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Generalized W state of four qubits with exclusively the three-tangle
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We single out a class of states possessing only the three-tangle but distributed all over four qubits. This
is a three-site analog of states from the W class. The latter possess exclusively globally distributed pairwise
entanglement as measured by the concurrence. We perform an analysis for four qubits, showing that such a state
indeed exists. To this end we analyze specific states of four qubits for which all possible SL invariants vanish,
and hence which are part of the SL null cone. Instead, they will possess a certain unitary invariant. In analyzing
the three-tangle of rank-two reduced density matrices of these states, we manage to show that in this particular
case we reach the convex roof exactly. As an interesting by-product this solution is extended in the rank-two case
to a homogeneous polynomial SL-invariant measure of entanglement of degree 2m, if there are two states which
correspond to an at most n-fold degenerate solution in the zero polytope for 0 < n < m that can be combined
with the convexified minimal characteristic curve at an (2m − n)-fold zero yielding a decomposition of ρ. If
more than one such state does exist in the zero polytope, a minimization must be performed. If no decomposition
of ρ is obtained in this way, it provides a better lower bound than the lowest convexified curve.
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I. INTRODUCTION

W states are at the borderline of three distinct and impor-
tant features of multipartite entanglement: pure W states sat-
isfy the Coffman-Kundu-Wootters (CKW) inequality [1,2] as
an equality [1], they are representatives of one of two possible
classes of entanglement for three qubits [3], and they naturally
emerge from a ladder that bridges SL invariance down to U
invariance [4] for an arbitrary number of qubits. Indeed, three
qubits are separated into the Greenberger-Horne-Zeilinger
(GHZ) class which is detected by the three-tangle [1] and
the remaining W class sharing entanglement among at most
two parties [1]. A further peculiarity of the Q-qubit W state is
hence that it has no SL-invariant n-tangle with n > 2 [5,6].

It is therefore reasonable to ask the following question: do
such states also exist for Q qubits and an arbitrary n < Q; in
other words, are there certain Q-qubit states possessing only
an n-tangle? In particular the corresponding states should not
possess any SL-invariant Q-tangle (that is, a (2m, 0) bidegree
of unitary invariants on Q sites [7]) and thus should be part
of the SL null cone. The SL null cone, however, has a finer
structure which is classified further by SU invariants with
the bidegree (2m − l, l) (see, e.g., Ref. [7]). SU invariants of
bidegree (2m − l, l) are (2m − l) linear in the wave function
ψ and are l linear in its complex conjugate ψ∗ (or vice
versa). Every state situated outside the null cone must always
have a part which is balanced [6] or equivalently termed
c-balanced (c for convex) in Ref. [4]. In contrast, there are
those states which are a-balanced (a for affine) without having
a c-balanced part. Those states are singled out by possessing
discrete topological phases under the cyclic local SU group
operation [8]. They emerge from the c-balanced states by
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means of partial spin flips [4]. For three qubits simple exam-
ples are the states in the SL W class

|W3(�c)〉 = c0|000〉 + c1|100〉 + c2|010〉 + c3|001〉, (1)

which do possess an SU invariant of bidegree (3,1). These
states, by means of a partial spin flip, are connected to the
(4,0)-invariant states which are in the SL-invariant GHZ class

|GHZ3(�c)〉 = c0|111〉 + c1|100〉 + c2|010〉 + c3|001〉. (2)

In both formulas �c = (c0, c1, c2, c3), where in the states from
the GHZ class ci �= 0 for i = 0, . . . , 3. The original W states
(c0 = 0) are however (q, q ) invariant and are SL equivalent
but not U equivalent to |W3(c0, c1, c2, c3)〉 with nonzero c0.
They do not emerge from this procedure after performing Q

partial spin flips since they are completely unbalanced states
[6]. They are, however, obtained when omitting some product
basis state from the outcome of such a procedure. Neverthe-
less, every state displaying a unitary (2m − l, l) invariant and
having no (2m, 0) invariant will be a good starting point to
look at as soon as it is not a bipartite state.

This article is organized as follows. In the next section we
describe the states we are analyzing. In Sec. III we emphasize
details about the calculation of the convex roof of the three-
tangle and focus on those states which contain only the three-
tangle. In the conclusions we summarize the obtained results
and give an outlook.

II. STATES FROM THE SL NULL CONE

We start from the four-qubit maximally entangled
c-balanced states:∣∣�4

6

〉 = 1√
3
|1111〉 +

√
2

3
|W 4〉, (3)∣∣�4

4

〉 = 1

2
(|1111〉 + |1100〉 + |0010〉 + |0001〉), (4)
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where |W 4〉 = (|1000〉 + |0100〉 + |0010〉 + |0001〉)/2 is a
completely unbalanced W state of four qubits. We define the
extended length of a state as follows:

Definition II.1 (extended length). Let |ψ〉 be a balanced
state in its minimal representation of length L after local SU
operations and let A|ψ〉 be its corresponding alternating matrix
[6]. Following Ref. [6]

∃ n1, . . . , nL ∈ IN (nj > 0) 	
L∑

j=1

nj (A|ψ〉)ij = 0 ∀ i ∈ {1, . . . ,Q} .

Then we define the extended length of the state as

Lext =
L∑

i=1

ni .

We want to highlight that the extended length has to be an
even number. Here, |�Q

Lext
〉 means a Q qubit state which is

irreducibly c-balanced of extended length Lext = 2n, n ∈ IN.

A. States derived from �4
6

The state taken from Eq. (3) is detected by the only genuine
(6,0) filter invariant [4,6,9,10] of SU giving a nonzero result
due to its extended length of Lext = 6. Possible states in the
SL null cone therefore have (5,1), (4,2), and (3,3) invariance
[4] and are obtained by a partial spin flip on one, two, or
three components, respectively, of the product basis. Since
the state is translation symmetric (even with respect to the
symmetric group of permutations) it does not matter which
of the four components of the W 4 state the partial spin flips
are acting on. Therefore we have a single case of (5,1), (4,2),
and (3,3) invariance each and one (4,2) invariant acting on the
|1111〉 component together with a (3,3) invariant if the next
partial spin flip is acting on the W 4 state. The (3,3)-invariant
states, however, are bipartite product states and therefore are
not considered any further. We are left with the following
states:

∣∣�4
6;1

〉 = 1√
3
|0000〉 +

√
2

3
|W 4〉, (5)∣∣�4

6;2

〉 = 1√
3
|1111〉 + 1√

6
(|0111〉 + |0100〉

+ |0010〉 + |0001〉), (6)∣∣�4
6;23

〉 = 1√
3
|1111〉 + 1√

6
(|0111〉 + |1011〉

+ |0010〉 + |0001〉), (7)

where the indices after the semi-colon indicate where the
partial spin flip operation acts on. For example, for |�4

6;234〉
we would have it acting on the components 2, 3, and 4 of the
state |�4

6 〉.
The state |�4

6;1〉 becomes a mixture of states in the W

class—it therefore contains no three-tangle; states |�4
6;2〉 and

|�4
6;23〉 may contain a three-tangle instead.

The three-tangle is given by [1] (see also Refs. [9,11,12])

τ3 = 4|d1 − 2d2 + 4d3| (8)

=
∣∣∣∣∣∣

3∑
μ=0

gμ(σμ ⊗ σy ⊗ σy ) • (σμ ⊗ σy ⊗ σy )

∣∣∣∣∣∣, (9)

d1 = ψ2
000ψ

2
111 + ψ2

001ψ
2
110 + ψ2

010ψ
2
101 + ψ2

100ψ
2
011, (10)

d2 = ψ000ψ111ψ011ψ100 + ψ000ψ111ψ101ψ010

+ψ000ψ111ψ110ψ001 + ψ011ψ100ψ101ψ010

+ψ011ψ100ψ110ψ001 + ψ101ψ010ψ110ψ001, (11)

d3 = ψ000ψ110ψ101ψ011 + ψ111ψ001ψ010ψ100, (12)

with the Pauli matrices

σ0 := 1l2 =
(

1 0
0 1

)
, σ1 := σx =

(
0 1
1 0

)
,

σ2 := σy =
(

0 −i

i 0

)
, σ3 := σz =

(
1 0
0 −1

)
,

and gμ = (−1, 1, 0, 1), where the notation of Refs. [5,9] is
used. In what follows we use the square root of the three-
tangle to measure three-partite entanglement [13,14], since
it scales like a bilinear function of the wave function coeffi-
cients, the lowest even integer number which is represented
by the concurrence. It hence scales like a probability. Besides
these physically motivated reasons, there is also a practical
one: it is even easier to obtain the convex roof.

B. States derived from �4
4

The state taken from Eq. (4) is detected by some of the
three (4,0) invariants which are called C (4)

ij in Ref. [10],
respectively, BI

[4], BII
[4], and BIII

[4] in Ref. [15]. It is a state
which has length 4 and hence cannot be detected by the (6,0)
filter invariant as the original state considered previously. Due
to the symmetries of the state with respect to permutations
of the qubits there are only four distinct states in the SL null
cone: three states have a (3,1) invariant, and the one with a
(2,2) invariant of SU is a bipartite state and therefore is not
considered. The three states with (3,1) symmetry are∣∣�4

4;1

〉 = 1
2 (|0000〉 + |1100〉 + |0010〉 + |0001〉), (13)∣∣�4

4;2

〉 = 1
2 (|1111〉 + |0011〉 + |0010〉 + |0001〉), (14)∣∣�4

4;4

〉 = 1
2 (|1111〉 + |1100〉 + |0010〉 + |1110〉). (15)

The notation is the same as in the previous section; it is
reflecting where the partial spin flip is acting on.

III. CONVEX-ROOF CONSTRUCTION

Since we intend to find a state with three-tangles dis-
tributed all over the chain and ideally without any concur-
rences, we first look at the reduced three-site density matrices.

For completeness we give explicit formulas for the line
connecting the pure state |Z1〉〈Z1| at z1 = 2p1 − 1 with the
density matrix

ρ = p|ψ1〉〈ψ1| + (1 − p)|ψ2〉〈ψ2| . (16)
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ρ

2p − 1

|ψ1

|ψ2

|Z2

|Z1

2p2 − 1

2p1 − 1

l1

l2

FIG. 1. The Bloch sphere of density matrices made of the or-
thonormal states |ψi〉, i ∈ {1, 2}, is shown, together with two su-
perpositions |Zi〉, i ∈ {1, 2}, of them. These two states give a valid
decomposition of the density matrix ρ.

It hits the pure state |Z2〉〈Z2| at z2 = 2p2 − 1 on the surface
of the Bloch sphere (see Fig. 1). The result is given according
to

l1(p1, p) =
√

1 + (2p − 1)2 − 2(2p − 1)(2p1 − 1), (17)

l2(p1, p) = 2
√

2p(1 − p)√
1 − 2p(1 − p) − (2p − 1)(2p1 − 1)

, (18)

p2(p1, p) = p2(1 − p1)

p(p − p1) + p1(1 − p)
. (19)

The lengths li , i ∈ {1, 2}, therefore yield the corresponding
weights

q1(p1, p) = l2(p1, p)

l1(p1, p) + l2(p1, p)
, (20)

q2(p1, p) = l1(p1, p)

l1(p1, p) + l2(p1, p)
, (21)

which convexly combine the states |Zi〉〈Zi |, i ∈ {1, 2}, to
finally decompose ρ (see Fig. 1).

A. States derived from �4
6

As already mentioned, the state |�4
6;1〉 possesses merely

concurrence and no three-tangle. It is therefore similar to the
W states. These states do occur for each number of qubits. We
term all those states to be of the W type, in this case of four
qubits, and do not discuss these states any further.

We have two states remaining: (i) |�4
6;2〉 and (ii) |�4

6;23〉.

1. The state |�4
6;2〉

There are only two essentially different cases due to the
form invariance of∣∣�4

6;2

〉 = √
p1|1111〉 + √

p2e
iη|0111〉 + c3|0100〉

+ c4|0010〉 + c5|0001〉 (22)

with respect to permutations of the last three qubits. The
state is normalized: ci ∈ C, i = 2, . . . , 5, and |ci |2 = pi , with∑5

i=1 pi = 1. This leads to two different classes of reduced
three-site density matrices to be considered:

tr1

∣∣�4
6;2

〉〈
�4

6;2

∣∣ = p1|111〉〈111| + (
√

p2e
iη|111〉

+ c3|100〉 + c4|010〉 + c5|001〉)(H.c.)

(23)

tr2

∣∣�4
6;2

〉〈
�4

6;2

∣∣ = (
√

p1|111〉+ √
p2e

iη|011〉+ c3|000〉)(H.c.)

+ (c4|010〉 + c5|001〉)(H.c.), (24)

with H.c. indicating the Hermitian conjugation. Whereas in
the second case both states are already orthogonal, we have to
do a bit of algebra in order to construct the eigenstates for the
first instance.

By applying a proper local unitary,

U =
(

cos α eiχ sin α

−e−iχ sin α cos α

)
, (25)

with the angle α and the phase χ on the first site, we can
diagonalize the matrix tr1|�4

6;2〉〈�4
6;2|. The conditions for α

and χ which derive from the orthogonality relation of the two
eigenstates are

tan 2α = 2
√

p1p2

1 − 2p1
, (26)

χ = η . (27)

The corresponding eigenstates of the reduced density matrix
are

|ψ1〉 = (sin α
√

p1 + cos α
√

p2)eiη|111〉
+ cos α|W3(0, c3, c4, c5)〉, (28)

|ψ2〉 = (cos α
√

p1 − sin α
√

p2)eiη|111〉
− sin α|W3(0, c3, c4, c5)〉. (29)

These states are normalized to the relative probability with
which they occur in the density matrix; hence

ρ1 = tr1

∣∣�4
6;2

〉〈
�4

6;2

∣∣ = |ψ1〉〈ψ1| + |ψ2〉〈ψ2|. (30)

The corresponding probabilities are the modulus squared of
the wave functions, i.e.,

P1 = −p1 cos 2α + √
p1p2 sin 2α + cos2 α, (31)

P2 = p1 cos 2α − √
p1p2 sin 2α + sin2 α. (32)

Defining prel = p1 + p2 as the relevant probability for cre-
ating a three-tangle in the reduced state, we can parametrize
the respective probabilities by p1 = prel cos2 β =: prelc and
p2 = prel sin2 β = prel(1 − c), where β ∈ [0, π/2]. Inserting
the conditions taken from Eq. (26) leads to

P1 = 1

2
+ sign(1 − 2p1)

prelc(prelc − 2) + p2
relc + 1

2√
1 − 4prelc + p2

relc(3c + 1)
.

(33)
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FIG. 2. Characteristic curves for certain values of ϕ: ϕ = 0 [blue
widely dashed curve that interconnects concavely the points at p = 0
and 1 with (p,

√
τ3) = (1/2, 0)] to the straight orange dashed line

at ϕ = π/2 up to ϕ = π (the lowest red curve). The curves are
symmetrically distributed around ϕ = 0 and ϕ = π . The red lowest
curve is the minimal characteristic curve and is already convex.
Therefore it constitutes a lower bound to

√̂
τ3. The zero polytope

consists of a threefold degenerate zero at the angle ϕ = π and a
single zero at ϕ = 0.

In what follows, we discuss the entanglement in the mixed
state

ρ1(prel, p) = p

P1
|ψ1〉〈ψ1| + 1 − p

1 − P1
|ψ2〉〈ψ2|. (34)

The pure states under consideration are hence

|�(p, ϕ)〉 :=
√

p

P1
|ψ1〉 − eiϕ

√
1 − p

1 − P1
|ψ2〉, (35)

and defining z =
√

1−p

p
eiϕ (see, e.g., Ref. [16]) we find

|�(z)〉 :=
√

1

1 + |z|2
(√

1

P1
|ψ1〉 − z

√
1

1 − P1
|ψ2〉

)
, (36)

Their three-tangle can be readily read off Eq. (12):

τ3[�(z)] = 16

∣∣∣∣ sin(α + β )√
P1

− z
cos(α + β )√

1 − P1

∣∣∣∣
×

∣∣∣∣cos α√
P1

+ z
sin α√
1 − P1

∣∣∣∣3 √
prel

(1 + |z|2)2

√
p3p4p5.

(37)

This leads to the following two solutions: z0;1 =√
1−P1
P1

tan(α + β ) and the threefold z0;2 = −
√

1−P1
P1

cot α,
with respective values for p0;1 = P1/[P1 + P2 tan2(α + β )]
and p0;2 = P1/(P1 + P2 cot2 α).

In what follows, we only consider in detail the case
p3 = p4 = p5 = 1/6. We obtain for the angle in this spe-
cific instance α = arctan[

√
2]/2 ≈ 0.477 66. The state �4

6;2
corresponds to p1 = 1/3, p2 = 1/6, and η = 0, and appears
at the value p = (3 + √

3)/6 in Fig. 3 [see Eq. (31)]. The
characteristic curves, hence the values of

√
τ3, are shown in

Fig. 2 for various values of ϕ. We refer to Ref. [17] in order to
elucidate the procedure.

Valid decompositions of the density matrix, i.e., upper
bounds to the convex roof

√̂
τ3 of

√
τ3 are visualized in Fig. 3.

They show various convex combinations of ρ. The orange

FIG. 3. Upper bounds to the convex roof
√̂

τ3 of
√

τ3. The
characteristic curves at the angles ϕ = 0 (upper blue widely
dashed curve) and ϕ = π (lowest red curve) are shown together
with valid decompositions of the density matrix, namely a con-
vex combination of (a) one of the two eigenstates and ρ0 =
1
2 (|�( 1

2 , 0)〉〈�( 1
2 , 0)| + |�( 1

2 , π )〉〈�( 1
2 , π )|) (black dotted lines) be-

ing a convex sum of states from the zero polytope �( 1
2 , 0) and

�( 1
2 , π ), (b) |�(p, 0)〉〈�(p, 0)| and |�(p, π )〉〈�(p, π )| (magenta

dashed line), (c) the state |�( 1
2 , 0)〉〈�( 1

2 , 0)| from the zero poly-
tope and the state |�(p2(1/2, p), π )〉〈�(p2(1/2, p), π )| such that
the line connecting both states intersects the center line of the
Bloch sphere at (2p − 1) (orange curve below the dotted line)
as shown in Fig. 1, and (d) the same as in case (c) but with
|�( 1

2 , π )〉〈�( 1
2 , π )| from the zero polytope and the corresponding

state |�(p2(1/2, p), 0)〉〈�(p2(1/2, p), 0)| (green dash-dotted curve
above the dashed and dotted line). The orange curve coincides with
the convex roof.

curve is given by the expression

√̂
τ3

[
ρ1

(
1

2
, p

)]
= 2

33/4
|2p − 1|3/2; (38)

it coincides with the convex roof which we explain in what
follows. For p0 = (3 ± √

3)/6 the convex roof of ρ0 :=
ρ1(1/2, p0) is

√̂
τ3[ρ0] = 2/(3

√
3) ≈ 0.3849.

As seen in Fig. 2, the characteristic curves are strictly
concave around the single zero at ϕ = 0 and p = 1/2. This
has two effects: (i) any deviation around this point of the
zero polytope leads to a positive value of the entanglement
that is scaling like a square root, and (ii) the weight of the
state is furthermore enhanced if more than one state makes
up the decomposition, yielding therefore a mixed state. This
is equivalent to a seesaw in balance: when one of the parts is
moving inwards, it has to become heavier to keep the balance.
For these two reasons one of the decomposition states is
known to coincide with the pure state corresponding to the
single zero of the zero polytope with concave behavior (linear
behavior is included). One valid decomposition made of this
decomposition state leads to the orange curve in Fig. 3. This
acquires the absolute minimum because the characteristic
curve at angle ϕ = π is the minimal characteristic curve
which in addition is convex. In general one would have to
consider also its convexification (see example ahead), but here
it is already convex. Thus, any decomposition of pure states
gives a resulting three-tangle which lies above that curve,
similar to the argument in Ref. [18].

More generally this is true for any rank-two problem of a
homogeneous polynomial SL-invariant measure of entangle-
ment of degree 2m, if there exist states which correspond to
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an ni-fold (ni < m) degenerate solution in the zero polytope
that can be combined with the minimal characteristic curve
departing from an N -fold (N > m) degenerate solution in the
zero polytope to give a decomposition of ρ, as is the case here.
The corresponding minimal characteristic curve can be con-
vexified. This will lead to a lower value for the effective
entanglement [19] if the relative gain in entanglement is larger
than the relative gain of the weight of the mixed state leading
to this convexification. It is a priori unclear to us whether this
may lead to an entanglement reduction. We can just state that
in those cases we have considered here, this was not the case.

If more than one such state exists, then for a given density
matrix ρ the interconnecting straight lines with the minimal
characteristic curve will hit the surface of the zero polytope
somewhere and we will obtain a curve for the effective
entanglement that later has to be convexified to give the
convex roof; if it does not intersect the zero polytope, then
we obtain a nontrivial lower bound. Due to convexity, it is
enough to minimize along the curve on the surface of the

zero polytope that is facing the minimal characteristic curve
on the Bloch sphere. We want to mention that here a decrease
in the effective entanglement is achieved if mixed states from
the surface of the zero polytope are considered. This is due to
their relatively higher weight following the seesaw argument
given above. A minimization procedure over the finitely many
thus-obtained effective entanglement curves will give, after
convexification, the convex roof.

For all the states that we consider here, there are two
real solutions z0;i of opposite signs; hence they satisfy the
conditions in the former paragraph. Thus, their convex roof
is

√̂
τ3est[ρ(p)] = q2(p, p0;1)

√
τ3[�(p2(p, p0;1), π )]. (39)

For the state

ρ1(p) = p

P1
|ψ1〉〈ψ1| + 1 − p

1 − P1
|ψ2〉〈ψ2|, (40)

we obtain

√̂
τ3est[ρ1(p)] = C(p, p0;1)

√√√√∣∣∣∣∣ sin(α + β )√
P1

+
√

1 − p2(p, p0;1)

p2(p, p0;1)

cos(α + β )√
1 − P1

∣∣∣∣∣
∣∣∣∣∣cos α√

P1
−

√
1 − p2(p, p0;1)

p2(p, p0;1)

sin α√
1 − P1

∣∣∣∣∣
3

, (41)

with C(p, p0;1) = 4q2(p, p0;1)p2(p, p0;1) 4
√

prel p3p4p5. In
order to give a nonsymmetric example we chose the state
corresponding to p1 = 5/9 and pi = 1/9 for i = 2, . . . , 5 in
Eq. (23); the results are shown in Fig. 4. It can be seen that
the relatively minimal characteristic curve corresponding to
the threefold solution of the zero polytope is not convex; its
convexification is seen as a red dotted curve adapted to the
red dashed curve corresponding to the angle π in the plot.

We emphasize here that also one of the upper bounds in
Ref. [20] was similar to this type except that the resulting
curve was not convex; one should of course consider its
convexification for reaching the convex roof. This should be
reconsidered in the future.

If the zeros in the zero polytope are not precisely at
opposite angles of the sphere, the optimal decomposition in
the convex roof will change continuously from this absolutely
optimal decomposition that we have in this case. It can there-
fore be considered as a lower bound for this type of solution
and gives a better lower bound than the minimal characteristic
curve as used in Refs. [21–24] to lower bound the convex roof
making use of the symmetry in certain states.

We briefly come back to the second case, in which the
eigenstates can be directly read off Eq. (24). We have

ρ2({pi}; p) = p

P1
|ψ1〉〈ψ1| + 1 − p

P2
|ψ2〉〈ψ2|, (42)

where

|ψ1〉 = √
p1|111〉 + √

p2e
iη|011〉 + c3|000〉, (43)

|ψ2〉 = c4|010〉 + c5|001〉, (44)

and

P1 = p1 + p2 + p3, (45)

P2 = p4 + p5. (46)

There is only one convex characteristic curve, which is the
straight line connecting zero with

√
p1p3/(p1 + p2 + p3).

Hence

√̂
τ3[ρ2({pi}; p)] = 2p

√
p1p3

P1
, (47)

which means inserting p = P1 for ρ2 := tr 2|�4
6;2〉〈�4

6;2|. For

the same choice of probabilities as above we get
√̂

τ3[ρ2] =√
2

3 ≈ 0.4714.
At the end, we briefly comment on the CKW inequality

noting that for this particular state all concurrences vanish.
The extended inequality would however already be satisfied
with (

√̂
τ3)2 as the three-tangle [25–27].

To conclude, we have found four-qubit states with van-
ishing two- and four-tangles which however possess three-
tangles distributed all over the four parties. The states have
the form |�4

6;2〉 [see Eq. (22)]. They are similar to the W class
which have all of their entanglement stored among two parties
distributed all over the chain.

2. The state |�4
6;23〉

The state∣∣�4
6;23

〉
:= √

p1|1111〉 + √
p2e

iη|0111〉 + c3|1011〉
+ c4|0010〉 + c5|0001〉,

with ci ∈ C, i = 2, . . . , 5, |ci |2 = pi , is normalized for∑5
i=1 pi = 1. It is form invariant with respect to permutation

of the first qubit and the last two qubits. Hence, there are
also two essentially different reduced density matrices to be
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FIG. 4. Some characteristic curves are shown besides those at
the angles ϕ = 0 (blue dashed curve that concavely drops to zero at
p about 0.83), ϕ = π/2 (orange widely dashed curve), and ϕ = π

(red dashed curve that convexly drops to zero at p about 0.17),
together with several valid decompositions of the density matrix
and hence upper bounds to the convex roof

√̂
τ3 of

√
τ3, namely

a convex combination of (a) one of the two eigenstates and ρ0 =
1
2 (|�(p0;1, 0)〉〈�(p0;1, 0)| + |�(p0,2, π )〉〈�(p0,2, π )|) (black dot-
ted lines) of the states taken from the zero polytope given
by �(p0;1, 0) and a threefold solution in �(p0,2, π ), (b) the
state |�(p0;1, 0)〉〈�(p0;1, 0)| from the zero polytope and a state
|�(p2(p0;1, p), π )〉〈�(p2(p0;1, p), π )| such that the line connecting
both states intersects the center line of the Bloch sphere at (2p − 1)
(solid orange curve below the dotted black line), (c) the same as in
case (b) but with |�(p0;2, π )〉〈�(p0;2, π )| from the zero polytope
and the corresponding state |�(p2(p0;2, p), 0)〉〈�(p2(p0;2, p), 0)|
(dash-dotted green curve above the dotted black line). The orange
curve is already convex and therefore coincides with the convex roof.
We also show the convexified characteristic curve (red dotted line
attached to the red dashed curve corresponding to the characteristic
curve at the angle π ). It however does not lead to a diminishing of the
effective three-tangle (dotted orange curve above the convex roof)
as one would expect. This is due to the linear increase of weight
with decreasing value of p. It therefore approaches to the convexified
characteristic curve for p → 1.

considered. They are

tr 1

∣∣�4
6;23

〉〈
�4

6;23

∣∣
= (

√
p1|111〉 + c3|011〉)(H.c.)

+ (
√

p2e
iη|111〉 + c4|010〉 + c5|001〉)(H.c.), (48)

tr 3

∣∣�4
6;23

〉〈
�4

6;23

∣∣
= p5|001〉〈001| + (

√
p1|111〉

+√
p2e

iη|011〉 + c3|101〉 + c4|000〉)(H.c.). (49)

The first reduced density matrix is written in the subnormal-
ized eigenvector form

ρ = |ψ1〉〈ψ1| + |ψ2〉〈ψ2|, (50)

whose subnormalized eigenvectors (obtained with the same
method as in the preceding section) are

|ψ1〉 = (
√

p1 cos α − √
p2 sin α)eiη|111〉

+ c3e
iη cos α|011〉 − sin α(c4|010〉 + c5|001〉), (51)

|ψ2〉 = (
√

p1 sin α + √
p2 cos α)eiη|111〉

+ c3e
iη sin α|011〉 + cos α(c4|010〉 + c5|001〉), (52)

where

tan 2α = 2
√

p1p2

1 − 2(p1 + p3)
, (53)

χ = η, (54)

and whose three-tangle vanishes.
Only the second reduced density matrix

ρ3 = |ψ1〉〈ψ1| + |ψ2〉〈ψ2|, (55)

with

|ψ1〉 = √
p1|111〉 + c4|000〉 + √

p2e
iη|011〉 + c3|101〉,

(56)

|ψ2〉 = √
p5|001〉, (57)

has a nontrivial three-tangle. Its zero simplex consists of
a single point at the end of the interval [0,1] which goes
back to a fourfold-degenerate root. It leads consequently to
a single linear characteristic curve. Therefore the convex
roof of

ρ({pi}; p) := p

1 − p5
|ψ1〉〈ψ1| + 1 − p

p5
|ψ2〉〈ψ2| (58)

equals

√̂
τ3[ρ({pi}; p)] = 2p

√
p1p4

(1 − p5)
, (59)

so that we obtain
√̂

τ3[ρ3] = 2
√

p1p4. (60)

These states however have always a nonvanishing concur-
rence C[ρij ] =

√
2p

Ji
p

Jj
and �J = (3, 2, 5, 4) for nonvanish-

ing pk, k = 2, . . . , 5. However, an extended monogamy in-

equality would be satisfied with
√̂

τ3
2

as the three-tangle, as
before.

B. States derived from �4
4

As we come to the states derived from �4
4 there are two

cases left to be considered. Inserting arbitrary weights for the
state (13) we obtain∣∣�4

4;1

〉 = √
p1|0000〉+ c2|1100〉+ c3|0010〉+ √

p4e
iη|0001〉,

(61)

where the ci are complex, |ci |2 = pi , and which is normalized
if

∑4
i=1 pi = 1. This state is form invariant under permuta-

tions of the first two qubits and the last two qubits, and hence
only two different reduced density matrices exist. They consist
of two mixed states which have no three-tangled pure state in
their range.

The second state has the same form invariance as above. It
is∣∣�4

4;2

〉 = c1|1111〉+ √
p2|0011〉+ √

p3e
iη|0010〉+ c4|0001〉.

(62)
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So there are only two essentially different reduced density
matrices

tr 1

∣∣�4
4;2

〉〈
�4

4;2

∣∣ = p1|111〉〈111| + (
√

p2|011〉
+√

p3e
iη|010〉 + c4|001〉)(H.c.), (63)

tr 4

∣∣�4
4;2

〉〈
�4

4;2

∣∣ = p3|001〉〈001| + (c1|111〉
+√

p2|001〉 + c4|000〉)(H.c.). (64)

Whereas the first density matrix has no three-tangled state in
its range, the eigenstates of tr 4|�4

4;2〉〈�4
4;2| are

|ψ1〉 ∝ cos α(c1|111〉 + c4|000〉)

+ (
√

p2 cos α − √
p3 sin α)|001〉, (65)

|ψ2〉 ∝ sin α(c1|111〉 + c4|000〉)

+ (
√

p2 sin α + √
p3 cos α)|001〉, (66)

with the condition for orthogonality of the two vectors being

tan(2α) = 2
√

p2p3

(2p3 − 1)
, (67)

χ = η. (68)

The weights of the normalized eigenfunctions are

P1 = cos2 α − p3 cos(2α) − √
p1p3 sin(2α), (69)

P2 = sin2 α + p3 cos(2α) + √
p1p3 sin(2α). (70)

This state corresponds to a single point in C belonging to
a fourfold solution for the zero polytope. The convex roof
for this situation is known exactly [28]. It is independent of
the decomposition of the density matrix; hence it is a linear
function connecting the three-tangles of the eigenvectors,
which are

√
τ3[ψ1] = 2

cos2(α)
√

p1p4

P1
, (71)

√
τ3[ψ2] = 2

sin2(α)
√

p1p4

P2
. (72)

This results in
√̂

τ3
[
tr 4

∣∣�4
4;2

〉〈
�4

4;2

∣∣] = 2
√

p1p4. (73)

The remaining state is∣∣�4
4;4

〉 = √
p1|1111〉+ c2|1100〉+ c3|0010〉+ √

p4e
iη|1110〉,

(74)

where ci ∈ C, |ci |2 = pi , and with the same condition∑4
i=1 pi = 1 for normalization. This state possesses form in-

variance with respect to the first two qubits only. The reduced
density matrices are

tr 1

∣∣�4
4;4

〉〈
�4

4;4

∣∣ = p2|010〉〈010| + (
√

p1|111〉
+ c2|100〉 + √

p4e
iη|110〉)(H.c.), (75)

tr 3

∣∣�4
4;4

〉〈
�4

4;4

∣∣ = p2|010〉〈010| + (
√

p1|111〉
+ c3|000〉 + √

p4e
iη|110〉)(H.c.), (76)

tr 4

∣∣�4
4;4

〉〈
�4

4;4

∣∣ = p1|111〉〈111| + (c2|110〉
+ c3|001〉 + √

p4e
iη|111〉)(H.c.). (77)

The first mixed state has no three-tangled pure state in its
whole range; only tracing out the third or the fourth qubit
renders a nonzero contribution.

Tracing out the third qubit leads directly to the eigenvectors
ψ2 = |010〉 and ψ1 ∝ √

p1|111〉 + c3|000〉 + √
p4e

iη|110〉,
with corresponding eigenvalues p2 and 1 − p2, respectively.
As above, the convex roof is known exactly to be the linear
interpolation between the eigenstates of ρ, hence between
zero and

√
τ3[ψ1] = 2

√
p1p3

1 − p2
. (78)

This ultimately gives rise to

√̂
τ3

[
tr 3

∣∣�4
4;4

〉〈
�4

4;4

∣∣] = 2
√

p1p3. (79)

Here again, this is trivially seen because the characteristic
curves all coincide with a straight line which is hence identical
with the already convex lowest characteristic curve. This case
also corresponds to a unique fourfold solution of the zero
polytope [28].

Tracing out the fourth qubit gives the eigenstates

|ψ1〉 ∝ (
√

p1 sin α + √
p4 cos α)|111〉

+ e−iη cos α(c2|110〉 + c3|001〉), (80)

|ψ2〉 ∝ (
√

p1 cos α − √
p4 sin α)|111〉

− e−iη sin α(c2|110〉 + c3|001〉), (81)

where

tan(2α) = 2
√

p1p4

1 − 2p1
, (82)

χ = η. (83)

The moduli squared of the eigenstates are

P1 = cos2 α − p1 cos(2α) + sin(2α)
√

p1p4, (84)

P2 = sin2 α + p1 cos(2α) − sin(2α)
√

p1p4. (85)

The convex roof for the three-tangle linearly connects the
tangles of the eigenstates [28]

√
τ3[ψ1] = 2

cos2(α)
√

p2p3

P1
, (86)

√
τ3[ψ2] = 2

sin2(α)
√

p2p3

P2
, (87)

and hence we have

√̂
τ3

[
tr 4

∣∣�4
4;4

〉〈
�4

4;4

∣∣] = 2
√

p2p3. (88)

The only nonzero concurrences are C[ρ1,2] = √
2p3p4 and

C[ρ3,4] = √
2p1p2, where ρi,j is the reduced density matrix

of qubits i and j . We state that whenever all the concurrences
vanish either all the three-tangles are zero or one is dealing
with a bipartite state. We therefore have no perfect analogy to
the W states.

052307-7



SEBASTIAN GARTZKE AND ANDREAS OSTERLOH PHYSICAL REVIEW A 98, 052307 (2018)

Hence, states derived from �4
4 never lead to a perfect

analog of the W class.
In all cases the derived states satisfy an extended

monogamy relation with
√̂

τ3
2

inserted as the three-tangle.

IV. CONCLUSIONS

In conclusion we have singled out states of four qubits that,
differing from the states from the W class that exclusively
contain two-tangles, contain only three-tangles which how-
ever are globally distributed. To this end we have analyzed
specific four-qubit states which are located in the SL null
cone. This guarantees that all possible SL-invariant four-
tangles are zero. In order to satisfy this minimal condition,
we apply partial spin flips to a c-balanced state, following
Ref. [4]. All states satisfy an extended monogamy relation

with
√̂

τ3
2

inserted as the three-tangle. The possibility to
extend the monogamy inequality in that form has however
already been excluded [27]. Since the value of the three-tangle
will shrink [20] (see also Ref. [29]) with growing s in ŝ

√
τ3

s
,

the result will however be upper bounded by its value at s = 2.
We consider it worth also hinting towards the alternating

signs appearing in the monogamy equality of Ref. [30]. It
could therefore be that a full analog to the W state may appear
predominantly for an even number of n of some residual
n-tangle. In order to test this, one should at least analyze
corresponding states of five qubits.

Intriguingly, this alternating sum arises in apparently quite
various instances: for representations of the universal state
inversion [31] and in the shadow inequalities [32,33] from
quantum error correction. Here apparently rather different
fields such as multipartite entanglement and quantum error
correcting codes merge. Also the Gell-Mann representatives
for the operator σy for qubits emerging from the represen-
tation of the general state inversion [31] have also appeared
before inside the operator with full SL(d) symmetry [34] that
creates the determinant and is used to form the SL-invariant
analog to the concurrence for qubits.

It will be of interest if the various three-tangles can be
rendered equal. The latter could be achieved by locally apply-
ing SL operations to the states, making use of SL invariants
which scale quadratically in ψ (or linearly in ρ) [14,15]. Also
it would be intriguing if such states existed for larger numbers
of Q qubits and n-site entanglement. However, for growing
numbers of qubits, the considered reduced density matrices
usually are of higher rank and no exact treatment is known so
far. An interesting add-on would be whether translationally (or
even permutationally) invariant versions of such states exist
and whether it is possible to write such a state for an arbitrary
number of qubits as for the W state. It is however clear that
the permutationally extended version of the state |�4

6;2〉 will
always carry a four-tangle except for p2 = 0 where it becomes
a state in the usual W class.

As an interesting by-product it is demonstrated that the
exact convex roof is achieved in the rank-two case of the mth
root of a homogeneous degree 2m polynomial SL-invariant
measure of entanglement if there exist states which corre-
spond to a maximally m − n-fold degenerate solution in the
zero polytope that can be combined with the (convexified)
minimal characteristic curve of an (m + n)-fold degenerate
solution, n ∈ IN0 to give a decomposition of ρ. The three-
tangle has homogeneous degree 4, hence m = 2 for this case.
If more than one such state does exist, one has to take the
minimum of the results. In case no decomposition of ρ is
reached, the minimum over the thus-constructed states repre-
sents a lower bound to the SL-invariant entanglement measure
under consideration; it is of course larger than the lowest
characteristic curve employed in Refs. [22] for quantifying
the three-tangle of the GHZ-Werner state [21] which has then
been applied further [35,36].
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