a sequence of interactions between each probe and the mediator. The Hamiltonians or
Lindblad operators can remain unknown throughout the assessment, we only require knowledge of the dimension
of the mediator. Furthermore, no operations on the mediator are necessary. Technically, under the assumption
of decomposable evolution, we derive upper bounds on correlations between the probes and then demonstrate
that these bounds can be violated with correlation dynamics generated by non-commuting Hamiltonians, e.g.,
Jaynes-Cummings coupling. An intuitive explanation is provided in terms of multiple exchanges of a virtual
particle which lead to the excessive accumulation of correlations. A plethora of correlation quantifiers are helpful
in our method, e.g., quantum entanglement, discord, mutual information, and even classical correlation. Finally,
we discuss exemplary applications of the method in quantum information: the distribution of correlations and
witnessing dimension of an object.
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I. INTRODUCTION

All classical observables are functions of positions and
momenta. Since there is no fundamental limit on the pre-
cision of position and momentum measurement in classical
physics, all classical observables are, in principle, measurable
simultaneously. Quite differently, the Heisenberg uncertainty
principle forbids simultaneous exact knowledge of quantum
observables corresponding to position and momentum. The
underlying nonclassical feature is their noncommutativity:
Any pair of noncommuting observables cannot be simultane-
ously measured to arbitrary precision, as first demonstrated
by Robertson in his famous uncertainty relation [1]. Other
examples of nonclassical phenomena with underlying non-
commutativity of observables include violations of Bell in-
equalities [2,3] or, more generally, noncontextual inequalities;
e.g., see [4]. Here we describe a method to detect noncom-
mutativity of interaction Hamiltonians, and generally nonde-
composability of temporal evolution, from the dynamics of
correlations.

Consider the situation depicted in Fig. 1, where the probe
systems A and B do not interact directly but only via the
mediator C; i.e., there is no Hamiltonian term HAB . In general,
we allow all objects to be open systems and study whether
the evolution operator cannot be represented by a sequence
of operations between each probe and the mediator, i.e.,
�BC�AC , or vice versa. For the special case in which all
systems are closed, nondecomposability implies noncommu-
tativity of interaction Hamiltonians, i.e., [HAC,HBC] �= 0.
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Indeed, for commuting Hamiltonians, the unitary evolution
operator is decomposable into UBCUAC , where, for example,
UAC = exp(−itHAC ) and we set h̄ = 1. We show that for
decomposable evolution, correlations between A and B are
bounded. We also show with concrete dynamics generated by
noncommuting Hamiltonians that these bounds can be vio-
lated. The bounds derived depend solely on the dimensionality
of C and not on the actual form of the evolution operators.
Hence, these operators can remain unknown throughout the
assessment. This is a desired feature, as experimenters usu-
ally do not reconstruct the evolution operators via process
tomography. It also allows applications of the method to
situations where the physics is not understood to the extent
that reasonable Hamiltonians or Lindblad operators can be
written down. Furthermore, the assessment does not depend
on the initial state of the tripartite system and does not require
any operations on the mediator. It is therefore applicable
to a variety of experimental situations; Refs. [5–8] provide
concrete examples.

We begin by presenting the general bounds on the amount
of correlations one can establish if the evolution is decompos-
able. It is shown that these bounds are generic and hold for a
plethora of correlation quantifiers. We then calculate concrete
bounds on exemplary quantifiers and show how they can be
violated in a system of two fields coupled by a two-level atom.
We discuss the origin of the violation in terms of “Trotterized”
evolution, where a virtual particle is exchanged between A

and B multiple times if the Hamiltonians do not commute
but only once if they do commute. Finally, we focus on
immediate applications in quantum information and discuss
the consequences of our findings for correlation distribution
protocols and dimension witnesses.
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FIG. 1. Probe objects A and B individually interact with a me-
diator C but not with each other (A, B, and C could be open to
their local environments). The coherent parts of the interactions are
described by Hamiltonians HAC and HBC . We show how to infer
nondecomposability of the temporal evolution based on a gain of
correlation between A and B exceeding a certain threshold, which
is a function of the dimensionality of C only.

II. RESULTS

A. General bounds

Consider the setup illustrated in Fig. 1. System C, with
finite dimension dC , is mediating interactions between higher-
dimensional systems A and B. For simplicity we take dA =
dB > dC . We assume that there is no direct interaction be-
tween A and B, such that the Hamiltonian of the whole
tripartite system is of the form HAC + HBC (local Hamilto-
nians HA, HB , and HC included). Our bounds follow from a
generalization of the following simple observation. Consider,
for the moment, the relative entropy of entanglement as the
correlation quantifier [9]. If the evolution is decomposable,
it can be written as �BC�AC , or vice versa. Therefore, it is
as if particle C interacted first with A and then with B, a
scenario similar to that in Refs. [10–15]. The first interaction
can generate at most log2(dC ) ebits of entanglement, whereas
the second, in the best case, can swap all this entanglement.
In the end, particles A and B gain at most log2(dC ) ebits.
The bound is indeed independent of the form of interactions.
Furthermore, it is intuitively clear, as this is just the “quantum
capacity” of the mediator.

Now let us consider correlation quantifiers obtained in
the so-called “distance” approach [9,16]. The idea is to
quantify correlation QX:Y in state ρXY as the shortest dis-
tance D(ρXY , σXY ) from ρXY to a set of states σXY ∈
S without the desired correlation property, i.e., QX:Y ≡
infσXY ∈S D(ρXY , σXY ). For example, the relative entropy of
entanglement is given by the relative entropy of a state to
the set of disentangled states [9]. It turns out that most such
quantifiers are useful for the task introduced here. The condi-
tions we require are that (i) S is closed under local operations
�Y on Y , (ii) D(�[ρ],�[σ ]) � D(ρ, σ ) (monotonicity), and
(iii) D(ρ0, ρ1) � D(ρ0, ρ2) + D(ρ2, ρ1) (triangle inequality).
They are sufficient to prove the following theorem.

Theorem 1. Suppose a correlation QX:Y satisfies properties
(i)–(iii) listed above. If the evolution operator �ABC is decom-
posable into �BC�AC , then

QA:B (t ) � IAC:B (0) + sup
|ψ〉

QA:C, (1)

where IAC:B (0) = infσAC⊗σB
D(ρ, σAC ⊗ σB ), ρ is the initial

tripartite state, and the supremum of QA:C is taken over pure
states of AC.

Proof. The proof is given in Appendix A. �
Note that although the relative entropy does not satisfy (iii)

it still follows Theorem 1 (cf. Lemma 2 in Appendix A).
Correlations between probe A and probe B are therefore

bounded by the maximal achievable correlation with the me-
diator, sup|ψ〉 QA:C . The additional term IAC:B (0) reduces to
the usual mutual information if D(ρXY , σXY ) is the relative
entropy distance [16] and characterizes the amount of total
initial correlations between one of the probes and the rest of
the system. Note that the bound is independent of time. This
can be seen as a result of the effective description of such
dynamics given by �BC�AC . The particle C is exchanged
between A and B only once, independently of the duration
of the dynamics.

In a typical experimental situation the initial state can be
prepared as completely uncorrelated ρ = ρA ⊗ ρB ⊗ ρC , in
which case Theorem 1 simplifies and the bound is given solely
in terms of the “correlation capacity” of the mediator:

QA:B (t ) � sup
|ψ〉

QA:C. (2)

Clearly, the same bound holds for initial states of the form ρ =
ρAC ⊗ ρB . In Appendix B we show that, with this initial state,
Eq. (2) holds for any correlation quantifier that is monotonic
under local operations �BC , not necessarily based on the
distance approach, e.g., any entanglement monotone.

For initial states that are close to ρ = ρAC ⊗ ρB one can
utilize the continuity of the von Neumann entropy [17] and
see that IAC:B (0) in Eq. (1) is indeed small. We can also ensure
that the initial state is of the form ρ = ρAC ⊗ ρB by perform-
ing a correlation breaking channel on B first. One example
of such a channel is a measurement in the computational
basis followed by a measurement in some complementary
(say Fourier) basis. This implements the correlation breaking
channel (1AC ⊗ �B )(ρABC ) = ρAC ⊗ 1

dB
[18]. In this way,

our method does not require any knowledge of the initial
state and any operations on the mediator, similar in spirit to
the detection of quantum discord of inaccessible objects in
Ref. [19]. We now move to concrete correlation quantifiers
and their correlation capacities.

B. Exemplary measures and bounds

We provide four correlation quantifiers which capture dif-
ferent types of correlations between quantum particles. All of
them are shown to be useful in detecting nondecomposability.

Mutual information is a measure of total correlations [20]
and is defined as IX:Y = SX + SY − SXY , where, e.g., SX is the
von Neumann entropy of subsystem X. It can also be seen as
a distance-based measure with the relative entropy as the dis-
tance and a set of product states σX ⊗ σY as S [16]. The supre-
mum in Eq. (2) is attained by the state (recall that dA > dC),

|�〉 = 1√
dC

dC∑
j=1

|aj 〉|cj 〉, (3)

where |aj 〉 and |cj 〉 form orthonormal bases. One finds
sup|ψ〉 IA:C = 2 log2(dC ).

An interesting quantifier in the context of nonclassicality
detection is the classical correlation in a quantum state. It is
defined as mutual information of the classical state obtained
by performing the best local von Neumann measurements on
the original state ρ [21], i.e., CX:Y = sup�X⊗�Y

IX:Y (�X ⊗
�Y (ρ)), where �X ⊗ �Y (ρ) = ∑

xy |xy〉〈xy|ρ|xy〉〈xy|, and
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|x〉, |y〉 form orthonormal bases. The supremum of mutual
information over classical states of AC is log2(dC ).

Quantum discord is a form of purely quantum correlations
that is broader than quantum entanglement. It can be phrased
as a distance-based measure. In particular, we consider the
relative entropy of discord [16], also known as the one-way
deficit [22]. It is an asymmetric quantity defined as �X|Y =
inf�Y

S(�Y (ρ)) − S(ρ), where �Y is a von Neumann mea-
surement conducted on subsystem Y . The relative entropy
of discord is maximized by the state (3), for which we have
sup|ψ〉 �A|C = log2(dC ).

Our last example is negativity, a computable entanglement
monotone [23]. For a bipartite system negativity is defined as
NX:Y = (||ρTX ||1 − 1)/2, where ||.||1 denotes the trace norm
and ρTX is a matrix obtained by partial transposition of ρ with
respect to X. Negativity is maximized by the state (3), and the
supremum reads sup|ψ〉 NA:C = (dC − 1)/2.

Clearly, many other correlation quantifiers are suitable for
our detection method because the assumptions behind Eqs. (1)
and (2) are not demanding. In fact, one may wonder which
correlations do not qualify for our method. A concrete ex-
ample is the geometric quantum discord based on p-Schatten
norms with p > 1, as it may increase under local operations
on BC [24,25].

C. Violations

We now demonstrate, with concrete dynamics generated by
noncommuting Hamiltonians, that the bounds derived can be
violated. We next discuss the origin of this violation.

Consider a two-level atom C, i.e., dC = 2, mediating in-
teractions between two cavity fields A and B. A similar
scenario has been considered and implemented, for example,
in Refs. [5,8,26,27]. The interaction between the atom and
each cavity field is taken to follow the Jaynes-Cummings
model,

H = g(âσ̂+ + â†σ̂−) + g(b̂σ̂+ + b̂†σ̂−), (4)

where â (b̂) is the annihilation operator of field A (B), while
σ̂+ (σ̂−) is the raising (lowering) operator of the two-level
atom. For simplicity, we have assumed that the interaction
strengths between the two-level atom and the fields are the
same. Note that H is of the form HAC + HBC with noncom-
muting components.

The resulting correlation dynamics are plotted in Fig. 2.
Mutual information and negativity were calculated directly,
whereas for the classical correlation and the relative entropy
of discord, we provide the lower bounds C̃A:B and −SA|B ,
respectively. C̃A:B is calculated as the mutual information of
the state resulting from projective local measurements in the
Fock basis (no optimization over measurements performed).
The negative conditional entropy −SA|B is a lower bound on
the distillable entanglement [28], which in turn is a lower
bound on the relative entropy of entanglement EA:B [29].
Therefore, we note the chain of inequalities −SA|B � EA:B �
�A|B � IA:B , where the latter two inequalities follow from
[16]. Already these lower bounds can beat the limit set by
decomposable evolution, and therefore, all mentioned corre-
lations can detect nondecomposability of the evolution. Since
we consider closed systems, this infers noncommutativity

FIG. 2. Correlation dynamics with the Jaynes-Cummings model
(solid curves) and the corresponding bounds for decomposable evo-
lution (dashed lines). (a) Mutual information, (b) lower bound on
the classical correlation (see the main text), (c) lower bound on the
relative entropy of discord, and (d) negativity. In all cases, time is
rescaled with the interaction strength g and the initial state of ABC is
varied: |110〉 (red curves), |101〉 (black curves), |210〉 (green curves),
and |220〉 (blue curves).

of the Jaynes-Cummings couplings. We also note another
nonclassical feature of the studied dynamics: since Fig. 2
shows entanglement gain, according to Ref. [19] there must
be quantum discord DAB|C during the evolution.

It is apparent that the detection is easier (faster and
with more pronounced violation) with a higher number of
photons in the initial states of the cavity fields. We offer
an intuitive explanation. Consider, for example, |mn0〉 as
the initial state of ABC. By defining ξ̂ = (â + b̂)/

√
2, the

Hamiltonian of Eq. (4) becomes
√

2g(ξ̂ σ̂+ + ξ̂ †σ̂−) and it is
straightforward to obtain the unitary evolution [30]. One finds
that the quantum state of the fields oscillates incoherently
between

∑m+n
j=0 cj (t )|j 〉A|m + n − j 〉B and

∑m+n−1
j=0 dj (t )

|j 〉A|m + n − 1 − j 〉B . Both of these states are superpositions
of essentially m + n biorthogonal terms giving rise to high
entanglement and, therefore, also other forms of correlations.

Figure 2 illustrates that different correlation quantifiers
have different detection capabilities and it is not clear at
this stage whether there is a universal measure with which
noncommutativity is detected, e.g., the fastest. For most initial
states we studied mutual information detected noncommuta-
tivity the most rapidly, but there are exceptions, as shown
by the black curve corresponding to the initial state |101〉.
With this initial state the mutual information never violates
its bound, but the negativity does.

III. DISCUSSION

Let us present the origin of the violation just observed.
Since the total Hamiltonian is of the form HAC + HBC , the
Suzuki-Trotter expansion of the resulting evolution is particu-
larly illuminating,

eit (HAC+HBC ) = lim
n→∞(ei�tHBC ei�tHAC )n, (5)
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where �t = t/n. If Hamiltonians do not commute, it is
necessary to think about Eq. (5) as n sequences of pairwise
interactions of C with A followed by C with B, each for a time
�t . Each pair of interactions can only increase correlations up
to the correlation capacity of the mediator, but their multiple
use allows the accumulation of correlations beyond what is
possible with commuting Hamiltonians. Recall that, in the
latter case, we deal with only one exchange of system C,
independently of the duration of dynamics. We stress that
Trotterization is just a mathematical tool and in the labo-
ratory system C is continuously coupled to A and B. It is
rather as if a virtual particle C were transmitted multiple
times between A and B, interacting with each of them for a
time �t .

Our results imply that the noncommutativity (nondecom-
posability in general) is a desired feature of interactions in
the task of correlation distribution, which is important for
quantum information applications. As a contrasting physical
illustration, we consider the strong dipole-dipole interactions
in our field-atom-field example. The Hamiltonian reads

H ′ = g(â + â†)(σ̂+ + σ̂−) + g(b̂ + b̂†)(σ̂+ + σ̂−), (6)

with commuting components, i.e., [HAC,HBC] = 0. One can
verify that the results of this model are in agreement with
all the bounds we derived. Furthermore, we prove in Ap-
pendix C that, with this coupling, the state of AB at time
t is effectively given by a two-qubit separable state. This
makes NA:B (t ) = 0 and IA:B (t ) � 1. Note the counterintuitive
result that strong interactions produce bounded correla-
tions between the probes, while weak interactions (Jaynes-
Cummings coupling) can increase the correlations above the
bounds.

We also note an application of our bounds to estimate the
dimension of the mediator; see, e.g., Refs. [31–33] for other
dimension witnesses. For decomposable evolution, including
discrete sequential operators considered in Refs. [10–15], the
amount of correlation between the probes is bounded by the
correlation capacity sup|ψ〉 QA:C , which is a function of dC . If
one observes a QA:B (t ) value that is larger than the correlation
capacity of a certain dC , then the dimension of the mediator
must be larger than dC .

Finally, we wish to discuss a scenario where the three
systems are open to their own local environments, as realized,
e.g., in [8]. We take the evolution following the master equa-
tion in Lindblad form,

ρ̇ = −i[HAC + HBC, ρ] +
∑

X=A,B,C

LXρ, (7)

LXρ =
∑

k

QX
k ρQ

X†
k − 1

2

{
Q

X†
k QX

k , ρ
}
,

where the last term in (7) is the incoherent part of the
evolution and LX describes interactions of system X with its
local environment, i.e., the operators QX

k act on system X

only. We denote LAC = −i[HAC, ·] + LA + LC and LBC =
−i[HBC, ·] + LB . One readily verifies that if [HAC,HBC] = 0
and [LC,HBC] = 0, we have commuting Lindblad operators
[LAC,LBC] = 0. Note that, if one includes LC in LBC in-
stead, the second condition for commuting Lindblad operators
now reads [LC,HAC] = 0. For commuting Lindbladians, the

corresponding evolution decomposes as �BC�AC , or vice
versa. Therefore, our bounds apply accordingly. Their vio-
lation implies that either the Hamiltonians do not commute
or the operators describing dissipative channels on C do not
commute with HAC and HBC . In particular, if C is kept
isolated so that its noise can be ignored, the violation of our
bounds is solely the result of the noncommutativity of the
Hamiltonians.

IV. CONCLUSIONS

We linked noncommutativity of interaction Hamiltonians
(nondecomposability of time evolution in general) to the
amount of correlations that can be created in the associated
dynamics. This led us to a method for detection of nonde-
composability of evolution in a scenario where subsystem C

mediates interactions between A and B (all these objects can
interact with their local environments). The method requires
no explicit form of the evolution operators or knowledge of
the initial state of the tripartite system. Nondecomposability
is detected by observing violation of certain bounds on AB

correlations, as measured by most correlation quantifiers. Fur-
thermore, no operation on C is necessary at any time, which
makes this strategy experimentally friendly. In particular, in
addition to avoiding characterization of the interactions, the
physics of C can remain largely unknown—only its dimen-
sion should be identified.
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APPENDIX A: PROOF OF THEOREM 1

For completeness let us begin with a useful lemma.
Lemma 1. For a measure of correlations QX:Y , between

party X and party Y , that is nonincreasing under local op-
erations on Y , the following property holds: QX:Y is invariant
under tracing-out of uncorrelated systems on the side of Y .

Proof. Since the correlation measure is nonincreasing un-
der local operations on Y , tracing out an uncorrelated system
on the side of Y can only decrease the correlation. However,
if the correlation is strictly decreasing, then there is a reverse
process, i.e., attaching the uncorrelated system back and,
therefore, increasing the correlation. Hence, the correlation
QX:Y has to be invariant under tracing-out of uncorrelated
systems on Y . In fact, this is true for all reversible operations.

Our main theorem is proven as follows.
Theorem 1. Consider a correlation measure QX:Y ≡

infσXY ∈S D(ρXY , σXY ) satisfying the following properties:
(i) S is closed under local operations �Y on Y ;
(ii) D(�[ρ],�[σ ]) � D(ρ, σ ); and
(iii) D(ρ0, ρ1) � D(ρ0, ρ2) + D(ρ2, ρ1).
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If the evolution operator �ABC is decomposable into
�BC�AC , then

QA:B (t ) � IAC:B (0) + sup
|ψ〉

QA:C, (A1)

where IAC:B (0) = infσAC⊗σB
D(ρ, σAC ⊗ σB ), ρ is the initial

tripartite state, and the supremum of QA:C is taken over pure
states of AC.

Proof. Properties (i) and (ii), and the definition of QX:Y as
the shortest distance, imply that QX:Y is nonincreasing under
local operations on Y . Accordingly, the property proven in
Lemma 1 applies. We have

QA:B (t ) � QA:BC (�BC�AC[ρ]) (A2)

� QA:BC (�AC[ρ]) (A3)

� D(�AC[ρ], μ) (A4)

� D
(
�AC[ρ],�AC

[
σ 0

AC

] ⊗ σ 0
B

)

+D
(
�AC

[
σ 0

AC

] ⊗ σ 0
B, μ

)
(A5)

� D
(
ρ, σ 0

AC ⊗ σ 0
B

) + D
(
�AC

[
σ 0

AC

] ⊗ σ 0
B, μ

)

(A6)

= IAC:B (0) + QA:BC

(
�AC

[
σ 0

AC

] ⊗ σ 0
B

)
(A7)

= IAC:B (0) + QA:C
(
�AC

[
σ 0

AC

])
(A8)

� IAC:B (0) + sup
|ψ〉

QA:C, (A9)

where the steps are justified as follows. In line (A2) we
have used the fact that QX:Y is nonincreasing under local
operations on Y (tracing out C). Line (A3) follows, as QA:BC

is nonincreasing under local operation �BC . The next line,
(A4), utilizes the definition of QA:BC as the shortest distance
to the set of states μ ∈ SA:BC . The inequality of (A5) follows
from the triangle inequality (iii). Note that the first distance in
(A5) does not depend on μ and at this point one can choose
any σ 0

AC and σ 0
B . The inequality (A6) invokes property (ii). In

(A7), we have chosen σ 0
AC ⊗ σ 0

B as the closest product state
to ρ and μ as a state in SA:BC closest to �AC[σ 0

AC] ⊗ σ 0
B .

Line (A8) uses the invariance of QA:BC under tracing-out of
the uncorrelated system σ 0

B . For the final inequality, we note
that a correlation measure that is nonincreasing under local
operations on at least one side must be maximal on pure
states [34].

Lemma 2. The conclusion in Theorem 1 still follows for the
relative entropy as a distance measure.

Proof. Let us begin with an identity,

S(ρ||σX ⊗ σY ) = tr(ρ log2 ρ − ρ log2 σX ⊗ σY )

= tr(ρ log2 ρ − ρ log2 ρX ⊗ ρY )

+ tr(ρ log2 ρX ⊗ ρY − ρ log2 σX ⊗ σY )

= S(ρ||ρX ⊗ ρY ) + S(ρX||σX ) + S(ρY ||σY ),

(A10)

where ρX and ρY are the marginals of ρ and we have used,
for example, relation tr(ρ log2 σX ⊗ σY ) = tr(ρX log2 σX ) +
tr(ρY log2 σY ).

Although relative entropy satisfies (ii) [35], it is well
known not to follow (iii). Therefore, starting from (A3), we

have

QA:BC (�AC[ρ])

= inf
μ∈SA:BC

S(�AC[ρ]||μ) (A11)

� S(�AC[ρ]||μAC ⊗ μB ) (A12)

= S(�AC[ρ]||ρ ′
AC ⊗ ρ ′

B )

+ S(ρ ′
AC ||μAC ) + S(ρ ′

B ||μB ) (A13)

= IAC:B (�AC[ρ]) + QA:C (ρ ′
AC ) (A14)

� IAC:B (0) + sup
|ψ〉

QA:C, (A15)

where ρ ′
AC and ρ ′

B are marginals of �AC[ρ]. The steps above
are justified as follows. Line (A12) follows for any state of
the form μAC ⊗ μB ∈ SA:BC . We have used identity (A10)
in line (A13). The equality (A14) uses the definition of
mutual information as the relative entropy from a state to its
marginals [16]. We have also chosen μAC as a state in SA:C

closest to ρ ′
AC and μB = ρ ′

B . The last line follows as mutual
information is non-increasing under local operation �AC and
the correlation QA:C achieves the supremum on pure states.

APPENDIX B: PROOF OF EQ. (2) FOR CORRELATIONS
ONLY MONOTONIC UNDER LOCAL OPERATIONS �BC

Theorem 2. Suppose the initial state has the form ρ =
ρAC ⊗ ρB . If the evolution operator is decomposable into
�BC�AC , then

QA:B (t ) � sup
|ψ〉

QA:C (B1)

for all correlation measures, Q, nonincreasing under local
operations �BC .

Proof. For initial states of the form ρAC ⊗ ρB we have the
chain of arguments

QA:B (t ) � QA:BC (t ) � QA:BC (�AC[ρ])

= QA:C (�AC[ρ]) � sup
|ψ〉

QA:C, (B2)

where the steps are justified as follows. Since the action of
tracing out (the, in general, correlated) system C is a local
operation on BC, we obtain the first inequality. The second
inequality follows as the correlation is nonincreasing under
�BC . As we start with the initial state ρAC ⊗ ρB and �AC

does not act on B, system B stays uncorrelated in �AC[ρ].
Using Lemma 1, we have the equality. Finally, the correlation
QA:C is again maximal on pure states.

APPENDIX C: PROOF OF SEPARABILITY VIA
DIPOLE-DIPOLE COUPLING FOR PARTICULAR

INITIAL STATES

Let us define ξ̂ = (â + b̂)/
√

2. The dipole-dipole Hamilto-
nian, Eq. (6), is reformulated as H ′ = √

2g(ξ̂ + ξ̂ †)σ̂x , where
σ̂x = σ̂+ + σ̂− and [ξ̂ , ξ̂ †] = 1. The unitary evolution operator
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is given by

Ût = e−iH ′t

= 1
2 [(1 − σ̂x )ei

√
2gt (ξ̂+ξ̂ † ) + (1 + σ̂x )e−i

√
2gt (ξ̂+ξ̂ † )]

= 1
2 [(1 − σ̂x )D̂a (α)D̂b(α) + (1 + σ̂x )D̂a (−α)D̂b(−α)],

(C1)

where α = igt and, e.g., D̂a (α) = exp(αâ† − α∗â). Given an
initial state |mn0〉, the state at time t reads

|ψt 〉 = 1
4 [(d (mn)

++ |D(m)
+ ,D

(n)
+ 〉 + d

(mn)
−− |D(m)

− ,D
(n)
− 〉)|0〉

− (d (mn)
+− |D(m)

+ ,D
(n)
− 〉 + d

(mn)
−+ |D(m)

− ,D
(n)
+ 〉)|1〉],

where

d
(mn)
±± = 2

√
[1 ± e−2|α|2Lm(4|α|2)][1 ± e−2|α|2Ln(4|α|2)],

|D(n)
± 〉 = 1√

d
(nn)
±±

[D̂(α) ± D̂(−α)]|n〉.

Note that 〈D(n)
+ |D(n)

− 〉 = 0 and 〈D(n)
± |D(n)

± 〉 = 1. Ln(|α|2)
is the Laguerre polynomial, which comes from the rela-
tion 〈n|D̂(α)|n〉 = e−|α|2/2Ln(|α|2). After tracing-out of the
atomic mode C, the state of the fields is effectively given by a
two-qubit state,

1
16

⎛
⎜⎜⎜⎜⎜⎜⎝

(d (mn)
++ )2 0 0 d

(mn)
++ d

(mn)
−−

0 (d (mn)
+− )2 d

(mn)
++ d

(mn)
−− 0

0 d
(mn)
++ d

(mn)
−− (d (mn)

−+ )2 0

d
(mn)
++ d

(mn)
−− 0 0 (d (mn)

−− )2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(C2)

which is positive under partial transposition and, hence, sepa-
rable [36,37]. The same result follows for initial state |mn1〉.
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