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Exponentially many entanglement and correlation constraints for multipartite quantum states
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We present a family of correlation constraints that apply to all multipartite quantum systems of finite
dimension. The size of this family is exponential in the number of subsystems. We obtain these relations by
defining and investigating the generalized state inversion map. This map provides a systematic way to obtain
local unitary invariants of degree two in the state and is directly linked to the shadow inequalities proved by
Rains [IEEE Trans. Inf. Theory 46, 54 (2000)]. The constraints are stated in terms of linear inequalities for the
linear entropies of the subsystems. For pure quantum states they turn into monogamy relations that constrain the
distribution of bipartite entanglement among the subsystems of the global state.
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I. INTRODUCTION

The discussion of entanglement monogamy started more
than two decades ago [1]. Its first precise quantitative formu-
lation was given by Coffman et al. in an equality for the dis-
tribution of entanglement among three qubits [2], whereas its
weaker form, an inequality, subsequently was generalized by
Osborne and Verstraete [3] to an arbitrary number of qubits.
In the meantime, there have been numerous attempts to extend
the results of Refs. [2,3] or to find alternative independent
monogamy relations; see, e.g., Refs. [4–20]. Furthermore, it
was found that correlations other than entanglement, such as
nonlocality, also may obey monogamy relations [21–23].

Some authors consider monogamy of correlations an in-
herent property of quantum mechanics [24]; however, there
are results that seem to challenge this point of view: (1) the
fundamental monogamy relations by Coffman et al. [2] and
Osborne and Verstraete [3] cannot straightforwardly be gener-
alized to local dimensions higher than two [5], (2) faithfulness
of entanglement measures and monogamy properties seem to
be mutually exclusive [13], and (3) systematically including
contributions of multipartite entanglement appears to be dif-
ficult [8,14]. This also raises the question of what the general
form of a monogamy relation should be [8,10,13,18,24].
Generally, it is assumed that the terms characterizing different
correlations have to be added, possibly after raising each
term to some fixed power. Again, this seems to contradict the
recent finding that general monogamy equalities, as well as
inequalities, for any number of qubits [12] and even higher-
dimensional systems [20] exist whose terms are summed with
alternating signs.

In the present work, we adopt the viewpoint that any
functional relation between quantifiers for different correla-
tions (equality or inequality) may be considered a monogamy
relation, simply because it constrains the free distribution of

these correlations among the parties of a multipartite system.
The relevant point is that the terms in the relation are of
physical significance. If, for example, all the terms are related
to measures of entanglement in different subsets of the par-
ties, one would call the correlation constraint a monogamy
relation for entanglement, because it describes restrictions
regarding the distribution of entanglement among the parties.
An illuminating example that this approach is sensible is that
certain correlation constraints in Refs. [12,20] hold for both
pure and mixed states, but represent monogamy relations for
entanglement only in the case of pure states.

It is natural to expect a variety of correlation constraints
originating from the algebraic properties of the density matrix,
such as the positivity of the state. Based on this intuition, our
objective is to devise a method to systematically generate an
entire family of correlation constraints. Our central results
show that the positivity condition under certain mappings
alone gives rise to an exponential number of independent
correlation constraints, as well as to monogamy relations for
entanglement in multipartite pure states of any number of
parties and finite local dimension. Our method to derive these
relations is based on and extends the so-called universal state
inversion [25,26]. It turns out that the generalized inverter
map is directly related to Rains’ shadow inequalities [27,28],
which, by virtue of these investigations, can be assigned a
direct physical interpretation.

In Sec. II we explain universal state inversion by discussing
relevant examples for entropy inequalities that can directly
be derived from the inverted state. It is then straightforward
to understand the definition and properties of the generalized
state inversion map, which we introduce in Sec. III. After
presenting our main results (Secs. IV and V) we discuss
several routes of investigation that get input through our find-
ings; these include detection of entanglement, derivation of
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inequalities for the linear entropy, and the quantum marginal
problem (Sec. VI).

II. ENTROPY INEQUALITIES FROM UNIVERSAL
STATE INVERSION

In the following we consider normalized states of an N -
partite system ρ ∈ B(H1 ⊗ · · · ⊗ HN ), where Hj are Hilbert
spaces with dim Hj = dj (j = 1, . . . , N ) and Tr(ρ) = 1. Let
us start with bipartite systems, N = 2. We denote the global
state by ρ12 while the reduced state of the first subsystem is
ρ1 = Tr2 (ρ12), and analogously ρ2 = Tr1 (ρ12). In Ref. [26]
it was shown that the operator

ρ̃12 = 112 − ρ1 ⊗ 12 − 11 ⊗ ρ2 + ρ12 � 0, (1)

is positive semidefinite. Here 1j is the identity operator acting
on subsystem j = 1, 2, and 112 the one for the full system.
By multiplying Eq. (1) by ρ12 and applying the trace as well
as the definition for the linear entropy of subsystem j , τj =
2[1 − Tr (ρ2

j )], one obtains the well-known subadditivity of
linear entropy [26,29,30]

τ12 � τ1 + τ2. (2)

One recognizes the usefulness of the operator ρ̃12, the result
of the universal state inversion map applied to the state ρ12.
It arises through subsequently tracing out all of the subsets
of parties and padding with identities, multiplying by (−1)
per trace operation, and adding up the results. Analogously,
universal state inversion for a three-party state ρ123 yields

0 � ρ̃123 = 11 ⊗ 12 ⊗ 13 − ρ1 ⊗ 12 ⊗ 13 − 11 ⊗ ρ2 ⊗ 13

− 11 ⊗ 12 ⊗ ρ3 + ρ12 ⊗ 13 + ρ13 ⊗ 12

+ 11 ⊗ ρ23 − ρ123

≡ 1 − ρ1 − ρ2 − ρ3 + ρ12 + ρ13 + ρ23 − ρ123.

(3)

In analogy with the operations above the inequality

τ1 + τ2 + τ3 + τ123 � τ12 + τ13 + τ23 (4)

is found [20]. It resembles a symmetrized and reversed version
of the strong subadditivity inequality for the von Neumann
entropy S [31], which reads S123 + S2 � S12 + S23. We men-
tion that the analog of inequality (4) for von Neumann entropy
was discussed by Hayden et al. [32], as a quantum extension
to the so-called interaction information [33] and a desirable
monogamy property in the context of holographic theories.

Summarizing this introduction, one can use the positivity
of the universal state inversion map [20,26,34,35]

I (ρ) =
⎧⎨
⎩

N∏
j=1

[Trj (·) ⊗ 1j − id]

⎫⎬
⎭ ρ (5)

to derive relevant inequalities, or correlation constraints, for
arbitrary states of multipartite systems of any finite local
dimension. In Eq. (5), id denotes the identity map. An alter-
native way of writing the map I (ρ) in terms of reduced states
ρS = TrSc (ρ) is

I (ρ) =
∑

S⊆{1,...,N}
(−1)|S| ρS ⊗ 1Sc , (6)

where S is a set of subsystem indices, Sc is its comple-
ment Sc = {1, . . . , N} \ S, and |S| denotes the cardinality
of S. From Eq. (6) it is evident that I (ρ) commutes with
local unitary operations [20,26,34]. In what follows we will
generalize the inversion map and obtain a powerful tool for
the analysis of correlations in arbitrary finite-dimensional
multiparty states.

III. GENERALIZED T -INVERTER

We obtain a more general form of the state inversion
map, Eq. (5), by reversing the minus sign in some of the
factors. Assume we retain a minus sign only for all those
subsystem indices that are contained in T ⊆ {1, . . . , N}, and
the other factors come with a plus sign. Then the generalized
T-inversion map IT (·) can elegantly be written as

IT (ρ) =
⎧⎨
⎩

N∏
j=1

[Trj (·) ⊗ 1j + (−1)|T ∩{j}|id]

⎫⎬
⎭ ρ (7)

=
∑

S⊆{1...N}
(−1)|S∩T |(TrSc ρ) ⊗ 1Sc . (8)

The original state inverter Eq. (5) is found for T =
{1, . . . , N}.

Interestingly, there exists a representation of the map IT (·)
in Kraus form, which we will derive now. First, let us consider
the representation of a single factor in Eq. (7) acting on a
d-level system. To this end, we note that for a complete
basis of traceless Hermitian matrices, {hm} complemented by
h0 ≡ 1, with Tr (hmhn) = dδmn, and a Hermitian operator A

we have [20]

Tr(A)1 = 1

d

d2−1∑
m=0

hm A hm, (9)

AT = 1

d

d2−1∑
m=0

hT
m A hm. (10)

With these relations it is easy to find the action of the j th
factor in Eq. (7) on Aj (a Hermitian operator that acts on a
dj -dimensional Hilbert space),

Tr(Aj )1j − Aj = 2

dj

dj −1∑
k<l

ykl A∗
j ykl (11)

Tr(Aj )1j + Aj = 2

dj

⎡
⎣ A∗

j +
dj −1∑
k<l

xkl A∗
j xkl

+
dj −1∑
k=1

zk A∗
j zk

⎤
⎦, (12)

where we have used the generalized Gell-Mann matrices [36].
In Eqs. (11) and (12) we clearly observe the Kraus form

of the map. Note that it is applied to the complex conjugate
A∗

j . Since all the factors in Eq. (7) commute, the Kraus
form extends to the entire operator product, with the Kraus
operators on the full system being tensor products of the
single-system generators (for details see Appendix A). Thus,
the map IT (·) on the full system can be written as IT = � ◦ K
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where � is the Kraus map and K is the complex conjugation.
The existence of this representation proves the positivity of the
generalized T -inversion map, Eqs. (7) and (8). We mention
also that, on application of this map to Hermitian operators,
the complex conjugation may be replaced by a transposition
(see also below). In this sense, first transposing the state
and subsequently applying IT (·) may be viewed as a gener-
alization of the Werner-Holevo channel [37] to multipartite
systems and is a completely positive map.

A consequence of the positivity of IT (·) is that, for two
semidefinite positive operators M1, M2, we have [38]

Tr[ M1 IT (M2) ] � 0. (13)

By inserting Eq. (8) and noting that Tr [M1 TrSc (M2)] =
Tr [TrSc (M1) TrSc (M2)] we obtain∑

S⊆{1,...,N}
(−1)|S∩T | Tr[TrSc (M1) TrSc (M2)] � 0. (14)

That is, as a by-product of the definition of generalized
T -inversion we have derived Rains’ shadow inequalities,
Eq. (14) [27,28], which are an important tool for investigating
the existence of quantum error correcting codes [39–43].
Indeed, to detect the nonexistence of codes and highly entan-
gled states, different choices of subsets T (corresponding to
different distribution of minus signs in the T -inverter) are nec-
essary, depending on the parameters of the code or state under
consideration. It is remarkable that the shadow inequalities are
directly linked to generalized state inversion, which in turn
is connected with correlation and entanglement distribution
constraints, as we will show below. The shadow inequalities
provide a quick alternative proof for the positivity of the
generalized T -inversion map: Choose M1 = |ψ〉〈ψ |, M2=ρ

in Eq. (14), where |ψ〉 is an arbitrary finite-dimensional pure
state, and ρ is an arbitrary state of the same multiparty system.
This yields 〈ψ |IT (ρ)|ψ〉 � 0, implying positivity of IT (ρ).

There is another interesting property of the generalized
T -inversion, which may be called “coarse graining.” Consider,
for example, the tripartite state ρ123 for which we may com-
bine (coarse grain) the subpartitions 2 and 3 into a single
partition, so that we end up with a bipartite state ρ1(23).
Suppose we want to apply an inversion map with T (coarse) =
{(23)} to the coarse-grained state ρ1(23) [i.e., I{(23)}(ρ1(23))],
can we build it from the inverted states on the fine-grained
system? The answer is positive: One has to average over all
those T -inverted states of the fine-grained system with the
following rules for each set of subsystem indices grouped
into a single party: (a) the sets T characterizing the fine-
grained inversions have odd parity for those single-system
indices appearing in T (coarse); (b) for the single-system indices
not appearing in T (coarse) the parity in the fine-grained T

sets has to be even. Hence, in our example I{(23)}(ρ1(23)) =
1
2 [I{2}(ρ123) + I{3}(ρ123)]. As special cases of this property we
have for an N -partite state ρ

1 − ρ = 1

2N−1

∑
T ⊆{1,...,N}, |T | odd

IT (ρ), (15a)

1 + ρ = 1

2N−1

∑
T ⊆{1,...,N}, |T | even

IT (ρ). (15b)

We present a detailed proof in Appendix B.

IV. EXPONENTIALLY MANY CORRELATION
CONSTRAINTS

Consider the special case M1 = M2 = ρ of Eq. (13),

Tr [ρ IT (ρ)] � 0. (16)

This observation gives rise to a notable set of constraints on
the possible correlations in a multipartite state. We use the
decomposition of the generalized inverted state in Eq. (8) as
well as the definition of the linear entropy to expand Eq. (16)
and find (for T �= ∅)

0 �
∑

S⊆{1,...,N}
(−1)|S∩T | Tr [ρ TrSc (ρ)]

=
∑

S⊆{1,...,N}
(−1)|S∩T | Tr

(
ρ2

S

)

= 1

2

∑
∅�=S⊆{1,...,N}

(−1)|S∩T |+1 τS. (17)

For each choice of T �= ∅, this is a constraint for the correla-
tions across the bipartite splits S|Sc as quantified by the linear
entropy, with different distribution of minus signs. Altogether
these are 2N − 1 relations (the condition for T = ∅ is trivial
in view of the fact that all subsystem purities are positive).
We show in Appendix C that the right-hand sides of these
inequalities are functionally independent.

The exponentially many correlation constraints in Eq. (17)
constitute the first key result of our work. These are necessary
conditions related to the quadratic local unitary invariants
Tr (ρ2

S ) of any finite-dimensional multiparty quantum state.
It is particularly satisfactory that these conditions do not
originate from ad hoc assumptions regarding their functional
form. Rather, they arise systematically through the definition
and algebraic properties of generalized T -inversion.

V. MONOGAMY OF ENTANGLEMENT

A. Local unitary invariants CT (ρ )

The generalized T -inverter commutes with local unitaries,
so that we can define the local unitary invariants [44,45]

CT (ρ) ≡
√

Tr[ρ IT (ρ)]. (18)

As we have seen, these invariants are relevant because
they generate the correlation constraints (17). Therefore, let
us briefly mention some properties of CT (ρ).

A direct consequence of the Kraus form of IT (·) is that, for
pure states ρψ = |ψ〉〈ψ |, the local invariant CT (ψ ) vanishes
whenever there is an odd number of factors with a minus sign
in Eq. (7),

CT (ψ ) = 0 for |T | ≡ 1 (mod 2) (19)

(we give a proof of this fact in Appendix D).
Furthermore, we recall that in Ref. [20] the dis-

tributed concurrence CD (ψ ) ≡ √Tr [ρψ I{1,··· ,N}(ρψ )] was
defined, which generalizes the well-known (bipartite) concur-
rence [26] and in certain cases is an entanglement monotone,
that is, nonincreasing on average under stochastic local oper-
ations and communication. Because of the apparent analogies
with Eq. (18) the question arises whether the other invariants
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CT (ψ ) possibly are entanglement monotones. The answer is:
None of the local invariants CT (ψ ) with T �= {1, . . . , N} can
be an entanglement monotone. The proof will also be shown
in Appendix D and essentially relies on the factorization
property

CT (ρprod ) = CTS
(ρS )CTSc (ρSc ) (20)

for product states ρprod = ρS ⊗ ρSc .

B. Exponentially many monogamy relations

Even though CT (ψ ) is not in general an entanglement
monotone, Eq. (17) leads to exponentially many monogamy
relations for the entanglement in the pure state |ψ〉, because
for a pure state the linear entropy of subsystem S equals
the squared concurrence over the bipartite split S|Sc, that is,
τS = 2[1 − Tr (ρ2

S )] ≡ C2
S|Sc .

Thus we have the second main result of our article, the
2N − 1 monogamy inequalities

0 �
∑

∅�=S⊂{1,...,N}
(−1)|S∩T |+1 C2

S|Sc (ψ ), (21)

one inequality for each ∅ �= T ⊆ {1, . . . , N}, which are valid
for any number of parties N and any finite local dimensions.
These inequalities constrain the distribution of concurrence
among the subsystems of any global pure state |ψ〉. They
are related to the local unitary invariants of homogeneous
degree two in the state. Note, however, that according to their
definitions the invariants CT (ψ ) and the concurrence CS|Sc (ψ )
are of homogeneous degree one in the state ρψ , whereas
the relations (21) [as well as Eq. (17)] are of homogeneous
degree two, just as the results, e.g., in Refs. [2,3,12,20]. Again,
there is no ad hoc assumption underlying these constraints,
they naturally follow from the algebraic properties of the
generalized T -inverter.

VI. APPLICATIONS

A. Entanglement detection

In Ref. [25] it was first observed that the reduction map
�(ρ) = 1 − ρ is positive but not completely positive: For
nonseparable bipartite states ρAB ∈ B(HA ⊗ HB ) we may
have (1 ⊗ �)(ρAB ) � 0. Consequently, this map can be used
to detect entanglement in the state ρAB (reduction criterion).
Later, similar maps were studied [35,46–49]. As we have
seen above, the state inversion map can be represented by
a concatenation of a transposition and a subsequent Kraus
channel. This elucidates that also the reduction criterion in-
cludes a partial transposition. While the reduction criterion is
well known to detect fewer entangled states than the positive
partial transpose criterion, the states it detects are guaranteed
to be distillable [25]. In the spirit of Refs. [48,49] we may
even further generalize the T -inversion map by introducing
real numbers 0 � αj , βk � 1,

I{αj ,βk}
T =

∏
j∈T

[Trj (·)1j − αj id]
∏
k /∈T

[Trk (·)1k + βkid], (22)

which again is a positive, but not completely positive, map.
The strength of the corresponding entanglement criteria (in
analogy with the bipartite case investigated in Refs. [48,49])

and the question how to choose the optimal αj , βk will be
discussed in future work.

B. More entropy inequalities

Based on the positivity of generalized T -inversion, more
relevant inequalities for the linear entropy can be derived.
Note that the linear entropy is proportional to the Tsallis
2-entropy [29,50] and has a simple functional relation with the
Rényi α-entropy for α = 2 [51]. To date, only a few inequali-
ties are known for the linear entropy [6,15,19,29,52,53].

Recall that for a bipartite state ρ12 the {12}-inverter leads
to Eq. (2). Analogously, we may use the positivity of the {1}-
inverter as well as the {2}-inverter, and find τ12 � |τ1 − τ2|,
leading to the linear entropy analog of the Araki-Lieb triangle
inequality [54] found by Zhang et al. [53]

|τ1 − τ2| � τ12 � τ1 + τ2. (23)

Now let us go back to three-party states ρ123, for which
we have found Eq. (4). We note that the linear entropy
analog of strong subadditivity, τ2 + τ123 � τ12 + τ23, does
not hold [52]; this is readily demonstrated by analyzing
the three-qubit state ρII = |�+

12〉〈�+
12| ⊗ 1

213, with |�+〉 =
1√
2
(|00〉 + |11〉). The reverse inequality does not hold ei-

ther, as the state ρIII = |�+
13〉〈�+

13| ⊗ 1
212 shows. Yet we can

add the relations for the coarse-grained C 2
{(12)}(ρ(12)3) and

C 2
{(23)}(ρ1(23)), where partitions (12) and (23), respectively, are

considered a single party, and obtain

τ1 + τ3 � τ12 + τ23 + 2τ123. (24)

This relation is reminiscent of the weak monotonicity S1 +
S3 � S12 + S23 for von Neumann entropies, which is equiv-
alent to strong subadditivity [31,55]. Alternatively, we can
purify the state ρ123 with a fourth party, use τ1234 = 0, τ123 =
τ4 and τ23 = τ14, and then relabel the parties 1 ↔ 2, 3 ↔ 4,
so that

τ2 + τ123 � τ12 + τ23 + 2τ3. (25)

The latter result shows the correction in a linear entropy
inequality analogous to the standard strong subadditivity re-
lation for the von Neumann entropy.

C. Compatibility of marginals

Finally we want to highlight the relation of our results with
the quantum-marginal problem, that is, the question whether
or not a given set of reduced states is compatible with a joint
global state [56]. Clearly, our linear-entropy constraints (17)
represent necessary conditions for the reduced states ρS to be
compatible with the global state ρ. However, we can make
statements even at the operator level.

In order to see this, consider again a three-party state ρ123.
Butterley et al. [57] found for three qubits that, given a set
of two-body marginals ρ12, ρ23, and ρ13, compatibility with a
joint state ρ123 requires positivity of the operator

� = 1 − ρ1 − ρ2 − ρ3 + ρ12 + ρ13 + ρ23 � 0. (26)

By comparing with Eq. (3) we note that this follows imme-
diately for arbitrary local dimensions from the positivity of
ρ̃123 ≡ I{123}(ρ123), and hence I{123}(ρ123) + ρ123 � 0. Now,
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invoking generalized T -inversion for odd integer |T |, e.g.,
I{1}(ρ123) + ρ123 � 0 gives

1 − ρ1 + ρ2 + ρ3 − ρ12 − ρ13 + ρ23 � 0, (27)

and analogous relations for I{2}(ρ123) and I{3}(ρ123). This
construction generalizes to an arbitrary number of parties:
From IT (ρ) + ρ � 0 for odd |T |, one obtains exponentially
many independent operator constraints for the compatibility
of quantum marginals [58] (cf. also Ref. [59], where the con-
dition for T = {1, . . . , N} was considered). Note that these
constraints are necessary, but not sufficient conditions for the
marginals to belong to a joint global state.

VII. CONCLUSIONS

We have extended the theory of universal quantum state
inversion by defining the generalized T -inversion map IT .
This map turns out to be a unifying building block for various
aspects of quantum correlations in finite-dimensional multi-
party systems: It brings together the theory of multipartite
entanglement and entanglement monogamy with a formalism
originating from quantum error correcting codes, and also the
quantum marginal problem. Thereby it elucidates the common
algebraic origin of the different physical properties investi-
gated in these fields. Most prominently, it provides a system-
atic way to generate and explore correlation constraints and
monogamy relations for entanglement in composite systems
of arbitrary finite local dimension. We mention the immediate
application of the constraints in Eq. (21) in excluding the
existence of absolutely maximally entangled states for certain
party numbers and local dimensions [43].
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APPENDIX A: KRAUS FORM OF THE GENERALIZED
T -INVERSION MAP

The procedure to derive the Kraus representation of the
generalized T -inversion map is analogous to that for the
universal state inverter; cf. Ref. [20]. We use the definitions
of the generalized Gell-Mann matrices in d dimensions

xkl =
√

d

2
(|k〉〈l| + |l〉〈k|),

ykl =
√

d

2
(−i|k〉〈l| + i|l〉〈k|),

zl =
√

d

l(l + 1)

(
−l|l〉〈l| +

l−1∑
k=0

|k〉〈k|
)

,

where (0 � k < l < d ). Now we relabel them as follows:

h0 = 1, (A1)

hl2+2k = xkl, (A2)

hl2+2k+1 = ykl, (A3)

hl2+2l = zl . (A4)

Hence, the expressions for the factors of the inverter, Eqs. (11)
and (12), take the form

Tr(Aj )1j − Aj = 2

dj

dj −2∑
k=0

dj −1∑
l=k+1

hl2+2k+1 A∗
j hl2+2k+1,

(A5)

Tr(Aj )1j + Aj = 2

dj

⎡
⎣ dj −2∑

k=0

dj −1∑
l=k+1

hl2+2k A∗
j hl2+2k

+
dj −1∑
k=0

hk2+k A∗
j hk2+k

⎤
⎦

= 2

dj

dj −1∑
k=0

dj −1∑
l=k

hl2+2k A∗
j hl2+2k. (A6)

As before, Aj denotes a Hermitian operator acting on a
dj -dimensional Hilbert space.

The generalized T -inversion map for the state ρ of an
N -partite system has N factors as in the preceding equalities;
the sign in front of the identity in the j th factor depends on
the presence of the index j of the respective subsystem in T :

IT (ρ) =
⎧⎨
⎩

N∏
j=1

[Trj (·) ⊗ 1j + (−1)|T ∩{j}|id]

⎫⎬
⎭ ρ, (A7)

where id represents the identity map. In order to rewrite
Eq. (A7) we introduce the compact notation

k = (k1, . . . , kN ),

t = (t1, . . . , tN ), tj = 1

2
[1 − (−1)|{j}∩T |],

hl2+2k+t = hl2
1+2k1+t1

⊗ hl2
2+2k2+t2

⊗ · · · ⊗ hl2
N +2kN +tN

,∑
kl

≡
∑
k1l1

· · ·
∑
kN lN

,

where the j th tensor factor in hl2+2k+t acts only on the j th
subsystem and the index ranges in the summation

∑
kj lj

need
to be chosen as in Eq. (A5) if j ∈ T , or as in Eq. (A6)
otherwise. Then we can write

IT (ρ) = 2N∏N
j=1 dj

∑
kl

hl2+2k+t ρ∗ hl2+2k+t , (A8)

which is the desired Kraus form of the generalized T inverter.
From Eq. (A8) we readily see the product property of the

inverter on product states ρprod = ρS ⊗ ρSc , which is at the
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origin of Eq. (19):

IT (ρS ⊗ ρSc ) = ITS
(ρS ) ⊗ ITSc (ρSc ). (A9)

Of course, this property is also evident from the prod-
uct representation of generalized T -inversion, Eq. (7) and
Eq. (A7).

APPENDIX B: COARSE GRAINING OF THE
GENERALIZED T -INVERSION MAP

If we have a multipartite system with N local parties,
we can choose to “coarse grain” the state by combining
some of the parties, say, n, into a single system. We will
show now how the generalized T -inverter can be assembled
from the inverters of the “fine-grained” system. In principle,
the N local systems can be combined to k coarse-grained
parties, where 1 < k < N . Due to the product structure of the
generalized T -inversion map it is evident that it suffices to
understand how several parties can be combined to a single
party; the more general case of several coarse-grained parties
is obtained by applying the rules found for single-party coarse
graining to each combined party separately. We denote the

coarse-graining of the multi-party into a single-party state by

ρ1,...,n −→ ρ(1,...,n)

and the inverter on the combined system IT (1) (ρ(1,...,n) ), as op-
posed to that of the fine-grained system, IT (ρ1,...,n). Clearly,
T (1) can equal ∅ or {1}, corresponding to the two possible
signs of the single-system inverter. We will show now that

IT (1) (ρ(1,...,n) ) = 1

2n−1

∑
S⊆{1,...,n},

|S|≡|T (1) | (mod 2)

IS (ρ1,...,n), (B1)

which means, in order to obtain the coarse-grained inversion,
one has to add all the fine-grained inversion operators whose
parity coincides with that of the desired coarse-grained op-
erator. For example, a minus inversion on a coarse-grained
three-party system, where T (1) = {1}, is obtained via

IT (1) (ρ(123)) = 1
4 [I{1}(ρ123) + I{2}(ρ123)

+ I{3}(ρ123) + I{123}(ρ123)].

The proof is by induction. The case n = 1 is trivial, as
1
20

∑′
S⊆{1} IS = IT (1) , because the sum over S contains only

two terms ∅ and {1}, and we take into account (denoted by the
prime) only the term |S| ≡ |T (1)| (mod 2). Now we assume
correctness of Eq. (B1) for n parties and find for (n + 1)-party
coarse graining

IT (1) [ρ(1...(n+1))] = Tr[ρ(1,...,(n+1))]1 + (−1)|T
(1)|ρ(1,...,(n+1))

= 1
2 (Tr[ρ(1,...,(n+1))]1 + (−1)|T

(1)|ρ(1,...,n) ⊗ 1(n+1) + 11,...,n ⊗ ρ(n+1) + (−1)|T
(1)|ρ(1,...,(n+1)) +

+ Tr[ρ(1,...,(n+1))]1 − (−1)|T
(1)|ρ(1,...,n) ⊗ 1(n+1) − 11,...,n ⊗ ρ(n+1) + (−1)|T

(1)|ρ(1,...,(n+1)) )

= 1
2 {IT (1) (·) ⊗ [Tr(n+1)(·) ⊗ 1(n+1) + id]ρ(1,...,n)(n+1)

+ I{1}\T (1) (·) ⊗ [Tr(n+1)(·) ⊗ 1(n+1) − id]ρ(1,...,n)(n+1)}, (B2)

where we can now make use of Eq. (B1):

IT (1) [ρ(1,...,(n+1))] = 1

2

⎛
⎜⎝ 1

2n−1

∑
S⊆{1,...,n},

|S|≡|T (1) | (mod 2)

IS∩∅(ρ1,...,(n+1)) + 1

2n−1

∑
S⊆{1,...,n},

|S|≡|T (1) |+1 (mod 2)

IS∩{(n+1)}(ρ1,...,(n+1))

⎞
⎟⎠

= 1

2n

∑
S⊆{1,...,(n+1)},

|S|≡|T (1) | (mod 2)

IS (ρ1,...,(n+1)), (B3)

which concludes the proof for (n + 1).

APPENDIX C: FUNCTIONAL INDEPENDENCE OF THE
CORRELATION CONSTRAINTS

In order to prove the functional independence for the right-
hand sides of the constraints in Eq. (17), we need to show that
if for all ρ,

D (ρ) ≡
∑

T ⊆{1,...,N}
αT C 2

T (ρ) = 0, (C1)

then αT = 0 for all T .
We demonstrate this by constructing a family of states

ρ(S), so that αT = 0 is necessary in order to fulfill
Eq. (C1). Consider for all subsets S ⊆ {1, . . . , N} the state

ρ(S) =⊗N
k=1 ρk where

ρk =
{

|0〉〈0| for k ∈ S
1
2 (|0〉〈0| + |1〉〈1|) otherwise

. (C2)

A straightforward calculation gives

C 2
T (ρ(S)) =

{
0 if S ∩ T �= ∅
4|S|3N−|S|−|T |

2N if S ∩ T = ∅ . (C3)

Now we have ρ({1, . . . , N}) =⊗k |0〉〈0|, so that
D (ρ({1, . . . , N})) = α∅2N = 0, and hence α∅ = 0. Next
we consider S = {1, . . . , (k − 1), (k + 1), . . . , N}. The only

052317-6



EXPONENTIALLY MANY ENTANGLEMENT AND … PHYSICAL REVIEW A 98, 052317 (2018)

nonzero invariants for this ρ(S) are C∅ and C{k}. But we
have already found that α∅ = 0, hence also α{k} = 0. By
recursively applying the same reasoning we conclude that
αS = 0 for all S ⊆ {1, . . . , N}.

Thus, we have proven independence of the C 2
T (ρ) for

mixed states. However, since we explicitly make statements
also for pure states [see Eq. (21)], it is desirable to show
independence also for pure states. For this purpose, some
preliminary observations are helpful. First, we note that we
may split the summation in Eq. (C1)∑

T ⊆{1,...,N}
=
∑

T ′=∅,{1}

∑
T ′′⊆{2,...,N}

, (C4)

and T = T ′ ∪ T ′′. Further, we have from Eq. (A7)

I∅∪T ′′ (ψ ) + I{1}∪T ′′ (ψ ) = 2 11⊗ IT ′′ (Tr1 [|ψ〉〈ψ |]),
and therefore

C 2
∅∪T ′′ (ψ ) + C 2

{1}∪T ′′ (ψ ) = 2C 2
T ′′ (Tr1 [|ψ〉〈ψ |]). (C5)

Moreover, on the left-hand side of Eq. (C5) only one of
the terms can be nonzero, because the other term has an
odd number of minus signs in the inverter [that is, |T | =
|T ′ ∪ T ′′| ≡ 1 (mod 2)] and therefore C 2

T (ψ ) = 0, as we will
prove in Appendix D.

With the preceding remarks we conclude

D (ψ ) ≡
∑

T ⊆{1,...,N}
αT C 2

T (ψ )

= 2
∑

T ′′⊆{2,...,N}
αT ′′C 2

T ′′ (Tr1 [|ψ〉〈ψ |]), (C6)

that is, we have reduced the N -qudit problem for pure states
|ψ〉 to an (N − 1)-qudit problem for Tr1 (|ψ〉〈ψ |). Hence, in
principle we can use the proof for mixed states. The only
remaining task is to construct a family of pure states |ψ (S)〉
for which Tr1(|ψ (S)〉〈ψ (S)|) has properties analogous to
those of ρ(S); see Eq. (C2). Note that S ⊆ {2, . . . , N}. An
example for such a state is

|ψ (S)〉 = 1√
2

[
|0〉1

⊗
k∈Sc

|0〉k + |1〉1

⊗
l∈Sc

|1〉l
]

⊗
⊗
m∈S

|0〉m

for which we find

C 2
T (ψ (S)) =

{
0 if S ∩ T �= ∅
δ0,|T |2N−1 + 2|S| if S ∩ T = ∅ . (C7)

With this, the proof can be completed as above for mixed
states.

APPENDIX D: PROPERTIES OF THE LOCAL
UNITARY INVARIANTS CT (ψ )

First, let us prove Eq. (19). To this end, consider for pure
states ρ = |ψ〉〈ψ | a term in the sum of Eq. (A8) when |T | =
m is an odd integer. Without loss of generality we may assume
that the minus sign occurs in the first m parties, so that

hl2+2k+t ρ∗ hl2+2k+t = hl2+2k+t |ψ∗〉〈ψ∗| hl2+2k+t

and

hl2+2k+t

= yk1l1 ⊗ · · · ⊗ ykmlm ⊗ hl2
m+1+2km+1

⊗ · · · ⊗ hl2
N +2kN

,

where the last (N − m) tensor factors are of x type or diago-
nal. Those latter operators do not change under transposition
or conjugation; therefore, in what follows, we will not write
them explicitly.

Now consider the corresponding term in the expansion of

C 2
T (ψ ) = Tr(|ψ〉〈ψ | IT (ψ ))

(for the sake of compactness we will drop also the symbol for
the tensor product), we find

Tr(|ψ〉〈ψ | hl2+2k+t |ψ∗〉〈ψ∗| hl2+2k+t )

= 〈ψ |yk1l1 · · · ykmlm · · · |ψ∗〉〈ψ∗| yk1l1 · · · ykmlm · · · |ψ〉.
That is, each term in the expansion of C 2

T (ψ ) can be written
as

|〈ψ |yk1l1 · · · ykmlm · · · |ψ∗〉|2.
But we have

〈ψ |yk1l1 · · · ykmlm · · · |ψ∗〉 = 〈ψ∗|y∗
k1l1

· · · y∗
kmlm

· · · |ψ〉∗

= −〈ψ |yk1l1 · · · ykmlm · · · |ψ∗〉
for an odd number of y-type operators; therefore each term in
the expansion of C 2

T (ψ ) vanishes, and

CT (ψ ) = 0 (D1)

for odd |T | = m.
Let us finally prove that CT (ψ ) cannot be an entanglement

monotone if T �= {1, . . . , N}. First, we remark that we need to
consider only T �= ∅ because C 2

∅ (ψ ) is a sum of local purities,
and therefore neither C∅(ψ ) nor C 2

∅ (ψ ) can be entanglement
monotones (they are maximized on product states). Similarly,
a CT (ψ ) from a T -inverter with at least two plus signs in the
product Eq. (A7) cannot be a monotone either. To see this,
we note that the local invariant obeys the product property on
product states ρprod = ρS ⊗ ρSc :

CT (ρprod ) = CTS
(ρS )CTSc (ρSc ), (D2)

[which immediately follows from Eq. (A9)]. Now consider a
state |ψ1〉 = |ψS〉 ⊗ |ψSc 〉 such that Sc contains all the parties
with a plus sign in the inverter (i.e., TS = T ). For a fully sep-
arable state |ψSc 〉, CT (ψ1) will then have a larger value than
if we had chosen an entangled state for ψSc . Consequently,
CT (ψ ) cannot be an entanglement monotone. The remaining
case is that of a single plus sign in the inverter. There, we
need to have at least two minus signs [otherwise CT (ψ ) = 0
because of Eq. (D1)]. It is then easy to find counterexamples
for the monotone assumption. Consider, e.g., a system of three
parties (123) with local dimensions dj � 2, T = {2, 3}, and
the state |ψ2〉 = 1√

2
(|000〉 + |111〉), so that CT (ψI ) = 1. If

we apply a two-outcome positive operator-valued measure
(POVM) {A1, A2} to the first qudit with A1,2 = |±〉〈±| +

1√
2

∑d1−1
j=2 |j 〉〈j |, |±〉 = 1√

2
(|0〉 ± |1〉), the resulting state is a
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tensor product of a pure state of the first party and a Bell-type
state of the other two qudits, so that the average of CT for
the two outcomes gives

√
2 > CT (ψ2), in contradiction with

the monotone assumption. Finally, for the case of a single
plus sign and a larger (even) number k > 2 of minus signs
in the inverter we can construct an analogous counterexample

|ψ3〉 = |ψ ′
2〉 ⊗⊗ k

2 −1
l=1

1√
2
(|00〉 + |11〉); here |ψ ′

2〉 is a state of
three parties, where the first party is the one with the plus
sign in the inverter, in analogy with |ψ2〉. The corresponding
two-outcome POVM acts on that first party in |ψ ′

2〉. Note
that instead of the tensor product of Bell-type states in |ψ3〉
we could have used any other state for which the inverter
with only minus signs does not vanish. This concludes the

proof that CT (ψ ) cannot be an entanglement monotone for
T �= {1, . . . , N}.

For completeness we mention that for T = {1, . . . , N}, N

even, the distributed concurrence CT (ψ ) is an entanglement
monotone only in the following cases (recall that for odd N

we have CT ≡ 0):
(a) N = 2, dj arbitrary. Then CT (ψ ) coincides with the

well-known concurrence for bipartite states.
(b) d = 2, N arbitrary. This case corresponds to the

polynomial invariant |H (ψ )| = |〈ψ |σ⊗N
2 |ψ∗〉|, which is the

straightforward generalization of Wootters’ two-qubit concur-
rence to N -qubit states.

(c) N > 2, dj � 3. Also in those cases, CT (ψ ) is an
entanglement monotone, as was proven in Ref. [20].
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