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Deterministic quantum state transfer between remote atoms
with photon-number superposition states
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We propose a protocol for quantum networking based on deterministic quantum state transfer between distant
memory nodes using photon-number superposition states (PNSS). In the suggested scheme, the quantum nodes
are single atoms confined in high-finesse optical cavities linked by photonic channels. The quantum information
written in a superposition of atomic Zeeman states of sending system is faithfully mapped through cavity-assisted
Raman scattering onto PNSS of linearly polarized cavity photons. The photons travel to the receiving cavity,
where they are coherently absorbed with unit probability creating the same superposition state of the second
atom, thus ensuring high-fidelity transfer between distant nodes. We develop this approach at first for photonic
qubit and show that this superposition state is no less reliably protected against the propagation losses compared
to the single-photon polarization states, whereas the limitation associated with the delivery of more than one
photon does not affect the process fidelity. Then, by preserving the advantages of qubits, we extend the developed
technique to the case of state transfer by photonic qutrit, which evidently possesses more information capacity.
This reliable and efficient scheme promises also a successful distribution of entanglement over long distances in
quantum networks.
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I. INTRODUCTION

Quantum networks are the platform for the implementation
of quantum communication and quantum information pro-
cessing [1]. They comprise of local network nodes, which are
capable of efficient storing, processing, and releasing photonic
quantum information in a reversible fashion, and of quantum
channels, which link the memory nodes by transmitting pho-
tonic states between them with high fidelity of the transfer.
The original proposal for the quantum state transfer (QST) is
based on the “single atom-optical cavity” system [2], where
the reversible mapping of quantum states between light and
matter is achieved due to the strong coupling of the interaction
of single atoms and photons, while quantum channels, for
example optical fibers, coherently exchange single photons
between different nodes. The remarkable capability of this
scheme to connect distant quantum objects, stimulated many
efforts aimed at solving the main challenges in quantum
information transfer between remote qubits. Specifically, new
schemes have been developed for robust creation and storage
of quantum entanglement over long distances [3–6], heralded
storage of polarization states of single photons in single
atoms [7–9], quantum error correction [10], implementation
of quantum gates between distant atoms [11], single-photon
generation [12–14], and faithful and controllable matter-light
quantum interfaces [15,16], including those based on optome-
chanical transducers [17]. Utilizing the global resources of
this scheme, a new quantum protocol have been offered for a
network connecting the geographically remote optical atomic
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clocks [18]. Inspired by the proposal of Ref. [2], where the
atom-cavity system produces a time-symmetric photon wave
packet to prevent the photon reflection from the second cavity
mirror, a different approach was suggested in [19] based on
an adiabatic passage through a dark state of both cavities that
reduces the cavity photon losses. The first implementation
of the scheme in Ref. [2] with direct, albeit probabilistic,
connection of the states of two distant atoms was presented
in a recent paper [20], which combines in one experiment the
basic operations that have been previously realized separately
with cavity QED including the interconversion of photonic
and atomic quantum states [21,22] and generation and storage
of cavity photons in a single-atom quantum memory [23].
However, the efficiency of the QST currently available in
this scheme is rather low to implement scalable quantum
networks, as a desired result is obtained only after many
unsuccessful attempts requiring much more time as compared
to the realistic quantum memory lifetimes. These difficulties
are typical also for the entanglement swapping in probabilistic
protocols for quantum repeaters [24]. For the full employment
of quantum networks, new schemes with highly efficient
emission and storage of cavity photons, as well as low-loss
photonic links between the cavities, are required. Recently,
the deterministic transfer of microwave photons and entan-
glement generation between distant superconducting qubits
have been demonstrated in a number of works [25–27], but
the reliable exchange of optical photons between spatially
separated nodes still remains a challenging task.

In this paper we propose a quantum network protocol
based on the deterministic generation and absorption of
cavity photons in network nodes, which consist of single
F -Zeeman-structured multilevel atoms, with −F � mF �
+F , confined in identical single-mode high-finesse optical
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FIG. 1. Quantum state transfer between two single-atom network nodes. The insets show the atomic level structure and transitions in the
laser fields �1,2 and in an external magnetic field B. The sequent photons (thin red lines) are generated in the left and absorbed in the right
cavities. The initial populations of atomic states are shown by filled circles

cavities. In the sending node, an arbitrary quantum state is
encoded in the superposition state of the ground Zeeman
sublevels of the single atom, which strongly interacts with a
linearly polarized cavity mode and a circularly σ+ polarized
control �1(t ) laser field in a Raman configuration. The control
field transfers the atomic population into the extreme Zeeman
state mF = +1 via Raman transition and, thus, completely
converts the atomic superposition state into PNSS of linearly
polarized cavity photons. Note that the schemes enabling
atomic ground-state Zeeman coherence to be mapped onto
the cavity-mode field using the adiabatic passage have been
studied in [28,29]. In our case of Raman configuration the
temporal profiles of the photons are determined by the shape
of the laser pulse. This process is deterministic due to the very
high signal-to-noise ratio that is available in real conditions.
We first consider the simple case of the atomic F = 1 →
F ′ = 2 transition, when the atom is initially prepared in an
arbitrary superposition of ground Zeeman states mF = −1
and mF = 0 (Fig. 1, left), where the photonic qubit as a su-
perposition of one- and two-photon states is generated, which
identically reproduces the form of an atomic superposition
state. An external magnetic field applied perpendicular to
the cavity axis removes the Zeeman degeneracy in such a
way as to fine tune the linearly polarized cavity mode to
the exact resonance with two-photon Raman transitions, as
well as to reduce the decoherence of the atomic superposition
by ambient magnetic fields. The photons leave the cavity
through one mirror, which is partially transparent, as freely
propagating wave packets, which are efficiently coupled to
a low-loss single-mode optical fiber. The latter transmits
the photons to the receiving system (Fig. 1, right), where a
single atom is prepared initially in the state mF = +1. The
atom interacts with a circularly σ+ polarized �2(t ) laser

field, which induces coherent absorption of incoming photons
with unit probability, eventually settling down the receiving
atom into the same superposition state as the original one
in the sending system. The shape of the �2(t ) laser pulse is
derived from the requirement to entirely exclude the photon
leakage from the second cavity indicating that the quantum
output field is zero at all times. We show that the absorption
amplitudes are not sensitive to the photons’ temporal shape
due to integral dependence on the latter (see Sec. III B) that
significantly alleviates the strict condition of high transfer
efficiency requiring the photons of time-symmetric shapes
[2,30].

Furthermore, we extend the developed technique to the
case of the QST by the photonic qutrit, which is a super-
position of the vacuum, one-, and two-photon states and
possesses greater information capacity, whereas the quantum
connectivity between the nodes using this state is not less
protected from the decoherence induced by the environmental
effects than the photonic polarization qubit [20]. With reduced
photon losses in quantum channels, this deterministic protocol
provides very fast and robust QST over large distances that
notably mitigates the limitations on the quantum memory
lifetime. Under these conditions the imperfection associated
with the delivery of more than one photon does not reduce the
final state fidelity.

This paper is organized as follows: In the next section
we present the interaction setup and derive the basic equa-
tions for the time evolution of the atomic state amplitudes
and the cavity field, which describe the generation of PNSS
of linearly polarized cavity photons in the sending system.
We analyze the dynamics of atomic population and photon-
number distribution via numerical calculations, as well as
we obtain the temporal profiles of emitted photons. Here we
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also estimate the error due to the spontaneous losses and
discuss the main approximations ensuring the deterministic
generation of PNSS. The analytic solutions for the coherent
absorption of PNSS in the receiving system are found in
Sec. III, where the final superposition state of the second atom
is demonstrated. Here we also present the implementation of
the QST via photonic qutrit. We discuss also the advantages
and imperfections of our protocol in Sec. IV and summarize
the results in Sec. V.

II. PNSS GENERATION IN THE SENDING NODE

A. Model

The present mechanism for producing PNSS is based on
our earlier proposed method of deterministic generation of a
stream of multiphoton pulses in a single-atom–single-mode
cavity QED system [31,32]. A multilevel atom or ion is
trapped in a one-mode high-finesse optical cavity and interacts
with a σ+-polarized laser field �1 (Fig. 1) on the multi-
level chain, for instance, on the transition 5S1/2(F = 1) →
5P3/2(F ′ =2) of the 87Rb atom, where the state 5P3/2(F ′ =2)
is well isolated from other hyperfine levels. The laser
field couples the ground state F = 1 with magnetic quan-
tum number mF = −F, . . . , F − 1 and the excited state
|F ′ = 2,mF ′ = mF + 1〉1 and creates a linearly polarized
cavity-mode Stokes photon (shown in Fig. 1 by red thin
lines) on the transitions |F ′ = 2,mF ′ = mF + 1〉1 → |F =
1,mF + 1〉1, thus transferring the atom into the next Zee-
man sublevel with mF + 1. The one-photon blue detuning
of the laser field, which is the same for both atoms �1 =
�2 = �, is taken very small compared to the upper level
hyperfine splitting, but at the same time it is much larger
than the cavity decay rate k, the natural spontaneous decay
rate γsp of the atom, and the Rabi and Larmor frequencies:

|�| � k, γsp,�1,�
(F,F ′ )
B , where �

(F,F ′ )
B = g

(F,F ′ )
L μBB/h̄ is

the Zeeman splitting of the ground and excited states
in the magnetic field B, with g

(F,F ′ )
L the Landé factor and μB

the Bohr magneton. This condition allows one to suppress
the off-resonant excitation to nearby hyperfine state F ′ = 1
and, hence, to neglect the spontaneous losses from upper
levels and dephasing effects induced by other excited states.
In this far off-resonant case and for slowly varying laser fields:
d�1/dt � ��1, one can adiabatically eliminate the upper
atomic states that leads to the effective Raman atom-photon
coupling

G1 = g�1/�, (1)

which can be made much weaker than the cavity field decay
G1 � k. This ensures that the generated photons leave the
cavity without being reabsorbed by the atom, resulting in the
deterministic emission of photons. For simplicity, we assume
here that the dipole matrix element μF,F ′ of the F ↔ F ′
transition does not depend on the magnetic quantum numbers.
This actual dependence can be easily taken into account in the
numerical simulations [32].

The external magnetic field taken as the quantization axis
is applied orthogonal to the cavity axis and parallel to the laser
pulse propagation. As we mentioned in the Introduction, it is
chosen strong enough to preclude the generation of σ+ and σ−

polarized cavity photons due to the off-resonance interaction
with the atom, which is the case if �

(F )
B � k. This clearly

increases the probability of photon production with linear
polarization unlike the model considered in Ref. [20], where
the generation of cavity photons with undesired polarization
cannot be suppressed.

We describe the dynamics of the system in the Heisenberg
picture. The pumping laser field is given by

E1(t ) = E1f
1/2
1 (t ) exp(−iωt ) + H.c., (2)

where f1(t ) features its temporal profile of duration T1 and
E1 is the peak amplitude of the field with one-photon detuning
� = ω − ωFF ′ and the peak Rabi frequency �1 = μF,F ′E1/h̄.

After eliminating the upper states by virtue of large one-
photon detuning, the effective interaction Hamiltonian in the
RWA takes the form

H = h̄

[
F∑

mF =−F

(
g2

�
a
†
1a1 + f1(t )

�2
1

�

)
σmF ,mF

+ G1f
1/2
1 (t )

F−1∑
mF =−F

(a†
1(t )σmF +1,mF

(t ) + H.c.)

]
, (3)

where σi,j (t ) = |i〉11〈j | and a1(t ), a
†
1(t ) are correspondingly

the atomic and photonic mode operators in the first cavity.
The first and second terms in Eq. (3) describe the Stark shifts
of atomic ground states induced by the cavity field and laser
pulse �1, respectively. Under the adopted approximation of
equal dipole moments, the Stark shifts induced by the laser
field have no influence on the photon generation, since their
difference between two neighboring atomic ground states is
zero for all transitions mF → mF + 1. On the other hand,
the Stark shift g2/� can be included into the cavity mode
frequency: ωc → ωc − g2/�. Below we use these simplifi-
cations to get the analytic solution revealing the main features
of the system considered. In real atoms, where the dependence
of g and �1 on Clebsch-Gordan coefficients leads to nonvan-
ishing Stark-shift difference, the latter can be made negligibly
small as compared to the cavity decay rate k by appropriately
choosing the system parameters [32].

B. Dynamics of atomic populations

The production of PNSS from the first cavity starts by
preparing the single atom in a superposition of the states
|F = 1,mF = −1〉1 and |F = 1,mF = 0〉1, denoted below
as | − 1〉1 and |0〉1, respectively, with normalized population
amplitudes c−1,0 : |c−1|2 + |c0|2 = 1, while the cavity mode
is in the vacuum state. Then, the initial state of the sending
system can be represented as

|�1,in〉 = (c−1| − 1〉1 + c0|0〉1)|0〉1c, (4)

where |0〉c refers to the state of cavity with zero photon
number.

The applied �1 laser field transfers the atom to the final
state |F = 1,mF = +1〉1 = |1〉1 in two steps (if c−1 	= 0),
each time generating via the Raman process a linearly polar-
ized Stokes photon (Fig. 1, left).
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The equations for the Zeeman sublevel populations
〈σmF

(t )〉 ≡ 〈σmF ,mF
(t )〉 and ground-state coherence

〈σmF ,mF +i (t )〉 = 〈σ ∗
mF +i,mF

(t )〉, i 	= 0, were derived in our
previous papers [31,32] from the master equation for the
whole density matrix of the system. The Hamiltonian (3) and
the input-output relation a1,out(t ) − a1,in(t ) = √

ka1(t ) [33]
for the photonic operators were used in the adiabatic limit
kT1 � 1, where the cavity mode operator a1(t ) is expressed
through the atomic operators as

a1(t ) = −2iG1

k
f

1/2
1 (t )

F−1∑
mF =−F

σmF +1,mF
(t ) − 2√

k
a1,in(t ).

(5)

In the sending node, the input field a1,in(t ) is in the vacuum
state 〈a†

1,in(t )a1,in(t )〉 = 0 and will be ignored in further cal-
culations.

In general, the atomic equations contain all relaxation
processes including the optical pumping from |F,mF 〉1 into
states |F,mF + i〉1, i = 1, 2, and the losses of atomic pop-
ulations due to the decay from the upper atomic states into
the states outside of the system. However, the deterministic
production of cavity photons requires that the total spon-
taneous loss is negligible, which is achieved, if α1f1(t ) �
�1(t ), where α1 = 4G2

1/k is the cavity photon generation rate

and �1(t ) = �2
1

�2 f1(t )γsp is the total spontaneous decay rate
induced by the �1 pump pulse. This defines the signal-to-
noise ratio

Rsn = α1f1(t )

�1(t )
= 4g2

kγsp
� 1. (6)

This condition is clearly fulfilled in high-finesse optical cavity
with g > k, γsp.

With this approximation the atomic equations are greatly
simplified and for F = 1 take the form

d〈σmF
(t )〉

dt

= α1f1(t )[〈σmF −1(t )〉θ (mF ) − 〈σmF
(t )〉θ (−mF )], (7a)

d〈σmF ,m′
F

(t )〉
dt

= −1

2
α1f1(t )(〈σmF ,m′

F
(t )〉[θ (−mF ) + θ (−m′

F )]

− 2〈σmF −1,m′
F −1(t )〉θ (mF )θ (m′

F )), (7b)

where θ (x) is the Heavyside step function with |mF ,m′
F | � F

and m′
F 	= mF . One can easily check from Eq. (7a) that the

total population of atomic ground state is conserved:

F∑
mF =−F

〈σmF
(t )〉 = 1. (8)

Equations (7) are solved subjected to the initial
conditions 〈σi (−∞)〉 = |ci |2, i = −1, 0 and 〈σ−1,0(−∞)〉 =
c∗
−1c0, 〈σ0,1(−∞)〉 = 〈σ−1,1(−∞)〉 = 0, which gives

〈σ−1(t )〉 = |c−1|2e−ϑ (t ), (9a)

〈σ0(t )〉 = [|c0|2 + |c−1|2ϑ (t )]e−ϑ (t ), (9b)
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FIG. 2. Populations of the ground Zeeman states |mF = −1〉1

(red), |mF = 0〉1 (blue), and |mF = +1〉1 (black). The Gaussian
laser pulse of FWHM duration 0.5 μs is shown by the dotted line.
The atom is initially prepared in the states |F = 1, mF = −1〉1 and
|F = 1, mF = 0〉1 with populations |c−1|2 = 0.7 and |c0|2 = 0.3,
respectively. See the text for other parameters.

〈σ1(t )〉 = 1 − [1 + |c−1|2ϑ (t )]e−ϑ (t ), (9c)

〈σ−1,0(t )〉 = c∗
−1c0e

−ϑ (t ), (9d)

〈σ0,1(t )〉 = 2c∗
−1c0(e−ϑ (t )/2 − e−ϑ (t ) ), (9e)

〈σ−1,1(t )〉 ≡ 0, (9f)

where the new variable

ϑ (t ) = α1

∫ t

−∞
f1(t ′)dt ′ (10)

is proportional to the pump energy confined in the (−∞, t]
area of the pulse.

For a Gaussian laser pulse of profile f1(t ) =
e−(t/T1 )2

with duration T1 = 0.3 μs, the atomic level
populations are shown in Fig. 2, where we have
used the realistic parameters (g, k, γsp,�1,�

F ′
B ,�) =

2π × (12, 3, 5.87, 10, 15, 100) MHz [34–36], for which the
signal-to-noise ratio in Eq. (6) is Rsn ∼ 30, thus justifying
the approximation on neglecting relaxation processes. A
magnetic field of 15 G well resolves the Raman resonances,
thus precluding the generation of circularly polarized cavity
photons. There is a significant increase in the population
of the state |F = 1,mF = 0〉1 in the vicinity of kt ∼ −6,
which results from the population motion from the state
|F = 1,mF = −1〉1, while emitting the first photon. Yet,
both states are emptied almost simultaneously, which occurs
already at the leading edge of the laser pulse. As shown in
the next section, this ensures simultaneous absorption of two
photons, as a result the receiving atom settles in the desired
superposition state.

After emission of photons, the sending atom passes to
the final state |F = 1,mF = +1〉1 (black line in Fig. 2),
where it continues to interact with the laser field on the
transition 5S1/2(F = 1,mF = +1) → 5P3/2(F ′ = 2,mF ′ =
+2), neither emitting a cavity photon nor decaying into the
outside state 5S1/2(F = 2) owing to the small value of �1.
Therefore, if the laser intensity rapidly tends to zero, the atom
is left in the state |F = 1,mF = +1〉1 and now can act as a
receiving atom.
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C. Production of the output field state

Here we analyze the output state of quantum field using
Eqs. (9). The basis states of the sending system and outgoing
photons are the atomic ground Zeeman states |mF 〉, vacuum
state of the cavity mode |0〉1c, and photonic states |j 〉 with free
propagating j photons of frequency ωc, which are coupled to
a single-mode optical fiber. The state |j = 2〉 is not a j -Fock
state, because two single-photon wave packets are in different
temporal modes with wave functions �i (t ), i = 1, 2,, which
are found in Eqs. (19). The total state |�1(t )〉 can be then
expanded in this basis as an entangled state between the atom
and the outgoing light in the form

|�1(t )〉 =
⎛
⎝ 1∑

mF =−1

mF +1∑
j=0

βmF ,j (t )|mF 〉1|j 〉
⎞
⎠|0〉1c, (11)

where the coefficients βmF ,j (t ) are normalized complex-
valued amplitudes of the probabilities that at time t the atom is
in the state |mF 〉1 and the number of photons in the resulting
field is j . At t → −∞ the state |�1(t )〉 coincides with the ini-
tial state |�1,in〉 defined in Eq. (4). From this comparison, we
find the initial values of β−1,0(−∞) = c−1 and β0,0(−∞) =
c0, while the remaining coefficients are initially zero.

Our goal is to show that long after the interaction with the
atom the state |�1(t )〉 is reduced to the final form

|�1,fin〉 = |�1(∞)〉 = | + 1〉1|0〉1c ⊗ |�PNSS(t )〉, (12)

where the atom occupies the state |mF = +1〉, while the
output state of quantum field is the PNSS of two- and one-
photon states

|�PNSS(t )〉 = c−1|1�1 , 1�2〉 + c0|1�1〉. (13)

The coefficients βmF ,j (t ) are connected to the populations of
atomic states by the relation

〈σmF
(t )〉 = Tr[ρ1(t )σmF

] =
mF +1∑
j=0

|βmF ,j (t )|2, (14)

where ρ1(t ) = |�1(t )〉〈�1(t )|. Using Eqs. (9), βmF ,j (t ) are
found to be

βmF =−1,j=0(t ) = c−1e
−ϑ (t )/2, (15a)

βmF =0,j=0(t ) = c0e
−ϑ (t )/2, (15b)

βmF =0,j=1(t ) = c−1[ϑ (t )e−ϑ (t )]1/2, (15c)

βmF =1,j=0(t ) = 0, (15d)

βmF =1,j=1(t ) = c0[1 − e−ϑ (t )]1/2, (15e)

βmF =1,j=2(t ) = c−1{1 − [1 + ϑ (t )]e−ϑ (t )}1/2, (15f)

showing that at large times, when ϑ (t )e−ϑ (t ) � 1, which
is achieved at kt ∼ 3, only two amplitudes stay on:
βmF =1,j=1(t → ∞) = c0 and βmF =1,j=2(t → ∞) = c−1.
Consequently, the state |�1(t )〉 is asymptotically transformed
into |�1,fin〉 indicating that the quantum information encoded
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FIG. 3. Dynamics of the photon-number (indicated on the
curves) distribution in the generated light for the same parameters
as in Fig. 2. The profile of the laser pulse is shown by the dotted line.

initially in the atomic superposition state |�1,in〉, Eq. (4), is
completely converted into PNSS given by Eq. (13). Here it
was assumed that no dephasing of photonic states occurs in
the cavity mirror and communication channel.

Similarly, the photon distributions Pj (t ) in the resulting
field, which is the population of the photonic state |j 〉, is
defined as the probability that the output field contains j

photons, no matter what state the atom is in, and, thereby, is
given by the sum of |βmF ,j (t )|2 over all possible mF ,

Pj (t ) =
1∑

mF =−1

|βmF ,j (t )|2, j = 0, 1, 2. (16)

Pj (t ) are calculated by means of Eqs. (15) and are shown in
Fig. 3 for the same parameters as in Fig. 2. It is apparent that,
as time increases, the states with j = 1, 2 remain populated
as |c0|2 and |c−1|2, respectively, indicating the deterministic
generation of PNSS.

Now we find the flux of produced photons, which is needed
to calculate the wave functions of emitted photons. In units
of photons per unit time, the flux of the outgoing photons is
defined by

dnout

dt
(t ) = 〈a†

1,out(t )a1,out(t )〉, (17)

which determines the shape of emitted intensity. Here nout(t )
is the mean photon number in the time interval (−∞, t] of the
output field a1,out(t ) from the first cavity, which is obtained
from input-output relation and Eq. (5). Then, using Eq. (8),
we have

dnout

dt
(t ) = α1f1(t )

0∑
mF =−1

〈σmF
(t )〉 = α1f1(t )[1 − 〈σ1(t )〉].

(18)

The total flux is obviously the sum of the fluxes or intensities
of the first and second photon pulses, which are readily
separated in Eq. (18) by substituting 〈σ1(t )〉 from Eq. (9c) that
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III
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FIG. 4. Partial fluxes of the first and the second photons
dnj/dt, j = I, II (indicated on the curves) for the same conditions
as in Fig. 2. The total flux is shown by the green dashed line. The
laser field profile (red dotted line) is decreased by factor of 2.

yields

dnI

dt
(t ) = |�1(t )|2 = α1f1(t )e−ϑ (t ), (19a)

dnII

dt
(t ) = |c−1|2|�2(t )|2

= |c−1|2α1f1(t )ϑ (t )e−ϑ (t ), (19b)

where the wave functions of the photons �1,2(t ) are consid-
ered to be real taking into account that they have the same
phase as the control field �1, which can be taken as zero
without loss of generality. The partial fluxes corresponding
to the preceding dynamics shown in Fig. 3 are displayed in
Fig. 4. The first photon intensity does not evidently depend on
the population distribution between atomic states, while the
second photon is emitted only if c−1 	= 0. In both cases, the
photon temporal profile is easily controlled being proportional
to the �1 laser pulse shape.

The mean photon number is obtained by integrating
Eq. (18) yielding to

nout(t ) = (1 + |c−1|2)(1 − e−ϑ (t ) ) − |c−1|2ϑ (t )e−ϑ (t ), (20)

which coincides with ntotal = ∑2
j=1 jPj (t ), as expected. This

equation shows that for small ϑ (t ), the generation of one
photon dominates, where nout(t ) = ϑ (t ) increases proportion-
ally to the pump energy confined in that time interval, while
two-photon emission is manifested at larger times, as it grows
quadratically in ϑ (t ) as |c−1|2ϑ2(t )/2.

Of particular importance is the question of joint generation
of photons in the state |1�1 , 1�2〉, which can be revealed by
two-photon correlation function at zero time delay

g(2)(t ) = 〈a†2
out(t )a2

out(t )〉
〈a†

out(t )aout(t )〉2
. (21)

Here 〈a†
out(t )aout(t )〉2 gives the probability of emitting two

single photons independently, while 〈a†2
out(t )a2

out(t )〉 represents
the probability of the generation of paired photons. In Fig. 5
the photon correlation displays a small antibunching in the
main region −10 � kt � −3 of the photon generation, in-
dicating the predominance of the generation of uncorrelated
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FIG. 5. Second-order correlation function of generated photons
at zero time delay for the same parameters as in Fig. 2.

photons compared to joint generation of photons. More-
over, the requirement that the intensity of the emitted light
calculated in terms of PNSS coincides with Eq. (19):

〈�PNSS(t )|a†
out(t )aout(t )|�PNSS(t )〉

= |�1(t )|2 + |c−1|2|�2(t )|2 (22)

is satisfied, if the states |1�1〉 and |1�2〉 are orthogonal:
〈1�1 |1�2〉 = 0. In this case, the operator a1,out(t ) can be rep-
resented as [37]

a1,out(t ) =
∑

i

�i (t )b̂i , (23)

where the independent annihilation operators b̂i destroy the
single-photon states in the usual way by operation b̂i |1�i

〉 =
|0�i

〉 and have the standard boson commutation relations
[b̂i , b̂

†
j ] = δij .

III. PNSS STORAGE IN THE RECEIVING NODE

In the receiving node, the atom with the same level config-
uration is initially prepared in the state |F = 1,mF = 1〉2 and
the cavity field is in the vacuum. Assuming that the losses in
the communication channel are effectively switched off, the
PNSS generated from the sending cavity constitutes the input
field for the receiving one, thus the initial state of receiving
system is given by

|�2,in〉 = |+1〉2|0〉2c(c−1|1�1 , 1�2〉 + c0|1�1〉). (24)

The atom interacts with the σ+ polarized laser field of
frequency ω and the peak Rabi frequency �2, which can
be different from �1. The laser field is switched on shortly
before the arrival of the photons, in order to avoid the atomic
decay from the upper level |F ′ = 2,m′

F = +2〉2 into the states
outside of the system during the PNSS storage. Similarly, the
same magnetic field as in the sending system is applied to
provide two-photon resonant Raman transition with linearly
polarized cavity photons.

The complete conversion of PNSS into the superposition of
ground Zeeman states of the receiving atom implies that the
output quantum field from the second cavity is identically zero
at all times. This amounts to formally setting a2,out(t ) = 0 in
the input-output relation a2,out(t ) − a2,in(t ) = √

ka2(t ) for the
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second cavity. Then, using a2,in(t ) = a1,out(t − τ ), we have

a2(t ) = − 1√
k
a1,out(t − τ ), (25)

where τ represents the time for the photons to travel from
one cavity to the other. We can eliminate τ according to
the formalism of cascaded quantum systems [38,39], which
include also our scheme, thereby τ can be omitted in what
follows.

A. Evidence of PNSS storage from conservation laws

Here we derive the conservation law for the numbers
of photons and atomic excitations. The effective interaction
Hamiltonian for the receiving system has the form similar to
Eq. (3):

H = h̄G2f
1/2
2 (t )(a†

2(t )(1,0 + 0,−1)

+ (0,1 + −1,0)a2(t )), (26)

where i,j = |mF = i〉22〈mF = j | are the operators of the
receiving atom, G2 = g�2/�, and f2(t ) is the second laser
intensity shape. In the absence of relaxations, the equations
for the photon-number a

†
2a2 and atomic population operators

i,i (t ) ≡ i (t ), i = 0,−1, in the second cavity are obtained in
the form

d(a†
2a2)

dt
(t ) = −ikG2[a†

2(1,0 + 0,−1) − (0,1 + −1,0)a2]

+ ka
†
2a2, (27a)

d0

dt
(t ) = iG2(a†

2(1,0 − 0,−1) + (−1,0 − 0,1)a2),

(27b)

d−1

dt
(t ) = iG2(a†

20,−1 − −1,0a2). (27c)

By combining and integrating these equations and using
Eq. (25), we derive the conservation law

N0(t ) + 2N−1(t ) = nout − 1

k
F (t ), (28)

where N0(−1) is the population of ground state
Zeeman sublevel mF = 0(−1) of the receiving atom, F (t ) =
〈a†

1,out(t )a1,out(t )〉 is the flux of outgoing photons from the

sending cavity, and nout = ∫ t

−∞ F (t ′)dt ′ is defined in Eq. (17).
From Eq. (28) we recognize that N0(−∞) = N−1(−∞) = 0,
i.e., the receiving atom is initially in the state |F = 1,

mF = 1〉2. For large times, taking into account that
N1(∞) = 0 and the photon number tends to nout(∞) =
1 + |c−1|2 following from Eq. (20), while F (∞) → 0,
we find N−1(∞) = |c−1|2 and N0(∞) = |c0|2. This
demonstrates that the sending and receiving atoms
ultimately exchange initial states, thus implementing the
complete transfer of the quantum information between
the two network nodes. The Zeeman coherence for the
receiving atom is next shown by analytical calculations
of the population amplitudes with simultaneous determination
of the second laser pulse shape.

B. Coherent absorption of photons.
Tuning of the laser pulse shape

We expand the state of the receiving system as

|�2(t )〉 =
⎛
⎝ 1∑

mF =−1

mF +1∑
j=0

γmF ,j (t )|mF 〉2|j 〉
⎞
⎠, (29)

where, similar to βmF ,j (t ) in Eq. (11), γmF ,j (t ) are normalized
amplitudes of the probabilities that at time t the receiving
atom is in the state |mF 〉2 and the number of incoming photons
is j . The level populations of the second atom are calculated
by the formula

〈mF
(t )〉 =

mF +1∑
j=0

|γmF ,j (t )|2. (30)

We find the coefficients γmF ,j (t ) from the Schrödinger equa-
tion for |�2(t )〉 with the use of Hamiltonian (26), where
the operator a2(t ) is replaced by a1,out(t ) from Eq. (25). It
should be taken into account that the photonic state in the
γmF =0,j=1 term is the superposition of two one-photon states:
|j = 1〉 = 1√

2
(|1�1 , 0�2〉 + |0�1 , 1�2〉). Then, by introducing

new variables

η(t ) = 2
|G2|√

k

∫ t

−∞
f

1/2
2 (τ )�1(τ )dτ, (31a)

ζ (t ) = |G2|√
k

∫ t

−∞
f

1/2
2 (τ )(�1(τ ) + �2(τ ))dτ, (31b)

and using Eq. (23), the equations for γmF ,j (t ) are derived in a
simple form

dγ0,0(t )

dη
= i

2
γ1,1(t )e−iϕ2 , (32a)

dγ1,1(t )

dη
= i

2
γ0,0(t )eiϕ2 , (32b)

and

dγ−1,0(t )

dζ
= i√

2
γ0,1(t )e−iϕ2 , (33a)

dγ0,1(t )

dζ
= i√

2
(γ1,2(t )e−iϕ2 + γ−1,0(t )eiϕ2 ),

dγ1,2(t )

dζ
= i√

2
γ0,1(t )eiϕ2 . (33b)

where ϕ2 is the phase of �2 field. These equations describe
the coherent excitation of two-level and three-level systems
by “one- and two-photon” absorption, respectively, where
the role of the “one-photon transition” in the first case is
played by the first Raman transition |F = 1,mF = 1〉2 →
|F = 1,mF = 0〉2 in Fig. 1 (right) with the effective pulse
area η(t ). In the second case, the “two-photon excitation” is
accomplished by the double Raman transition |F = 1,mF =
1〉2 → |F = 1,mF = 0〉2 → |F = 1,mF = −1〉2 with total
pulse area ζ (t ).

Solving Eqs. (32) and (33) subject to the initial conditions
γ1,2(−∞) = c−1 and γ1,1(−∞) = c0 followed from Eq. (24),
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FIG. 6. Evolution of the populations of ground Zeeman states
|mF = −1〉2, |mF = 0〉2, and |mF = +1〉2 of the second atom for the
�2 = �1 Gaussian laser pulse of intensity profile f2(t ) = e−(t/T2 )2

with duration T2 = 1 μs shown by the dotted blue line. For the
sending system, the same parameters as in Fig. 2 are used.

we get for ϕ2 = π/2,

γ0,0(t ) = c0 sin[η(t )/2], γ1,1(t ) = c0 cos[η(t )/2], (34)

and

γ1,2(t ) = 1

2
c−1[1 + cos ζ (t )], (35a)

γ0,1(t ) = 1√
2
c−1 sin ζ (t ), (35b)

γ−1,0(t ) = 1

2
c−1[1 − cos ζ (t )]. (35c)

It is evident that the complete mapping of photons onto the
atomic ground states can be achieved by means of effective
two-photon (Raman) π pulses, which imposes the following
conditions on the pulse areas:

η(∞) = ζ (∞) = π, (36)

leading to γ0,0(∞) = c0 and γ−1,0(∞) = c−1 and zero for the
remaining coefficients. As a result, the second atom is settled
in the final state

|�2,fin〉 = c−1| − 1〉2 + c0|0〉2, (37)

which coincides in form with the initial state of the sending
atom in Eq. (4). It is obvious that the fidelity of the state
|�2,fin〉 with |�1,in〉, which have commuting density matrices,
is equal to unity. The populations of ground Zeeman sublevels
of the second atom found from Eq. (30) are displayed in Fig. 6.

The strength and temporal shape of �2(t ) pulse is fully
determined by the conditions (36). For the used parameters,
the latter are well fitted by Gaussian pulse with �2 = �1

and duration T2 ∼ 1 μs. The time evolution of η(t ) and ζ (t )
is shown in Fig. 7. It should be noted that for the transfer
of atomic quantum state, our scheme does not require time-
symmetric photonic wave packets, in contrast to the scheme
proposed in Ref. [2]. The coherent absorption of arbitrarily
shaped traveling photons in the second cavity is governed by
the area of two-photon Raman pulses, where the time depen-
dence of the second control field is appropriately adapted.

(t)
,

(t)

FIG. 7. Variables η(t ) (red) and ζ (t ) (blue) as functions of time
for the same parameters as in Fig. 6. The profiles of the laser fields in
the first and second cavities are shown by the dashed red and dotted
blue lines, respectively.

C. Quantum state transfer via photonic qutrit

The most important feature of multiphoton states is their
ability to carry more information than a photonic qubit. One
way to increase the information content of PNSS is to include
into the superposition the states with more than two photons,
which will allow us to send information with increased ca-
pacity parameters. However, the current technologies do not
support these statements, since along with the increase of
the photon number, the losses in the communication channel
increase exponentially. In contrary to this, our protocol is
capable of producing a photonic qutrit without increasing the
number of photons we use and, thus, preserving the robustness
and efficiency of the PNSS qubit discussed in the next section.
To this end, the atom is initially prepared in the superposition
of the Zeeman sublevels mF = −1, 0,+1 in the sending node.
Obviously, after interacting of the atom with the �1(t ) field,
the generated photon state leaving the first cavity is analogous
to the state (13) and has the form

|�PNSS(t )〉= c−1(t )|1�1 , 1�2〉+ c0(t )|1�1〉+ c+1(t )|0〉, (38)

where the coefficients c−1, c0, c+1 are the population ampli-
tudes of the Zeeman sublevels mF = −1, 0,+1, respectively,
and all of them differ from 0 at the initial time moment
t = −∞. Thus, the atom qutrit state is completely mapped
into the photonic qutrit state. Using the same method, the state
(38) is transferred to the receiving atom, which is initially
prepared at the Zeeman sublevel mF = +1. Similar to the
case of the qubit transfer, the second atom coherently absorbs
the photons and passes into the superposition state of three
ground-state Zeeman sublevels, which coincides in form with
the initial state of the first atom.

IV. DISCUSSIONS

At short communication distances, where the photon losses
are negligible, the presented protocol is fully deterministic,
relied on the high signal-to-noise ratio Eq. (6), and enhanced
Raman emission of linearly polarized cavity photons in the
sending node and their controlled coherent absorption in
the receiving system. An important advantage of the present
scheme is the capability of multiphoton superposition states to
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transmit an incomparably greater information than is possible
with a single-photon transfer. Imperfections of the scheme
are manifested at large transmission distances caused by pho-
ton losses. Presently, the photon losses are comprehensively
analyzed in [40] for two protocols of deterministic QST
based on wave packet shaping [2] and adiabatic passage [19].
Reminder that in the first case, the state transfer is realized
by producing a time-symmetric photon wave packet inside
a fiber and in the second one the QST is accomplished by
performing the adiabatic passage with classical driving fields
in a counterintuitive order. This analysis has shown that the
state transfer by adiabatic passage can mitigate the effects
of cavity losses, while the fiber transmission losses cannot
be overcome using either of the two methods. Our approach
does not fit into this paradigm, as we do not use the time-
symmetric photon wave packets, and the control field in the
receiving node is delayed with respect to the control field in
the sending node. Nevertheless, our findings are analogous to
those presented in [40], demonstrating that the cavity losses
can be strongly suppressed by making the signal-to-noise ratio
sufficiently large, as shown in Sec. II B, but due to fiber losses
the QST is strictly limited by Eq. (39) given below.

To show this we evaluate the efficiency of the QST by
introducing the success probability as

Pj,trans = pj,emηj,transpj,abs, (39)

with j = 1, 2 defined as the product of quantum-mechanical
probabilities pj,em and pj,abs of j photon emission in the
sending and their absorption in the receiving nodes, respec-
tively, by the transmission efficiency ηj,trans = exp(− jL0

Latt
),

where L0 is the distance between the nodes and Latt is the
communication channel attenuation length [41]. It is apparent
that the two-photon transmission efficiency is quadratically
smaller compared to the one-photon case: η2,t = η2

1,t . Today,
the commercial fibers feature an attenuation of 2 dB/km at
800 nm [41], which corresponds to Latt = 2.2 km. This means
that in the present scheme with pj,em = pj,abs ∼ 1 the success
probability of PNSS transfer between the nodes connected by
an optical fiber link of 60 m length, as in the experiment [20],
is unity. At larger distances L0 ∼ Latt, the efficiency of two-
photon transfer decreases in our scheme by approximately an
order of magnitude. However, it remains comparable with the
efficiency of an ideal transfer of a single-photon polarization
qubit in the scheme of Ref. [20], if one takes into account that
in that scheme the probability p1,em of this state generation
in the sending node is limited by the value of 25%. Never-
theless, as at these distances the fidelity of the state transfer
process becomes dependent on its efficiency, a possible way
to overcome this difficulty is to filter out successful events by
a heralding signal. While many protocols have been offered
for the creation of heralded entanglement between remote
atoms (see, for example, [41]), so far, to our best knowledge,
only one QST protocol has been proposed and realized for a
heralded, high-fidelity mapping of the polarization state of a
single photon onto an atomic qubit using Zeeman manifolds
of two different atomic states [7–9]. It is worth noting that
the extended version of this scheme has been used in [42] to
entangle partner photons absorbed by ions in remote traps. At
the same time, such an approach is not yet available in the
case of multiphoton absorption, therefore the implementation

of heralding QST remains a challenging task for our protocol.
However, as suggested in [20], the successful storage of
incoming photons in the second cavity can be verified by
analyzing the Zeeman state populations of the second atom
using the cavity-assisted fluorescence detection [4,43,44].

The superposition state architectures require that the phase
acquired by photons in long fiber links must remain constant
for times larger than the travel time. In this sense, the phase
stabilization is a common problem and requires an identical
solution in all protocols. In our scheme, two photons in PNSS
suffer from the same losses and the same polarization and
velocity fluctuations, as they are efficiently outcoupled into
a single-mode optical fiber having almost the same tempo-
ral profiles. Therefore the two-photon state undergoes only
a global phase change, which nevertheless can deteriorate
the PNSS fidelity as this change is sensitive to path length
fluctuations comparable or larger than the photon wavelength.
The phase noise in the long fiber (several tens of km) over
the scale of photon travel time has been measured in [45] by
means of Mach-Zehnder interferometry. The results show that
the phase over 36 km long interferometer remains stable at
a level of 0.1 rad for the duration of around 100 μs. Note
that the phase noise of 0.1 rad corresponds to a fiber length
fluctuation of 25 nm for a wavelength of 1550 nm and of
12 nm for λ ∼ 800 nm, which is acceptable level for quantum
communication purposes in our protocol, especially as the
photon losses start at shorter distances.

We conclude our discussion by returning to the well-
studied question that the atomic motion in the cavity can
be significantly affected by photon recoil from emission and
absorption of even a single photon, which can no longer be
ignored in the case of multiphoton processes. To remove this
effect, for example in a photon emission, the atomic recoil
Lrec has to be made negligible with respect to the photon
wavelength λ, where Lrec is calculated as the distance the
atom travels during the time interval Tphot between two time
moments of the first and second photons emission: Lrec =
h̄kTphot/m, where m is the atomic mass, k = 2π/λ. Since Tphot

is reciprocal to the generation rate of photons in the cavity,
T −1

phot ∼ G1 = g�1/�, then from Lrec � λ one finds ωrec �
G1, where ωrec = h̄k2/2m is the recoil frequency associated
with the kinetic energy transfer to the atom in a single-photon
scattering event. Usually, to localize the atom at the center
of the cavity mode, high-intensity laser beams along all three
directions are used thus reducing the recoil frequency to about
4 kHz [46]. We assume that this is the case in our model,
where G1 � 1.5 MHz, so that the cavity emission does not
change the motional state of the atom. This is true for the
photon absorption in the second cavity as well.

These observations show that to suppress the environmen-
tal effects no additional efforts are needed in our scheme,
while its advantages are obvious.

V. CONCLUSION

In conclusion, we have proposed and analyzed a robust and
efficient scheme for direct, deterministic transfer of quantum
states between two remote cavity-trapped atoms by means of
traveling photon-number superposition states. The quantum
information encoded in ground Zeeman sublevels of the first
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atom is released in the photonic qubit or qutrit, depending on
the number of superposed Zeeman states, via cavity-assisted
Raman scattering and upon reaching the second atom is
stored in the ground Zeeman states of the latter via coherent
absorption of photons. We have demonstrated that our scheme
allows reliable overall transfer of quantum information at the
distances, where the photon losses are negligible, without us-
ing a quantum error correction. At the same time, our scheme
displays no less reliable protection against the propagation
losses at large distances as compared to previous protocols
with a single-photon transfer.

These results promise also a successful distribution of
entanglement between distant nodes in quantum networks.
This study is currently under way.
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