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We examine the role of quantum error correction (QEC) in achieving pretty good quantum state transfer over
a class of one-dimensional spin Hamiltonians. Recasting the problem of state transfer as one of information
transmission over an underlying quantum channel, we identify an adaptive QEC protocol that achieves pretty
good state transfer. Using an adaptive recovery and approximate QEC code, we obtain explicit analytical and
numerical results for the fidelity of transfer over ideal and disordered one-dimensional Heisenberg chains. In
the case of a disordered chain, we study the distribution of the transition amplitude, which in turn quantifies the
stochastic noise in the underlying quantum channel. Our analysis helps us to suitably modify the QEC protocol
so as to ensure pretty good state transfer for small disorder strengths and indicates a threshold beyond which
QEC does not help in improving the fidelity of state transfer.
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I. INTRODUCTION

Quantum communication entails transmission of an ar-
bitrary quantum state from one spatial location to another.
Spin chains are a natural medium for quantum state transfer
over short distances, with the dynamics of the transfer being
governed by the Hamiltonian describing the spin-spin inter-
actions along the chains. Starting with the original proposal
by Bose [1] for state transfer via a one-dimensional (1D)
Heisenberg chain, several protocols have been developed for
perfect as well as pretty good quantum state transfer via spin
chains.

Perfect state-transfer protocols typically involve engineer-
ing the coupling strengths between the spins in such a way
as to ensure perfect fidelity between the state of the sender’s
spin and that of the receiver’s spin [2–6]. Alternately, there
have been proposals to use multiple spin chains in parallel,
and apply appropriate encoding and decoding operations at
the sender and receiver’s spins so as to transmit the state
perfectly [7–9]. Experimentally, perfect state-transfer proto-
cols have been implemented in various architectures including
nuclear spins [10] and photonic lattices using coupled waveg-
uides [11,12].

Relaxing the constraint of perfect state transfer, protocols
for pretty good transfer aim to identify optimal schemes for
transmitting information with high fidelity across permanently
coupled spin chains [13,14]. One approach is, for example, to
encode the information as a Gaussian wave packet in multiple
spins at the sender’s end [15,16]. Moving away from ideal
spin chains, quantum state transfer has also been studied over
disordered chains, both with random couplings and random
external fields [8,17,18].

Here, we study the problem of pretty good state transfer
from a quantum channel point of view. It is known [1]
that state transfer over an ideal XXX chain (also called
the Heisenberg chain) can be realized as the action of an
amplitude-damping channel [19] on the encoded state. Nat-
urally, this leads to the question of whether quantum error

correction (QEC) can improve the fidelity of quantum state
transfer. QEC-based protocols that achieve pretty good trans-
fer have been developed for noisy XX [20,21] and Heisenberg
spin chains [22].

In our work, we study the role of adaptive QEC in achiev-
ing pretty good transfer over a class of 1D spin systems which
preserve the total spin. This includes both the XX as well as
the Heisenberg chains, and more generally, the XXZ chain.
We use an approximate QEC (AQEC) code, which has been
shown to achieve the same level of fidelity as perfect QEC
codes for certain noise channels while making use of fewer
physical resources [23–26]. Our protocol involves the use of
multiple identical spin chains in parallel, with the information
encoded in an entangled state across the chains. This is in
contrast to the protocols in [20,21] which use perfect QEC
codes and encode into multiple spins on a single chain. Using
the worst-case fidelity between the states of the sender and
receiver’s spins as the figure of merit, we demonstrate that
pretty good state transfer may be achieved over a class of
spin-preserving Hamiltonians using an approximate code and
a channel-adapted recovery map.

Finally, we present explicit results for the fidelity of state
transfer obtained using our QEC scheme, for ideal as well as
disordered XXX chains. The presence of disorder in a 1D spin
chain is known to lead to the phenomenon of localization [27].
Here, we analyze the distribution of the transition amplitude
for a disordered XXX chain, with random coupling strengths
which are drawn from a uniform distribution. We modify the
QEC protocol suitably so as to ensure pretty good transfer
when the disorder strength is small. As the disorder strength
increases, our analysis points to a threshold beyond which
QEC does not help in improving the fidelity of state transfer.

The rest of the paper is organized as follows. We discuss
the basic state-transfer protocol over a general class of spin-
preserving Hamiltonians and the underlying quantum channel
description in Sec. II. We discuss the adaptive QEC protocol
and the resulting fidelity in Sec. III. We present results specific
to the ideal XXX chain in Sec. IV and discuss the disordered

2469-9926/2018/98(5)/052309(13) 052309-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.052309&domain=pdf&date_stamp=2018-11-07
https://doi.org/10.1103/PhysRevA.98.052309


AKSHAYA JAYASHANKAR AND PRABHA MANDAYAM PHYSICAL REVIEW A 98, 052309 (2018)

chain in Sec. V. Finally, we summarize our conclusions in
Sec. VI.

II. PRELIMINARIES

We consider a general 1D spin chain with nearest-neighbor
interactions described by the Hamiltonian

H = −
∑

k

Jk

(
σ k

x σ k+1
x + σ k

y σ k+1
y

)

−
∑

k

J̃kσ
k
z σ k+1

z +
∑

k

Bkσ
z
k , (1)

where {Jk} > 0 and {J̃k} > 0 are site-dependent exchange
couplings of a ferromagnetic spin chain, {Bk} denote the
magnetic field strengths at each site, and (σ k

x , σ k
y , σ k

z ) are the
Pauli operators at the kth site. The spin sites are numbered as
j = 1, 2, . . . , N . We assume that the sender’s site is the sth
spin and the receiver’s site is the rth spin.

We denote the ground state of the spin as |0〉 = |000 . . . 0〉.
Since we are interested in transmitting a qubit worth of
information along the chain, we will work within the subspace
spanned by the set of single-particle excited states |j〉, with
|j〉 denoting the state with the j th spin alone flipped to |1〉.
The Hamiltonian in Eq. (1) preserves the total number of
excitations, that is, [H,

∑N
i=1 σ i

z ] = 0, and hence the resulting
dynamics is restricted to the (N + 1)-dimensional subspace
spanned by the single-particle excited states and the ground
state.

The sender encodes an arbitrary quantum state |ψin〉 =
a|0〉 + b|1〉 at the sth site, with the coefficients a and b pa-
rameterized using a pair of angles (θ, φ) as a = cos( θ

2 ), b =
e−iφ sin( θ

2 ). The initial state of the spin chain is thus given by

|�(0)〉 = a|0〉 + b|s〉, (2)

where |s〉 is the state of the spin chain with only the sth spin
flipped to |1〉 and all other spins set to |0〉. Under the action of
the Hamiltonian H described in Eq. (1), after time t , the spin
chain evolves to the state (here, and in what follows, we set
h̄ = 1)

|�(t )〉 = e−iHt |�(0)〉

= a|0〉 + b

N∑
j=1

〈j|e−iHt |s〉|j〉.

Following [1], the state of the receiver’s spin at the rth site
after time t , denoted as ρout (t ), is obtained by tracing out all
the other spins from the state of the full spin chain ρ(t ) =
|�(t )〉〈�(t )|:

ρout (t ) = tr1,2,...,r−1,r+1,N−1[ρ(t )]

=
{
|a|2 + |b|2[1 − ∣∣f N

r,s (t )
∣∣2]}|0〉〈0|

+ ab∗[f N
s,r (t )

]∗|0〉〈1| + ba∗f N
r,s (t )|1〉〈0|

+ |b|2∣∣f N
r,s (t )

∣∣2|1〉〈1|, (3)

where

f N
r,s (t ) = 〈r|e(−iHt )|s〉 (4)

is the transition amplitude, which gives the probability ampli-
tude for the excitation to transition from the sth site to rth site.
The function f N

r,s (t ) satisfies

N∑
r=1

∣∣f N
r,s (t )

∣∣2 = 1, ∀ s = 1, 2, . . . , N,

N∑
k=1

f N
r,k (t )

[
f N

k,s (t )
]∗ = δrs, ∀ k = 1, 2, . . . , N, (5)

where δrs is the delta function with δrs = 1 for r = s and
δrs = 0 for r �= s.

As shown in [1], we thus obtain the reduced state in Eq. (3)
at the receiver’s end as the action of a quantum channel on the
input state. Specifically,

ρout (t ) = E (ρin ) =
∑

k

EkρinE
†
k, (6)

where E0 and E1 are the Kraus operators that describe the
action of the channel. It is easy to see that the operators E0, E1

have the following form when written in the {|0〉, |1〉} basis:

E0 =
(

1 0
0 f N

r,s (t )

)
, E1 =

(
0

√
1 − ∣∣f N

r,s (t )
∣∣2

0 0

)
. (7)

The Kraus operators in Eq. (7) lead to a channel that has the
same structure as the amplitude-damping channel, but is more
general since the parameter f N

r,s (t ) characterizing the noise in
the channel is complex.

Recall that the standard amplitude-damping channel is
parameterized by a real noise parameter p and is described by
a pair of Kraus operators, written in the {|0〉, |1〉} basis as [19]

EAD
0 =

(
1 0
0

√
1 − p

)
, EAD

1 =
(

0
√

p

0 0

)
. (8)

This is the quantum channel induced in the original state-
transfer protocol in [1] where the Hamiltonian considered is
a Heisenberg chain in the presence of an external field of the
form �B = Bẑ, that is,

H̃ = −J

2

∑
〈i,j〉

�σ i · �σ j − B
∑

i

σz. (9)

By choosing the intensity of the �B field appropriately, it is
possible to adjust the phase of the complex amplitude f N

r,s (t )
to be a multiple of 2π and hence replace f N

r,s (t ) by |f N
r,s (t )|,

thus obtaining the amplitude-damping channel described in
Eq. (8) above.

While much of the past work on state transfer has fo-
cused on the Heisenberg Hamiltonian in Eq. (9), here we
will focus on the more general Hamiltonian in Eq. (1). We
study the problem of transmitting an arbitrary quantum state
from the sth site to the rth site of an N -spin chain. We
quantify the performance of the protocol in terms of the
fidelity between the final state ρout ≡ E (|ψin〉〈ψin|) and the
input state |ψin〉. Specifically, we use the worst-case fidelity,
which is defined as [19]

F 2
min(E ) = min

a,b
〈ψin|ρout|ψin〉,
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where the minimization is over all possible input states a|0〉 +
b|1〉. We say that pretty good state transfer is achieved when
the worst-case fidelity F 2

min(E ) � 1 − ε, for some ε > 0.
Let |f N

r,s (t )| and � refer to the amplitude and phase,
respectively, of the noise parameter f N

r,s (t ) = ei�|f N
r,s (t )| of

the general quantum channel in Eq. (7). For such a channel,
the worst-case fidelity depends on both the amplitude |f N

r,s (t )|
and the phase �. However, following the original protocol
in [1], if we choose the magnetic fields {Bk} so as to ensure
that � is a multiple of 2π , we can show that

F 2
min(E ) = ∣∣f N

r,s (t )
∣∣2. (10)

In what follows, we examine how the worst-case fidelity may
be improved using techniques from quantum error correction.
In particular, by obtaining a functional relationship between
the worst-case fidelity and the transition amplitude using an
adaptive QEC procedure, we show how the fidelity can be
improved by an order in the noise parameter.

III. STATE-TRANSFER PROTOCOL BASED ON
ADAPTIVE QEC

Given a specific form of the spin-conserving Hamiltonian
in Eq. (1), it is possible to estimate |f N

r,s (t )| and � for a
specific choice of sites s, r , and t by making repeated mea-
surements on the spin chain [8]. Knowing �, we may apply a
phase gate of the form

U� =
(

1 0
0 e−i�

)
, (11)

to change the encoding basis to {|0〉, e−i�|1〉}. In this rotated
basis, the channel in Eq. (7) is identical to the amplitude-
damping channel described in Eq. (8). At the level of the
Hamiltonian, this is the same as choosing the field strengths
{Bk} so as to make the phase � trivial. Indeed, by making an
appropriate choice of magnetic fields, it is always possible to
transform the spin-preserving Hamiltonian in Eq. (1) into an
XXX interaction as in Eq. (9) (see [28]) and hence map the
underlying noise channel to an amplitude-damping channel.

One naïve approach to improving the fidelity of state trans-
fer is to therefore first apply the U� gate and then use any of
the well-known QEC protocols which correct for amplitude-
damping noise [23–25,29]. However, such an approach fails
in the presence of disorder. When we consider a disordered
1D spin chain wherein either the couplings {Jk, J̃k} or the
fields {Bk} in Eq. (1) may be random, the underlying noise
channel is stochastic. The two real parameters |f N

r,s (t )| and
� characterizing the noise in the channel vary with each
disorder realization, and hence an encoding procedure that
relies on knowledge of a specific realization of � is not useful.
Moreover, implementing a phase gate as in Eq. (11) based on
the disorder-averaged value of � does not help—such a phase
gate will no longer cancel out the arbitrary (random) phase in
Eq. (7) and we do not obtain an amplitude-damping channel
in the rotated basis after the action of the phase gate.

We would therefore like to tackle the problem of correcting
for the more general noise channel in Eq. (7). Taking inspira-
tion from the structural similarity to the amplitude-damping
channel, we propose a QEC protocol using an approximate

FIG. 1. Four-qubit QEC on spin chains.

four-qubit code [23] along with the channel-adapted near-
optimal recovery proposed in [25]. Specifically, we use a
four-qubit code C, realized as the span of the following pair
of orthogonal states:

|0L〉 = 1√
2

( |0000〉 + |1111〉 ),

|1L〉 = 1√
2

( |1100〉 + |0011〉 ). (12)

This code was shown to be approximately correctable for
amplitude-damping noise, both in terms of worst-case fi-
delity [23] as well as entanglement fidelity [30]. The code is
approximate in the sense that it does not satisfy the conditions
for perfect quantum error correction [19], for any single-qubit
error.

The recovery map we use is adapted to the given noise map
E and code C, and can be described in terms of the Kraus
operators of the noise and the projector P onto the code space
as follows:

R(.) =
∑

i

PE
†
i E (P )−1/2(.)E (P )−1/2EiP, (13)

where the inverse of E (P ) is taken on its support. Such a
recovery map R has been shown to achieve worst-case fidelity
close to that of the optimal recovery map for any given noise
channel E [25]. In the specific case of the amplitude-damping
channel and the four-qubit code, the adaptive recovery map
defined above was shown to achieve better worst-case fidelity
than the recovery used in [23].

The quantum state-transfer protocol with QEC is imple-
mented using a set of four unmodulated, identical spin chains.
Figure 1 depicts a schematic of our protocol. The initial,
encoded state |ψenc〉 is now an entangled state across the four
chains, involving only a single spin (the sth site) in each of the
chains,

|ψenc〉 = a|0〉L + b|1〉L. (14)

Once the initial state is prepared, the four chains are allowed to
evolve in an uncoupled fashion, according to the Hamiltonian
in Eq. (1). After time t , the state at the receiver’s site is a
joint state of the rth site of the four chains and is described
by action of the map E⊗4 with the time-dependent noise
parameter f N

r,s (t ). Thus,

ρerr = E⊗4(ρenc) =
∑

i

E
(4)
i ρenc

(
E

(4)
i

)†
,

where E
(4)
i are the Kraus operators of the four-qubit noise

channel realized as fourfold tensor products of the operators
E0 and E1 in Eq. (7). After evolving the chains for time t , the
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recovery map R(4) is applied at the receiver’s site of the four
spin chains. The final state at the receiver’s end after the QEC
protocol is obtained as

ρrec =
∑
i,j

R
(4)
j E

(4)
i ρenc

(
E

(4)
i

)†(
R

(4)
j

)†
,

with the Kraus operators R
(4)
i given by

R
(4)
i = P

(
E

(4)
i

)†E⊗4(P )−1/2, (15)

where P ≡ |0L〉〈0L| + |1L〉〈1L| is the projector onto the four-
qubit space described in Eq. (12). The fidelity of the four-
chain quantum state-transfer protocol is then given by

F 2
min(R(4) ◦ E⊗4, C) ≡ min

a,b
〈ψenc|ρrec|ψenc〉,

where the minimization is over all states in the code space C.
As before, pretty good transfer is achieved when the worst-
case fidelity is high, that is, F 2

min(R(4) ◦ E⊗4, C) � 1 − ε, for
ε > 0. We now present a key result of the paper, namely, a
bound on the fidelity of state transfer using the adaptive QEC
protocol, in terms of the transition amplitude f N

r,s,(t ).
Theorem 1. The fidelity of quantum state transfer from site

s to site r under a spin-conserving Hamiltonian as in Eq. (1),
using the four-qubit code C and adaptive recovery R(4) at time
t , is given by

F 2
min(R(4) ◦ E⊗4, C) ≈ 1 − 7p2

4
+ O(p3), (16)

where p = 1 − |f N
r,s (t )|2.

Proof. We first rewrite the Kraus operators given in
Eq. (7) as

E0 = |0〉〈0| + ∣∣f N
r,s (t )

∣∣ei�|1〉〈1|,

E1 = |0〉〈1|
√

1 − ∣∣f N
r,s (t )

∣∣2,
where |f N

r,s (t )| and � are the absolute value and phase of the
complex-valued transition amplitude f N

r,s (t ). The state after
the four-qubit recovery map is then given by

ρrec = (R(4) ◦ E⊗4)(ρenc).

The composite map (R(4) ◦ E⊗4) comprising noise and recov-
ery has Kraus operators of the form

P
(
E

(4)
j

)†E⊗4(P )−1/2E
(4)
i P . (17)

The key step in obtaining the desired fidelity is to show
that the Kraus operators of the composite map written above
are independent of �. First, we write out E⊗4(P )−1/2 in the
(standard) computational basis of the four-qubit space,

E⊗4(P )−1/2 =
16∑
i=1

Gi |i〉〈i| + e−4i�G17|0000〉〈1111|

+ ei4�G17|1111〉〈0000| + G18(|1100〉〈0011|
+ |0011〉〈1100|),

where {Gi} are polynomial functions of the transition am-
plitude |f N

r,s (t )|. The � dependence in this pseudoinverse
operator occurs only in the span of {|0000〉, |1111〉}. Since
E⊗4(P )−1/2 is sandwiched between the Kraus operators of

the four-qubit channel and their adjoints, we also write down
the Kraus operators {E(4)

i } in the computational basis. Then,
an explicit computation reveals that the � dependence gets
conjugated out for each of the Kraus operators in Eq. (17).
We refer to Appendix A for the details of this calculation.

Hence the final state after noise and recovery ρrec can be
expressed as a linear sum of terms that are independent of �.
Since the parameter � is effectively suppressed, the fidelity
after using the four-qubit code and the universal recovery in
Eq. (7) is purely a function of p = 1 − |f N

r,s (t )|2.
The fidelity corresponding to the initial state |ψenc〉 =

a|0L〉 + b|1L〉 can thus be obtained as
F 2(R(4) ◦ E⊗4, C) = 1 − p2{(|a|2 − |b|2)2 − [(ba∗)2

+ (ab∗)2] + 5|a|2|b|2} + O(p3), (18)

where O(p3) refers to terms of the order of p3 and higher. Pa-
rameterizing a and b as a = cos θ

2 , b = e−iφ sin θ
2 , the fidelity

attains its minimum value at {θ, φ} = { (2n+1)π
2 , (2n+1)π

2 } (n =
1, 2, . . .), so that the worst-case fidelity over the four-qubit
code C is given by

F 2
min

(
R(4) ◦ E⊗4, C

) ≈ 1 − 7p2

4
+ O(p3).

�
Our result shows that using the adaptive recovery in con-

junction with the approximate code leads to a fidelity that is
independent of the phase � of the complex noise parameter
f N

r,s (t ). Thus, to optimize the fidelity of state transfer between
the sth and rth site of a chain of N spins evolving according
to the Hamiltonian in Eq. (1), we simply need to find the
time t at which |f N

r,s (t )|2 is maximized. Recall that the worst-
case fidelity without QEC (using the single-chain protocol) is
linear in the parameter p, as observed in Eq. (10). Thus we
see an O(p) improvement in fidelity with QEC, as expected.

Furthermore, our estimate of the worst-case fidelity implies
that as long as the noise strength p is such that 1 − (7/4)p2 >

1 − p, the adaptive QEC protocol achieves better fidelity than
the single-chain protocol without QEC. This constrains the
noise strength p to satisfy 0 < p < (4/7) ≈ 0.57. This in
turn implies a threshold for the transition amplitude, namely,
|f N

r,s (t )|2 > 0.43, below which our adaptive QEC protocol will
not offer any improvement in the fidelity of state transfer.

IV. RESULTS FOR THE 1D HEISENBERG CHAIN

As a simple example to illustrate the performance of the
adaptive QEC protocol, we now consider a special case of the
Hamiltonian in Eq. (1), namely, an N -length, ideal Heisenberg
chain with Jk = J̃k = J/2(J > 0) and Bk = 0, for all k. This
is also often referred to as the XXX chain in the literature.
Setting J = 1 without loss of generality, we present numerical
results on the fidelity of state transfer from the first (s = 1) to
the N th (r = N ) site.

Figure 2 compares the performance of state-transfer pro-
tocols with and without QEC. In particular, it compares the
performance of our four-chain state-transfer protocol with the
single-chain (no QEC) protocol [1] and the five-chain protocol
proposed in [22]. For each N , we plot the fidelity of state
transfer from the first site to the N th site on a N -length spin
chain, after a time t∗ chosen such that |f N

N,1(t )| is maximum
at t = t∗, for 0 < t < 4000/J .
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FIG. 2. Worst-case fidelity as a function of chain length N .

From the plot we see that the QEC-based protocols achieve
pretty good state transfer over longer distances than the single-
chain protocol. Furthermore, using approximate QEC, it is
possible to achieve as high a fidelity as with the standard
five-qubit code using fewer spin chains. Specifically, in the
regime of small noise parameter p, we can show that the
worst-case fidelity obtained using the five-qubit code is

F 2
min ≈ 1 − 15p2

8
+ O(p3). (19)

Correspondingly, a five-chain protocol performs well over a
single-chain protocol when 0 < p < (8/15) ≈ 0.53, imply-
ing that the transition amplitude should satisfy |f N

r,s (t )|2 >

0.47, which is a higher threshold than that required by our
adaptive QEC protocol.

For the ideal Heisenberg chain, it was recently shown [14]
that there always exists a time t at which |f N

1,N (t )|2 > 1 − ε

if and only if the length of the chain is a power of 2, that is,
N = 2m. In other words, pretty good state transfer is always
possible between the ends of a Heisenberg spin chain whose
length N is of the form N = 2m(m > 1). We may therefore
consider improving the performance of our QEC-based proto-
col by repeating the error-correction procedure every 2m sites.
Specifically, we can achieve pretty good state transfer over a
chain of arbitrary length L by stitching together smaller chains
whose lengths are of the form N = 2m. At every stage of the
repeated QEC protocol, there are exactly 2m interacting spins
and the rest of the spin-spin interactions are turned off.

Figure 3 shows an example of the resulting improvement in
fidelity when the QEC protocol is repeated every eight sites.
For comparison, we plot the worst-case fidelity obtained by
stitching together a sequence of length-eight chains, without
QEC. The repeated QEC protocol proceeds as follows. We
first implement our QEC protocol for an eight-spin chain,
evolving for time t∗ at which |f 8

8,1(t )| maximizes. We repeat
this procedure some k times, where k is the largest integer
such that 8k < N and, finally, perform QEC for the remaining
N − 7k sites for the same waiting time t∗. Such a repeated
QEC protocol indeed enables pretty good transfer for much
longer lengths, as seen in the plot.

More generally, if F 2
min ≈ 1 − αp2 is the fidelity of the

single-shot QEC protocol, repeating the procedure k times

FIG. 3. Worst-case fidelity using repeated QEC.

gives us a fidelity of F 2
min = 1 − (pnew), with

pnew = [1 − (1 − αp2)k],

where pnew is the noise parameter obtained after repeating
QEC k times.

V. QUANTUM STATE TRANSFER ON A DISORDERED
HEISENBERG CHAIN

Moving away from an ideal spin chain with a fixed, uni-
form coupling between successive spins, we now study state
transfer over a disordered XXX chain, where the spin-spin
couplings are randomly drawn from some distribution. It is
well known that the presence of disorder in a 1D spin chain
leads to the phenomenon of localization [27] of information
close to one end of the chain. It is therefore a challenging
task to identify protocols which achieve perfect or pretty good
transfer over disordered spin chains, overcoming the effects of
localization.

Past work on disordered chains has primarily focused on
the XX chain. Starting with a modulated chain that admits
perfect state transfer, both random magnetic field and random
couplings have been studied [18]. Alternately, an unmodu-
lated chain with random couplings at all, except the sender
and receiver, sites has also been studied [17].

When viewed in the quantum channel picture, the presence
of disorder becomes an additional source of noise. The role of
QEC in overcoming the effects of disorder has been studied
both for the XX [20] and the Heisenberg chains [22]. The
QEC protocol for a noisy XX chain with random couplings
involves encoding into multiple spins on a single chain us-
ing modified Calderbank-Shor-Steane (CSS) codes [20]. The
QEC protocol in [22] encodes into multiple identical, uncou-
pled chains using the standard five-qubit code, while also re-
quiring access to multiple spins at the sender and receiver ends
of each of the chains. Furthermore, the protocol based on the
five-qubit code involves choosing an encoding based on the
phase � of the transition amplitude (as explained in Sec. III),
which in turn is specific to the disorder realization. This makes
the QEC procedure hard to implement in a practical sense.
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Here, we show how the channel-adapted QEC procedure
described in Sec. III can be used to achieve pretty good
state transfer over an XXX chain with random couplings.
As before, we quantify the performance of the state-transfer
protocol in terms of the fidelity between the initial and final
states. When the underlying quantum channel is stochastic,
as in the case of a disordered chain, we use the disorder-
averaged worst-case fidelity 〈F 2

min〉δ to characterize the perfor-
mance of the state-transfer protocol. We say that pretty good
state transfer is achieved by a certain choice of code C and
recovery R when the corresponding disorder-averaged fidelity
〈F 2

min〉δ � 1 − ε, for some ε > 0.
We consider a disordered Heisenberg chain with couplings

Jk = J
2 (1 + �k ), where �k are independent, identically dis-

tributed random variables drawn from a uniform distribution
between [−δ, δ], and J is the mean value of the coupling
strength, which we may set to 1, without loss of generality.
Note that such a Hamiltonian conserves the total spin and
hence falls within the universality class discussed in Sec. II.

Consider a state-transfer protocol, where the sender wishes
to transmit the state |ψin〉 = a|0〉 + b|1〉 from the sth site to
the rth site via the natural dynamics of the chain. As before,
the final state at the receiver’s site, tracing out the other spins,
can be realized as the action of a quantum channel E ,

ρout = E (ρin ) =
∑

k

EkρinE
†
k,

with the same Kraus operators {E0, E1} as in Eq. (7). The key
difference, however, is in the nature of the noise parameter
p ≡ 1 − |f N

r,s (t, {�k})|2: in the case of the disordered chain,
the transition amplitude f N

r,s (t, {�k}) between site s and r for
a chain of length N allowed to evolve for a time t is a random
variable whose value depends on the specific realization of the
disorder variables {�k}. The distribution of f N

r,s (t, {�k}) for
given set of r, s, N, t values depends on the distribution over
which the disorder variables {�k} are sampled. To illustrate
our point, we specifically consider below the case where the
coupling strengths {�k} are independently sampled from a
uniform distribution.

A. Transition amplitude in the presence of disorder

The Heisenberg Hamiltonian H with static disorder in the
coupling strengths has the form

Hdis = −
∑

k

J (1 + �k )

2

(
σ k

x σ k+1
x + σ k

y σ k+1
y + σ k

z σ k+1
z

)
.

(20)
Here, the effect of disorder is introduced via the inde-
pendent and identically distributed (i.i.d.) random variables
{�i} which take values over a uniform distribution between
[−δ, δ]. The quantity δ is called the disorder strength, and J

is the mean value of the coupling coefficient. We may view
the disordered Hamiltonian as a sum of the form Hdis = Ho +
Hδ , where Ho denotes the ideal XXX Hamiltonian studied in
the previous section and Hδ is given by

Hδ = −J

2

∑
k

�k

−→
σ k ·

−−→
σ k+1.

Hδ captures the effect of disorder in the spin chain and can
be treated as a perturbation of the Hamiltonian H0. Since
[H0,Hδ] �= 0, the transition amplitude may be evaluated us-
ing the so-called time-ordered expansion, also referred to as
the Dyson series [31].

Specifically, the transition amplitude between the rth and
sth site for the disordered Hamiltonian Hdis in Eq. (20) is
given by (setting h̄ = 1)

f N
r,s (t, {�k})

= 〈r|e−i(Ho+Hδ )t |s〉

= 〈r|e−iHotT
[

exp

(
−i

∫ t

0
eiHot

′ Hδ e−iHot
′
dt ′
)]

|s〉

= f N
r,s (t )−i

N∑
k=1

f N
r,k (t )

∫ t

0
〈k|eiHot

′Hδe
−iHot

′ |s〉dt ′+O
(
H 2

δ

)
,

where T is the time-ordering operator which has been ex-
panded to first order in the perturbation in the final equation.
As before, f N

r,k (t ) denotes the transition amplitude between
the rth and kth sites in the case of an ideal chain of length N ,
without disorder.

Thus, using the time-ordered expansion, the transition
amplitude in the presence of disorder can be evaluated as
a perturbation around the zero-disorder value f N

r,s (t ), of the
form

f N
r,s (t, {�k}) = f N

r,s (t ) +
N−1∑
i=1

cN
i (t )�i+

N−1∑
i,j=1

dN
ij �i�j+ · · · .

(21)
The explicit forms of the complex coefficients cN

i (t ) are given
in Eq. (B6) in Appendix B. A similar approach was used
in [18] to study deviations from perfect state transfer due to
the presence of disorder in an XX chain.

Using the form of the transition amplitude stated in
Eq. (21), we obtain the distribution of the real part of the
transition amplitude x ≡ Re[f N

r,s (t, {�k})] , up to first order
in the perturbation Hδ , as

Pδ,N,t (x) ∝
2N−1∑
j=1

(−1)uj (qj )N−2 Sign[qj ], (22)

where uj ∈ [0, 1], and the Sign function is defined as

Sign(x − a) =
⎧⎨
⎩

−1, x < a

0, x = a

1, x > a.

The functions qj (x, Re[f N
r,s (t )], {Re[cN

i (t )]}) are linear com-
binations of the form

qj ≡ x − Re
[
f N

r,s (t )
]+ δ

N−1∑
i=1

(−1)r
j

i Re
[
cN
i (t )

]
, (23)

where r
j

i ∈ [0, 1] ∀ i = 1, . . . , N − 1 and Re[cN
i (t )] denote

the real part of the coefficients in Eq. (21). Since there are
N − 1 such coefficients for a spin chain of length N , the
sum over i ranges from 1 to N − 1. There are 2N−1 distinct
linear combinations of the form qj , corresponding to the 2N−1

distinct (N − 1)-bit binary strings parameterized by rj , so that
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FIG. 4. Distribution of Re[f 8
8,1(t∗, {�k})] for different disor-

der realizations, drawn from a uniform distribution with disorder
strength δ = 0.001.

the sum over j runs from 1 to 2N−1. The form of the distribu-
tion is identical for the imaginary part Im[f N

r,s (t, {�k})], with
the real parts of {cN

i (t )} and f N
r,s (t ) replaced by their imaginary

parts. We refer to Eqs. (B9) and (B11) in Appendix B for
a detailed description of the distributions of the real and
imaginary parts of the disordered transition amplitude.

The key salient feature we observe from calculating the
distribution functions above is that the limiting distribution
in the case of no disorder (δ → 0) is indeed a δ distribution
peaked around f N

r,s (t ). Furthermore, in Appendix B, we also
explicitly evaluate the mean and variance of f N

r,s (t, {�k}) and
show that the mean is equal to the zero-disorder value of
f N

r,s (t ), up to O(δ2) [see Eq. (B15)]. The variance goes as
O(δ2), as shown in Eq. (B17), making it vanishingly small
in the limit of small δ. This observation leads us to propose
a modified QEC protocol for state transfer over disordered
XXX chains, using an adaptive recovery Ravg based on the
disorder-averaged transition amplitude 〈f N

r,s (t, {�k})〉δ .
The analysis presented thus far holds for any pair of

sites (s, r ) on a spin chain of length N . As an example,
we consider the specific case of an eight-length chain, with
s = 1 and r = 8. We plot the distribution of the real part of
the transition amplitude at some fixed time t∗, for disorder
strengths δ = 0.001 and δ = 1, in Figs. 4 and 5, respectively.
We see that when the disorder strength is small enough, the
transition amplitude is indeed distributed like a δ function
peaked around the zero-disorder value. For large values of
δ, the distribution spreads out quite a bit and its mean also
shifts closer to zero, giving rise to a very small transition
amplitude. The corresponding figures for Im[f 8

8,1(t∗, {�k})]
are presented in Fig. 8.

B. Adaptive QEC for 1D disordered chain

To summarize, the quantum channel for state transfer in
the presence of disorder has the same structure as that of the
ideal chain, but with a stochastic noise parameter p ≡ 1 −
|f N

r,s (t, {�k})|2, since the transition amplitude f N
r,s (t, {�k}) is

now a random variable whose value depends on the random
couplings {�k}. However, as discussed in Sec. V A, for small

FIG. 5. Distribution of Re[f 8
8,1(t∗, {�k})] for different disorder

realizations, with disorder strength δ = 1.

enough disorder strengths, f N
r,s (t, {�k}) is peaked sharply

around its mean value and we may consider the disorder-
averaged amplitude 〈f N

r,s (t, {�k})〉δ as a good estimate of the
noise.

We therefore propose an adaptive QEC procedure for a dis-
ordered XXX chain involving the four-qubit code in Eq. (12)
and a recovery map Ravg with the same structure as that used
in the case of the ideal chain, described in Eq. (15). However,
unlike the ideal case, the value of the channel parameter
used in the recovery is different from the one in the actual
noise channel: the recovery map uses the disorder-averaged
amplitude 〈f N

r,s (t, {�k})〉δ , and is therefore independent of the
specific disorder realization, whereas the noise channel has the
parameter f N

r,s (t, {�k}) which changes with every realization.
To illustrate the performance of this modified recovery

map, we present numerical results for quantum state transfer
from the first site (s = 1) to the eighth site (r = 8) on an eight-
spin chain. Figure 6 shows the disorder-averaged worst-case
fidelity 〈F 2

min〉δ obtained using the four-qubit code and the
adaptive recovery Ravg, for an eight-spin chain. For disorder
strengths δ � 0.01, our adaptive QEC protocol achieves pretty
good transfer, with fidelity loss ε < 0.2. Beyond δ � 0.06, we

FIG. 6. Disorder-averaged worst-case fidelity 〈F 2
min〉δ obtained

using the adaptive recovery Ravg.
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FIG. 7. 〈|f 8
n,1(t )|2〉δ for an eight-spin chain as a function of the

site n.

notice that 〈F 2
min〉δ < 0.5 since the effects of localization are

too strong to be counteracted by QEC.
This is further borne out by our detailed analysis of the dis-

tribution of the transition amplitude in the presence of disorder
(see Appendix B). In particular, our expressions for the mean
and standard deviation of the transition amplitude indicate that
until δ � 0.01, the disorder-averaged value 〈f N

r,s (t, {�k})〉δ is
close to the value of the transition amplitude in the ideal
(zero-disorder) case, and the standard deviation is insignifi-
cant compared to the mean. However, as the disorder strength
increases further, the disorder-averaged value 〈f N

r,s (t, {�k})〉δ
starts dropping and the standard deviation becomes compara-
ble to the average value. Thus the effective noise parameter of
the underlying quantum channel becomes too strong for the
QEC procedure to be effective.

The fact that δ = 0.06 is a threshold of sorts can be
seen more directly by studying the variation of the disorder-
averaged transition amplitude with disorder strength. Previous
studies on localization in disordered chains have used such
a quantity, namely, 〈|f N

n,1(t, {�k})|2〉δ , as an indicator of the
extent of localization [17,18].

In Fig. 7, we plot the disorder-averaged transition am-
plitude 〈|f N

n,1(t, {�k})|2〉δ for a fixed time t∗ and different
disorder strengths δ, as a function of the receiver site n, for the
Heisenberg chain in Eq. (20). Empirically, we see that this plot
follows an exponential distribution. The curves take the form
e−(αn+β )/Loc, where α, β are functions of disorder strength δ

and Loc is the localization length, i.e., the length at which
〈|f N

n,1(t, {�k})|2〉δ falls to (1/e) of its maximum value. We
see that with increase in disorder strength δ, the localization
effects become more pronounced.

Specifically, when the disorder strength crosses δ = 0.06,
the square of the transition amplitude between the ends of the
eight-spin chain falls below 0.43 on average. However, we
know from the fidelity estimate in Theorem 1 that the adaptive
QEC protocol improves fidelity if and only if |f N

N,1(t )|2 >

0.43. Thus, for end-to-end state transfer on an eight-length
disordered Heisenberg chain, δ = 0.06 is indeed a threshold
beyond which the adaptive QEC protocol cannot help in
improving fidelity. Since our analysis of the distribution of
the transition amplitude presented in Sec. V A as well as the
fidelity expression in Theorem 1 hold for any s, r, N , we can
always identify such a threshold for a specific set of values.

VI. CONCLUSIONS

We develop a pretty good state-transfer protocol based
on adaptive quantum error correction (QEC), for a uni-
versal class of Hamiltonians which preserve the total spin
excitations on a linear spin chain. Based on the structure
of the underlying quantum channel, we choose an approx-
imate code and near-optimal, adaptive recovery map to
solve for the fidelity of state transfer explicitly. For the
specific case of the ideal Heisenberg chain, our protocol
performs as efficiently as perfect-QEC-based protocols. Us-
ing repeated QEC on the chain, we are able to achieve
high enough fidelity over longer distances for an ideal spin
chain.

In the case of disordered spin chains, the underlying quan-
tum channel is stochastic. For the case of a disordered 1D
Heisenberg chain, we study the distribution of the transition

FIG. 8. Distribution of Im[f 8
8,1(t∗, {�k})] over different disorder realizations drawn from a uniform distribution with disorder strengths

δ = 0.001 and δ = 1, respectively.
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amplitude, which in turn is directly related to the stochastic
noise parameter of the noise channel. By suitably adapting
the recovery procedure, we demonstrate pretty good transfer
on average, for low-disorder strengths.

It is an interesting question as to whether such channel-
adapted QEC techniques may be used to achieve pretty
good state transfer for other universal classes, such as
the transverse-field Ising model and the XYZ chain. It
is also an open problem to obtain an efficient circuit

implementation of the adaptive recovery map discussed
here.
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APPENDIX A: EFFECT OF NOISE CHANNEL E ON FOUR-QUBIT CODE

We note the following structure for the Kraus operators of the four-qubit channel by expanding them in the four-qubit
computational basis. First, we note that the only Kraus operator diagonal in the computational basis is E⊗4

0 , with diagonal
entry eij�|f N

r,s (t )|j , corresponding to those basis vectors with j 1’s in them. All the other operators are off-diagonal matrices
with support on some subset of computational basis states. For example, a three-qubit error operator (involving E1 in three of
the four qubits) is of the form

E0 ⊗ E⊗3
1 = [1 − ∣∣f N

r,s (t )
∣∣2]3/2|0000〉〈0111| + ei�

∣∣f N
r,s (t )

∣∣[1 − ∣∣f N
r,s (t )

∣∣2]3/2|1000〉〈1111|. (A1)

The remaining three-qubit errors are of the same form, with the strings {0111, 1000} replaced by their permutations. Similarly,
an operator which has E1 errors on two of the qubits is a linear combination of the form

E⊗2
0 ⊗ E⊗2

1 = [1 − ∣∣f N
r,s (t )

∣∣2]|0000〉〈0011| + e2i�
∣∣f N

r,s (t )
∣∣2[1 − ∣∣f N

r,s (t )
∣∣2]|1100〉〈1111|

+ei�
∣∣f N

r,s (t )
∣∣[1 − ∣∣f N

r,s (t )
∣∣2](|0100〉〈0111| + |1000〉〈1011|). (A2)

Other two-qubit error operators are realized by replacing the strings {0011, 1100, 0100, 1000} with permutations thereof. A
single-qubit error operator, with E1 error on only one of the qubits, has the form

E⊗3
0 ⊗ E1 =

√
1 − ∣∣f N

r,s (t )|2∣∣0000〉〈0001| + ei�
∣∣f N

r,s (t )
∣∣√1 − ∣∣f N

r,s (t )
∣∣2(|0010〉〈0011| + |0100〉〈0101| + |1000〉〈1001|)

+ e2i�
∣∣f N

r,s (t )
∣∣2√1 − ∣∣f N

r,s (t )
∣∣2(|1100〉〈1101| + |0110〉〈0111| + |1010〉〈1011|)

+ e3i�
∣∣f N

r,s (t )
∣∣3√1 − ∣∣f N

r,s (t )
∣∣2|1110〉〈1111|. (A3)

Finally, the four-qubit error operator E⊗4
1 is of the form

E⊗4
1 = [1 − ∣∣f N

r,s (t )
∣∣2]2|0000〉〈1111|. (A4)

We next explicitly write out the operator E⊗4(P ) in the computational basis of the four-qubit space,

E⊗4(P ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e−4i� Q17

0 Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Q3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Q4 0 0 0 0 0 0 0 0 Q18 0 0 0
0 0 0 0 Q5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Q6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Q7 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Q8 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Q9 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Q10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Q11 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 Q12 0 0 0 0
0 0 0 Q18 0 0 0 0 0 0 0 0 Q13 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 Q14 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q15 0

e4i� Q17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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with {Qi} denoting polynomial functions of the transition amplitude |f N
r,s (t )|. In terms of the rank-one projectors onto the

computational basis states, we may write E⊗4(P ) as

E⊗4(P ) =
16∑
i=1

Qi |i〉〈i| + e−4i�Q17|0000〉〈1111| + ei4�Q17|1111〉〈0000| + Q18(|1100〉〈0011| + |0011〉〈1100|), (A5)

wherein |i〉 ∈ {|0000〉, . . . , |0100〉, . . . , |1111〉} denote the computational basis states of the four-qubit space.
Similarly, we can also express the pseudoinverse E⊗4(P )−1/2 in the four-qubit computational basis as follows:

E⊗4(P )−1/2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e−4i� G17

0 G2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 G3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 G4 0 0 0 0 0 0 0 0 G18 0 0 0
0 0 0 0 G5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 G6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 G7 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 G8 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 G9 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 G10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 G11 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 G12 0 0 0 0
0 0 0 G18 0 0 0 0 0 0 0 0 G13 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 G14 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 G15 0

e4i� G17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A6)

with {Gi} denoting a set of polynomials in |f N
r,s (t )|. In terms of the rank-one projectors onto the computational basis states,

we have

E⊗4(P )−1/2 =
16∑
i=1

Gi |i〉〈i| + e−4i�G17|0000〉〈1111| + ei4�G17|1111〉〈0000| + G18(|1100〉〈0011| + |0011〉〈1100|). (A7)

Upon sandwiching the operator in Eq. (A7) between the different error operators of the four-qubit noise channel [as described in
Eqs. (A1)–(A4)] and their adjoints, it is easy to see that the phases cancel out everywhere. In other words, the Kraus operators
of the composite channel comprising noise and recovery are all independent of the phase � of the transition amplitude.

APPENDIX B: DISTRIBUTION OF THE TRANSITION AMPLITUDE FOR A DISORDERED X X X CHAIN

Here we derive the distribution of the transition amplitude f N
r,s (t, {�k}) for the disordered XXX chain described in Eq. (20),

as a function of time t and disorder strength δ. Recall that the transition amplitude between the rth and sth sites for the disordered
Hamiltonian Hdis is given by

f N
r,s (t, {�k}) = 〈r|e−i(Ho+Hδ )t |s〉 = 〈r|e−iHotT

[
exp

(
−i

∫ t

0
eiHot

′ Hδ e−iHot
′
dt ′
)]

|s〉, (B1)

where T denotes the time-ordering operator. We first expand the time-ordered perturbation series in Eq. (B1) as follows:

f N
r,s (t, {�k}) =

N∑
k=1

〈r|e−iHot |k〉〈k|T [e(−i
∫ t

0 eiHot ′Hδe
−iHot ′dt ′ )]|s〉

=
N∑

k=1

f N
r,k (t )〈k| I − iO(Hδ ) + i2

2!
O(H2

δ ) + · · · |s〉, (B2)

where f N
r,k (t ) = 〈r|e−iHot |k〉 is the transition amplitude in the absence of disorder. Expanding the first-order term [O(Hδ )] as a

time-ordered form, we have

〈k|O(Hδ )|s〉 =
∫ t

0
〈k|eiHot

′Hδe
−iHot

′ |s〉dt ′

=
N∑

l,m=1

∫ t

0
〈k|eiHot

′ |l〉〈l|Hδ|m〉〈m|e−iHot
′ |s〉dt ′, (B3)
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where

〈l|Hδ|m〉 = J

2

[
N−1∑
i=1

(
ul

i�i

)
δlm − 2�lδm(l+1) − 2�l−1δm(l−1)

]
, (B4)

with the coefficients ul
i ∈ {±1}. For example, Hδ for a four-qubit spin chain is a tridiagonal matrix of the form

Hδ = J

2

⎛
⎜⎜⎜⎝

−�1 − �2 + �3 −2�3 0 0
−2�3 −�1 + �2 + �3 −2�2 0

0 −2�2 �1 + �2 − �3 −2�1

0 0 −2�1 �1 − �2 − �3

⎞
⎟⎟⎟⎠.

Substituting the form of Hδ in Eq. (B4) to the first-order term in Eq. (B2), and setting J = 1 throughout, we get

f N
r,s (t, {�k}) = f N

r,s (t ) − i

2

∫ t

0

N∑
l,k=1

f N
r,k (t )

[
f N

k,l (t
′)
]∗

f N
l,s (t ′)

(
N−1∑
i=1

ul
i�i

)
dt ′ − i

2

∫ t

0

N−1∑
l=1

N∑
k=1

f N
r,k (t )

[
f N

k,l (t
′)
]∗

f N
l+1,s (t ′)(−2�l )dt ′

− i

2

∫ t

0

N−1∑
l=1

N∑
k=1

f N
r,k (t )

[
f N

k,l+1(t ′)
]∗

f N
l,s (t ′)(−2�l )dt ′.

Thus, up to first order in perturbation, f N
r,s (t, {�k}) is simply a linear combination of the random variables {�k}, of the form

f N
r,s (t, {�k}) = f N

r,s (t ) +
N−1∑
i=1

cN
i (t )�i , (B5)

where {cN
i (t )} are complex coefficients given by

cN
i (t ) = − i

2

N∑
k=1

f N
r,k (t )

{∫ t

0

N∑
l=1

ul
i

[
f N

k,l (t
′)
]∗

f N
l,s (t ′)dt ′ − 2

∫ t

0

[
f N

k,i (t
′)
]∗

f N
i+1,s (t ′)dt ′ − 2

∫ t

0

[
f N

k,i+1(t ′)
]∗

f N
i,s (t ′)dt ′

}
. (B6)

We first note that in the limit of large N , the distribution of f N
r,s (t ) tends towards a normal distribution. This is a direct

consequence of the central limit theorem since {�i} are i.i.d. random variables. In what follows, we will obtain the exact form
of the distribution of f N

r,s (t, {�k}), specifically, the real and imaginary parts of f N
r,s (t, {�k}) in terms of N, t , and δ.

Since the {�i} are randomly drawn from a uniform distribution between [−δ, δ], the joint probability density
P (�1,�2, . . . ,�N ) is given by

P ( �1,�2, . . . ,�N−1 ) =
{ 1

(2δ)N−1 , −δ � �i � δ, ∀i = 1, 2, . . . , N − 1
0 otherwise.

(B7)

Let x ≡ Re[f N
r,s (t, {�k})] and y ≡ Im[f N

r,s (t, {�k})] denote the real and imaginary parts of the transition amplitude in Eq. (B5).
Then, we may obtain the distribution of x and y as follows:

Pδ,t,N (x) =
∫ δ

�1=−δ

. . .

∫ δ

�N−1=−δ

(
N−1∏
i=1

d�i

)
P (�1,�2, . . . ,�N−1) δ

(
x −

{
Re
[
f N

r,s (t )
]+ N−1∑

i=1

Re
[
cN
i (t )

]
�i

})
,

Pδ,t,N (y) =
∫ δ

�1=−δ

. . .

∫ δ

�N−1=−δ

(
N−1∏
i=1

d�i

)
P (�1,�2, . . . ,�N−1) δ

(
y −

{
Im
[
f N

r,s (t )
]+ N−1∑

i=1

Im
[
cN
i (t )

]
�i

})
.

Replacing the Dirac δ functions with their Fourier transforms and then integrating out the {�k} variables, we get

Pδ,t,N (x) = 1√
2π (2δ)N−1

∫ δ

�1=−δ

. . .

∫ δ

�N−1=−δ

∫ ∞

k=−∞

N−1∏
i=1

d�idk exp

[
−ik

(
x −

{
Re
[
f N

r,s (t )
]+ N−1∑

i=1

Re
[
cN
i (t )

]
�i

})]

= 1√
2π (2δ)N−1

∫ ∞

k=−∞
dk exp

(−ik
{
x − Re

[
f N

r,s (t )
]}) N−1∏

i=1

2 sin
{
kδRe

[
cN
i (t )

]}
kRe

[
cN
i (t )

]

= 1√
2π (2δ)N−1

∫ ∞

k=−∞
dk exp

(−ik
{
x − Re

[
f N

r,s (t )
]}) N−1∏

i=1

ei{kδRe[cN
i (t )]} − e−i{kδRe[cN

i (t )]}

ikRe
[
cN
i (t )

]
052309-11



AKSHAYA JAYASHANKAR AND PRABHA MANDAYAM PHYSICAL REVIEW A 98, 052309 (2018)

= 1√
2π (2δ)N−1

∫ ∞

k=−∞
dk exp

(−ik
{
x − Re

[
f N

r,s (t )
]})∑2N−1

j=1 (−1)αj e
i{k δ

∑N−1
i=1 (−1)r

j
i Re
[
cN
i (t )
]
}

(ik)N−1
∏N−1

i=1 Re[cN
i (t )]

, (B8)

where αj , r
j

i ∈ [0, 1], ∀i, j . Simplifying further, we get

Pδ,t,N (x) = 1√
2π (2δ)N−1

∏N−1
i=1 Re

[
cN
i (t )

] ∫ ∞

k=−∞
dk

∑2N−1

j=1 (−1)αj exp
(
−ik

{
x − Re

[
f N

r,s (t )
]+ δ

∑N−1
i=1 (−1)r

j

i Re
[
cN
i (t )

]})
(ik)N−1

=
[

1

(2δ)N−1

]{
1∏N−1

i=1 Re
[
cN
i (t )

]
}

2N−1∑
j=1

(−1)uj (qj )N−2 Sign[qj ], (B9)

where uj ∈ [0, 1], and qj (x, Re[f N
r,s (t )], {Re[cN

i (t )]}) are linear combinations of the form

qj ≡ x − Re
[
f N

r,s (t )
]+ δ

N−1∑
i=1

(−1)r
j

i Re
[
cN
i (t )

]
, r

j

i ∈ [0, 1], ∀i = 1, . . . , N − 1. (B10)

We may evaluate the distribution of the imaginary part of the transition amplitude in a similar fashion, to get

Pδ,t,N (y) =
[

1

(2δ)N−1

]{
1∏N−1

i=1 Im
[
cN
i (t )

]
}

2N−1∑
i=1

(−1)uj (q̃j )N−2 Sign[q̃j ], (B11)

where the q̃j (x, Im[f N
r,s (t )], {Im[cN

i (t )]}) are linear combinations of the form

q̃j ≡ y − Im
[
f N

r,s (t )
]+ δ

N−1∑
i=1

(−1)r
j

i Im
[
cN
i (t )

]
, r

j

i ∈ [0, 1], ∀i = 1, . . . , N − 1. (B12)

We see from Eq. (B8) that the limiting distribution in the case of no disorder (δ → 0) is indeed a δ distribution peaked around
Re[f N

r,s (t )]:

lim
δ→0

Pδ,t,N (x) = 1√
2π

∫ ∞

k=−∞
dk exp

(−ik
{
x − Re

[
f N

r,s (t )
]}) = δ

{
x − Re

[
f N

r,s (t )
]}

. (B13)

Finally, we compute the disorder-averaged value of the transition amplitude up to O(H2
δ ). We first modify the expression in

Eq. (B5) to include the second-order perturbation terms,

f N
r,s (t, {�k}) = f N

r,s (t ) +
N−1∑
i=1

cN
i (t )�i +

N−1∑
i,j=1

dN
ij �i�j + · · · , (B14)

where {dN
ij } are complex coefficients which are convolutions of the zero-disorder transition amplitude, similar to {cN

i (t )}. Next,
using the fact that the random couplings {�i} are drawn from a uniform distribution, we obtain

〈
f N

r,s (t, {�k})
〉
δ

= 1

(2δ)N−1

∫ δ

−δ

[
f N

r,s (t ) +
N−1∑
i=1

cN
i (t )�i +

N−1∑
l,m=1

dN
lm(t )�l�m + · · ·

]
N−1∏
i=1

d�i

= f N
r,s (t ) + δ2

3

∑
i

dN
ii (t ) + O(δ4). (B15)

The second moment of f N
r,s (t, {�k}) is

〈
[f N

r,s (t, {�k})]2
〉
δ

= 1

(2δ)N−1

∫ δ

−δ

[
f N

r,s (t ) +
N−1∑
i=1

cN
i (t )�i +

N−1∑
l,m=1

dN
lm(t )�l�m) + · · ·

]2 N−1∏
i=1

d�i

= [f N
r,s (t )

]2 + δ2

3

⎧⎨
⎩2f N

r,s (t )
N−1∑
l=1

dN
ll (t ) +

N−1∑
j=1

[
cN
j (t )

]2⎫⎬⎭
+δ4

5

N−1∑
l=1

[
dN

ll (t )
]2 + δ4

9

N−1∑
l �=m=1

[
dN

lm(t )
]2 + O(δ6). (B16)

052309-12



PRETTY GOOD STATE TRANSFER VIA ADAPTIVE … PHYSICAL REVIEW A 98, 052309 (2018)

We can now calculate the variance from Eq. (B15) and Eq. (B16) as follows:

Var
[
f N

r,s (t, {�k})
] = 〈[f N

r,s (t, {�k})
]2〉

δ
− 〈f N

r,s (t, {�k})
〉2
δ

= δ2

3

N−1∑
j=1

[
cN
j (t )

]2 + δ4

⎧⎨
⎩1

5

N−1∑
l=1

[
dN

ll (t )
]2 + 1

9

N−1∑
l �=m=1

[
dN

lm(t )
]2 − 1

9

[
N−1∑
l=1

dN
ll (t )

]2
⎫⎬
⎭+ O(δ6). (B17)

To summarize, from Eq. (B15) we see that as δ → 0, 〈f N
r,s (t, {�k})〉δ approaches the zero-disorder value f N

r,s (t ). As expected,
the variance given in Eq. (B17) vanishes in this limit. However, as the disorder strength δ increases, 〈f N

r,s (t, {�k})〉δ deviates
from the no-disorder case and the variance also starts growing since terms of O(δ2) now become increasingly significant.
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