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A recent experiment by Minev et al., arXiv:1803.00545 demonstrated that in a dissipative (artificial) three-
level atom with strongly intermittent dynamics it is possible to “catch and reverse” a quantum jump “midflight”:
by the conditional application of a unitary perturbation after a fixed time with no jumps, the system was prevented
from getting shelved in the dark state, thus removing the intermittency from the dynamics. Here we offer
an interpretation of this phenomenon in terms of the dynamical large deviation formalism for open quantum
dynamics. In this approach, intermittency is seen as the first-order coexistence of active and inactive dynamical
phases (or more precisely, dynamical regimes in this finite level system). Dark periods are thus like time bubbles
of the inactive regime in the active one. Here we consider a controlled dynamics via the (single—as in the
experiment—or multiple) application of a unitary control pulse during no-jump periods. By considering the
large deviation statistics of the emissions, we show that appropriate choice of the control allows one to stabilize
a desired dynamical regime and remove the intermittency. In the thermodynamic analogy, the effect of the control
is to prick bubbles, thus preventing the fluctuations that manifest phase coexistence. We discuss similar controlled
dynamics in broader settings.
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I. INTRODUCTION

Open quantum systems evolve stochastically due to the
action of the environment with which they interact. This
stochastic evolution is the result of conditioning on events ob-
served in the environment, such as the detection of photons
emitted by a driven atom. A time record of such emissions is
a quantum measurement trajectory corresponding to the time
sequence of quantum jumps in the state of the system. That
is, to the observable (and classical) quantum measurement
trajectory corresponds an unobservable quantum trajectory
(also called a quantum filter) of the state of the system.
In the simplest case of weak coupling to a large bath, the
quantum trajectories of such dissipative dynamics are those
of a quantum Markov process. For reviews see [1–4].

A recent experiment by Minev et al. [5] has provided
a beautiful practical demonstration of quantum trajectories.
It studied a superconducting artificial atom designed in a
three-level V geometry, like the one sketched in Fig. 1(a).
Conditions were such that emission dynamics was intermittent
due to the system occasionally getting “shelved” in the none-
mitting state; cf. Fig. 1(b). A feedback and control mechanism
was then devised to prevent excursions into the dark subspace:
a longer-than-typical period with no emissions—after the last
observed one—was taken as an “advanced warning” that
the system was in the process of moving away from the
bright subspace and into the dark one. Conditioned on this
observation, a unitary perturbation was then applied designed
to rotate the state away from the dark level. The effect was to
remove the intermittency in the dynamics by preventing the
system from leaving the bright subspace, a procedure called

in Ref. [5] “catching and reversing” a quantum jump “mid-
flight.” The success of the controlled dynamics required the
ability to detect emissions with very high efficiency in order
to get an accurate estimation of the state of the system, some-
thing that was possible in the solid-state setting of Ref. [5] in
contrast to what is achievable in actual atomic systems. The
experiment of Ref. [5]—together with other recent ones such
as [6–9] illustrating the experimental accessibility to quantum
trajectory information—is a remarkable demonstration of the
applicability of quantum trajectory concepts [10–20] in open
quantum systems.

In this note we consider the problem above from the point
of view of thermodynamics of quantum trajectories [21]. This
is a statistical mechanics approach to the dynamics of open
quantum systems that aims to treat ensembles of trajectories
just like standard equilibrium statistical mechanics treats en-
sembles of configurations. It thus generalizes concepts such as
order parameters, free energies, and thermodynamic phases
to the ensemble of trajectories generated by a dynamics.
This method can be formalized by applying to dynamics the
techniques of large deviations (LDs) [22–25] (i.e., the same
mathematical tools used to define the standard equilibrium
ensemble method of statistical mechanics). This approach
was originally devised for classical systems and has been
successfully employed in the study of a variety of dynamical
problems, uncovering in many cases the existence of rich
dynamical phase behavior, as for example in glasses [26–29],
exclusion processes and driven systems [30–35], signaling
networks [36,37], and protein folding [38,39]. For a basic re-
view of the classical dynamical LD approach and its extension
to Markovian open quantum systems, see [40].
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FIG. 1. (a) Dissipative three-level model. Levels 0 and 1 span the bright subspace, with level 2 the shelving state. (In Ref. [5] states 0,1,2
are called G, B, D, respectively.) (b) Typical emission trajectory and sketch of the control scheme. (c) Survival probabilities S(t ) for the
original dynamics (black dotted), for the controlled dynamics with U�t and �t = 3 (red full), and for the controlled dynamics with U2 and
�t = 3/2 (blue dashed); time in units of �−1

01 . Inset: probabilities of occupation p0,1,2 of the states |0, 1, 2〉 as a function of time after the last
renewal to |0〉. The dotted and dashed lines indicate the values of �t for the results in Fig. 2. (d) Representative emission trajectories for the
two control dynamics of Sec. IV, that with U�t and �t = 3 (red) at the top, and that with U2 and �t = 1.5 (blue) at the bottom. Parameters:
�01 = 1, �02 = 1/10, γ = 4. (All plotted quantities are in dimensionless units.)

From the thermodynamics of trajectories perspective, in-
termittency in the emission dynamics of an open quantum
system is related to dynamical phase coexistence [21,41,42].
Intermittent dynamics is a consequence of the existence of
two distinct dynamical phases, an active phase, where emis-
sions are plentiful, and an inactive phase with low or no
emissions. This dynamical phase structure is what is revealed
by the LD approach [43]. At conditions where intermittency
occurs, typical trajectories of the dynamics are those that
display coexistence and alternate between these two phases.
By quantifying the statistical properties of all trajectories, one
finds that away from typical behavior—i.e., when rare fluc-
tuations give rise to atypical dynamics—rare trajectories that
emit much more than average have different characteristics
than rare trajectories that emit much less than average, each
belonging to a distinct dynamical phase.

The change in the nature of dynamical fluctuations from
rare and active, through typical and intermittent, to rare but
inactive, corresponds to the physics of a first-order phase
transition (as, say, liquid to vapor in a standard equilibrium
static setting) but occurring in trajectory space: it is first order
as the two phases have distinct values of the order parame-
ter that distinguishes them (for example, their characteristic
emission rate—cf. the difference in density between the liquid
and vapor phases in the static analogy) and the interface
between bright and light periods when intermittent—i.e., at
coexistence—is sharp (cf. the sharp interface of vapor bubbles
in a liquid). For a system with a finite state space, such
as the three-level one of Fig. 1(a), the transition cannot be
sharp and is rounded off (a singular transition requires a
large system), and the dynamical behavior is thus one of a
first-order crossover.

Here we use the above methods and ideas to study and
interpret the quantum jump reversal control dynamics as the
one of the experiment of Ref. [5]. The reason why such
control dynamics is effective is precisely the phase coexis-
tence character of the dynamics. The fact that the interface
between regimes belonging to the two phases is sharp allows

an accurate identification of when the control perturbation
needs to be applied. Below we study this control dynamics
using the tools of dynamical LD. We find that appropriate
choices of the control operation and the time at which it is
applied allows one to stabilize a desired dynamical regime
(either active or inactive) and remove the intermittency. In a
static thermodynamic analogy, the effect of the control is akin
to scanning a system close to phase coexistence and when
seeing an interface pricking it so as to prevent the formation
of bubbles of the other phase.

The paper is organized as follows. In Sec. II we introduce
the basic three-level model and we review the LD properties
of its dynamics. In Sec. III we study a feedback-control
dynamics similar to the one used in Ref. [5] within the LD
approach, showing how appropriate control pulses allow one
to select a dynamical regime and remove intermittency. In
Sec. IV we generalize the protocol to allow for repeated uni-
tary pulses within a no-jump period, which gives even more
precise control on the observed dynamics, and implement
this feedback scheme in an alternative Markovian fashion by
means of a ancillary classical controller. In Sec. V we discuss
the broader context of our results and give our conclusions.

II. MODEL AND DYNAMICAL LARGE
DEVIATIONS METHOD

A. Three-level system

As in Ref. [5], we consider a system with three levels,
{|0〉, |1〉, |2〉}, in a V setting; see Fig. 1. The dynamics we
consider is Markovian, with the average state ρt given by [44]

ρt = T0,tρ0. (1)

Here Tt1,t2 corresponds to the evolution superoperator that
evolves the average state between times t1 and t2. For the
case where the dynamics is not controlled (see below for the
controlled case) average evolution is generated by the master
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superoperator L, that is,

Tt1,t2 = e(t2−t1 )L, (2)

with L of the Lindblad form [45,46]

L(·) = −i[H, (·)] + J (·)J † − 1

2
{J †J, (·)}, (3)

with Hamiltonian and jump operator given by

H = �01(|0〉〈1| + |1〉〈0|) + �02(|0〉〈2| + |2〉〈0|) (4)

and

J = √
γ |0〉〈1|. (5)

This means that the evolution equation (1) can be written in
the form of a master equation

∂tρt = Lρt . (6)

The above dynamics is related to a quantum Markov
process [3,4], corresponding to an unravelling of the average
dynamics in terms of stochastic quantum trajectories [10–13].
Under conditions such as γ,�01 � �02 this stochastic dy-
namics is intermittent; see Fig. 1(b): typical trajectories com-
bine periods of high emissions with periods of no emissions
[47–49].

B. Thermodynamics of trajectories and dynamical
phase coexistence

The statistics of emissions at long times can be obtained
via the method of large deviations [21]. If K denotes the
total number of emissions in a quantum trajectory up to time
t , the probability to observe K emissions (assuming perfect
detection efficiency) is

Pt (K ) =
∑
traj

δ(Ktraj − K ) ≈ e−tϕ(K/t ), (7)

where the sum is over the trajectories of the dynamics and the
approximate equality holds at long times where we assume
that a large deviation principle holds. The function ϕ(k) is the
LD rate function [23]. It is related to scaled cumulant gener-
ating function (SCGF) obtained from the moment generating
function (MGF) at long times

Zt (s) =
∑
K

e−sKPt (K ) ≈ etθ (s). (8)

The SCGF θ (s) is given by the largest eigenvalue of the tilted
generator [21,24]

Ls (·) = −i[H, (·)] + e−sJ (·)J † − 1

2
{J †J, (·)}. (9)

In terms of the tilted generator, the MGF reads

Zt (s) = Tr etLs ρ0. (10)

For the three-level model the SCGF is easy to compute by
direct diagonalization of Ls . Under intermittency conditions,
γ,�01 � �02, the SCGF has the form of a free-energy dis-
playing a (smoothed) first-order transition between two phases
(strictly speaking two dynamical regimes [43]), one active
with plentiful emissions and one inactive with no emissions

[21]. Typical dynamics occurs at coexistence between these
phases, with intermittency being its dynamical manifestation.
In this perspective, long periods without emissions correspond
to bubbles of the inactive phase in the active one, a dynamical
version of say vapor bubbles in a liquid phase. The physics is
thus of a rounded first-order transition (the smoothing due to
the fact that the system is finite), occurring in trajectory space
rather than in state space [21].

III. CONTROLLED DYNAMICS

A. Unitary control after a period without jumps
and its LD properties

We now implement a simple control scheme similar to that
of the experiment of Ref. [5]. The idea is the following. When
monitoring the environment (by observing the emissions into
it), a long enough survival time without emissions is an
indicator of (the possibility) of a transition from a period of
high emissions to one of no emissions. That is, a long survival
time can serve as a warning of the system about to become
shelved in the dark state. This information can be used to make
an (instantaneous for simplicity) unitary perturbation which
should help reverse the jump.

While analyzing such a controlled dynamics in a general
system is not simple—as in principle the Markovian character
is lost by the conditioned control—for the three-level model
considered here there is an important simplification. The
original dynamics in this case is that of a (quantum) renewal
process, that is, after each emission the state of the system
is reverted to |0〉〈0|. And since the condition to trigger an
action depends only on the time �t survived after since the
last jump, the controlled dynamics is also that of a renewal
process. This is the property that will allow us to solve the
controlled dynamics in relatively simple terms.

In the original (uncontrolled) dynamics, the state evolves
between times t1 and t2 with no emissions according to the
evolution superoperator, cf. Sec. II,

Qt2,t1 = e(t2−t1 )R, (11)

generated by

R(·) = −i[H, (·)] − 1

2
{J †J, (·)}. (12)

A state initially in ρt1 conditioned on no emissions occurring
up to time t2 therefore reads

Qt2,t1ρt1 = e(t2−t1 )Rρt1 . (13)

Note that the resulting state above is not normalized, as the
normalization, Tr Qt1,t2ρt1 , is the probability of the no-jump
condition over that period.

In order to implement the control, we define a new dynam-
ics, where the no-jump evolution is now given by

QU
t2,t1

=
⎧⎨
⎩

e(t2−t1 )R, (t2 − t1) < �t,

e(t2−t1−�t )R U e�tR, (t2 − t1) � �t,

(14)

where U is the superoperator

U (·) = U (·)U † (15)
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corresponding to the action of the unitary U on a state. In
Eq. (14) we assume that the initial time t1 is that when a jump
has just occurred.

The above implements the control scheme: if the waiting
time between events reaches a time �t , this is taken as the
indication to act on the system with unitary U . As in the
experiment of Ref. [5], the aim is to choose U and �t such
that the crossover to the inactive period is reversed by the
action of U . Furthermore, we define the jump part of the
dynamics to be the same as in the uncontrolled case.

This new dynamics cannot be generated as that of Eqs. (1)–
(3). We can still write the new evolution operator T U

t2,t1
in

terms of the Dyson series that defines its action on the state.
Consider first the Dyson series for the original dynamics. In
that case the evolution operator Tt,0 = etL can be written as

Tt,0 =
∞∑

K=0

∫
0�t1···tK�t

QtK ,t J QtK ,tK−1 · · ·J Qt1,0, (16)

where the superoperator,

J (·) = J (·)J †, (17)

is the part of L responsible for the jumps (and L = J + R)
and Q is given in Eq. (11). The sum in Eq. (16) over the
number of jumps and the integral over all possible jump times
correspond to summing over all possible quantum trajectories
(we have set the initial time to zero and the final one to t). We
can write a similar expression to Eq. (16) for the controlled
dynamics by replacing Q by QU ; cf. Eq. (14),

T U
t,0 =

∞∑
K=0

∫
0�t1···tK�t

QU
tK,t J QU

tK ,tK−1
· · ·J QU

t1,0. (18)

While, in contrast to the original evolution operator, there
is no generator for T U

t1,t2
we can still tilt the controlled evolu-

tion operator, T U
t1,t2

→ T U,s
t1,t2 , by making the change in Eq. (18),

J → Js = e−sJ . The corresponding MGF then reads

ZU
t (s) = Tr T U,s

t,0 ρ0. (19)

Given that the dynamics due to T U
t1,t2

will have finite correla-
tion times despite the control, we still expect the MGF to have
a LD form at long times,

ZU
t (s) ≈ etθU (s). (20)

To obtain θU (s) it will prove convenient to Laplace trans-
form in time the Dyson series for the tilted evolution operator
[given by Eq. (18) with T U

t,0 replaced by T U,s
t,0 and all J

replaced by Js]. The Laplace transformation makes all the
time convolutions into products,

T̂ U,s
x =

∞∑
K=0

Q̂U
x Js Q̂U

x · · ·Js Q̂U
x

= Q̂U
x

(
I − Js Q̂U

x

)−1
, (21)

where f̂x = ∫ ∞
0 dt e−xtft , I is the superoperator identity, and

we have used the fact that QU
t1,t2

only depends on the time
difference; cf. Eq. (14).

We can write T̂ U,s
x as

T̂ U,s
x = Q̂U

x

(
I − e−sFU

x

)−1
, (22)

where from Eq. (14) we can write Q̂U
x as

Q̂U
x = (x I − R)−1[I − e−�t x (I − U )e�tR]. (23)

The superoperator

FU
x = J (x I − R)−1[I − e−�t x (I − U )e�tR] (24)

is the tilted evolution superoperator in the so-called x ensem-
ble of trajectories of fixed number of jumps but fluctuating
total overall time [50,51]. That is, at x = 0, FU = FU

X=0 is the
evolution operator that evolves the average state between two
jumps, irrespective of the time elapsed between jumps. It is
easy to check from Eq. (24) that FU is probability conserving,
Tr FUρ = Tr ρ. The case x 	= 0 corresponds to a tilting of FU

associated to the SCGF for the statistics of the total time in
trajectories with a fixed number of jumps [50,51].

Equations (22)–(24) express the tilted evolution operator of
the controlled dynamics in terms of the original dynamics, the
unitary U and time �t . Having an explicit form for FU

x allows
one to obtain the SCGF for the controlled process, cf. Eq. (20),
in a manner that generalizes the procedure of Ref. [50].

The action “to the left” of superoperators such as Eqs. (21)
and (24) is defined as the action of their adjoints on operators
[3,4]. That is, if S is a superoperator and X an operator, then
the resulting operator after applying S to the left to X is

X S ≡ S∗X, (25)

where S∗ is the adjoint of S with respect to the inner prod-
uct (X, Y ) = Tr(X∗Y ). Using this notation, we call Ls the
left eigenoperator of T U,s

t in Eq. (18) corresponding to its
dominant eigenvalue, which we assume has the form of the
right-hand side (RHS) of Eq. (20),

LsT U,s
t = etθU (s)Ls, (26)

where θU (s) is what we are trying to evaluate. For the Laplace
space operator Eq. (21) then we have

Ls T̂ U,s
x = [x − θU (s)]−1Ls. (27)

Using Eq. (21) this equation can be rearranged to

LsJ = Ls

(
Q̂U

x

)−1 − [x − θU (s)]−1Ls. (28)

From the poles of Eqs. (22) and (27) we see the rela-
tion between the SCGF θU (s) and the corresponding largest
eigenvalue egU (x) of FU

x . Namely, Eq. (27) diverges when
x = θU (s), while Eq. (27) does so when gU (x) = s. Since
θU (0) = 0 and gU (0) = 0 by probability conservation, by
continuity of the largest eigenvalues we get that gU is given
by the inverse function of θU and vice versa [50,51]

gU (x) = θ−1
U ⇔ θU = g−1

U , (29)

where θ−1
U [θU (s)] = s and g−1

U [gU (x)] = x. This means that
we can obtain the SCGF of the controlled process, Eq. (20),
and thus all the statistical properties of the dynamics at long
times, from diagonalizing the operator FU

x , for which we have
an explicit form, Eq. (24).

B. Control and jump reversal

Now we test the effect of the control using the definitions
above. We will use two different kinds of control operators U .
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FIG. 2. (a) LD scaled cumulant generating functions θ (s ) for the original dynamics (black dotted), for the controlled dynamics with
U�t and �t = 3 (red full), and for the controlled dynamics with U2 and �t = 3/2 (blue dashed). (b) s-dependent activities (scaled number
of emissions) k(s ) = −θ ′(s ) for the three dynamics. (c) Activity susceptibilities (variances of k scaled by time) χ (s ) = θ ′′(s ) for the three
dynamics (the red curve divided by 3 for ease of comparison). (d) Scaled logarithm of the probability of the number of emissions in the three
dynamics; abscissa shifted by 〈k〉. The gray dot-dashed curve is the corresponding Poisson distribution with the same average as the black
dotted curve. Parameters: �01 = 1, �02 = 1/10, γ = 4. (All plotted quantities are in dimensionless units.)

For the first one we choose as a unitary the transformation in
the |0〉, |2〉 subspace that rotates away the |2〉 component. That
is, if after no-jump evolution up to time �t we have

|ψ�t 〉 = e−i�tHeff |0〉√
‖e−i�tHeff |0〉‖2

= a |0〉 + b |1〉 + c |2〉, (30)

with |a|2 + |b|2 + |c|2 = 1, then we choose U�t such that

U�t |ψ�t 〉 = a |0〉 +
√

|b|2 + |c|2 |1〉. (31)

We have labeled these unitaries by �t , as the form of the
operator depends on the time at which it is applied given
that the state to be rotated changes with time; cf. Eq. (30).
This control is similar to the one applied in the experiment of
Ref. [5].

The second kind of control we consider is in terms of
a unitary corresponding to a π/2 rotation in the {|0〉, |2〉}
subspace, that is, we define an operator U2,

U2 = exp

[
iπ

2
(|0〉〈2| + |2〉〈0|)

]
, (32)

such that its action on a state like the one of Eq. (30) is

U2|ψ�t 〉 = ic|0〉 + b|1〉 + ia|2〉, (33)

irrespective of the value of �t .
The survival function for the uncontrolled dynamics

S(t ) = Tr Qt,0|0〉〈0| (34)

corresponds to the probability of having had no jumps up to
time t after the last jump at time zero. The survival probability
in the controlled dynamics is

SU (t ) = Tr QU
t,0|0〉〈0|. (35)

Figure 1(c) compares the survival probabilities without and
with control. The uncontrolled case has the characteristic
two-time structure when γ,�01 � �02. For the controlled
dynamics, the probability of surviving beyond �t changes,
depending on the control operator U and on the time �t . For
control with U�t we choose �t �01 = 3. This corresponds to
a time where the occupations of the three states are compa-
rable; see inset to Fig. 1(c) (vertical dashed line). Since the
application of U�t rotates the state to remove all projection
on the dark subspace, cf. Eq. (31), this control greatly reduces

the likelihood of dynamics surviving beyond �t without an
emission (but does not eliminate it completely). For control
with U2 we choose instead �t �01 = 3/2. This is a time
where occupation of states 0,1 is much higher than that of
2 in the original dynamics; see inset to Fig. 1(c) (vertical
dotted line). In this case, the action with U at �t leads
to the distinction between the two dynamical regimes to be
attenuated and the survival S(t ) looks more like that of a
single kind of dynamics that is slower. Figures 1(b) and 1(c)
show representative trajectories for the three dynamics: while
the original trajectories are intermittent and display dynamical
coexistence, those for the two kinds of control are either
entirely of high activity or entirely of low activity.

In Fig. 2 we compare the fluctuation properties of the
original dynamics to the controlled dynamics, as quantified
from the LD analysis above, for the same choices of U

and �t . Figure 2(a) shows the SCGF θ (s) for all cases,
where for the controlled dynamics θ (s) is obtained by di-
agonalizing FU

x to get the SCGF g(x) for fixed number of
jumps and then using Eq. (29). Figure 2(b) shows the corre-
sponding s-dependent number of emissions, k(s) = −θ ′(s) =
t−1〈e−sKK〉/〈e−s〉. Depending on the nature of the control we
see two possible effects for our choices of �t . The value of s

corresponding to the dynamical crossover—the point at which
dynamics is most fluctuating—is determined by the location
of the peak of the dynamical susceptibility, χ (s) = θ ′′(s) =
t−1[〈e−sKK2〉/〈e−sK〉 − t2k2(s)], Fig. 2(c). For the case of
U�t this crossover moves away from s = 0 as compared
to the original dynamics [red versus black dotted curves in
Fig. 2(c)]. The further away a feature is from s = 0 (which
corresponds to typical dynamics) means the less probable that
feature will be observed in the dynamics. This means that
under U�t dynamical coexistence is suppressed, making inter-
mittency a much rarer phenomenon in the typical trajectories
of the controlled dynamics; see the typical trajectory in the
middle of Fig. 1(b). Nevertheless, for the control with U�t the
crossover does not disappear completely. It becomes sharper
than in the original dynamics, but now occurs at a larger value
of s; see Figs. 2(b) and 2(c). This is due to the fact that, while
accessing the inactive phase is much suppressed due to the
control, it is not completely eliminated, and when the system
manages to switch to the dark subspace despite the control, it
remains there for a long time, even if that occurrence is much
rarer than in the original dynamics.
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FIG. 3. (a) Average rate of emissions 〈k〉 = −θ ′(0) as a function
of control time �t , for the original dynamics (black, independent of
�t), for the controlled dynamics with U�t (red circles), and for the
controlled dynamics with U2 (blue squares). (b) Corresponding emis-
sion susceptibilities χ = θ ′′(0). Parameters: �01 = 1, �02 = 1/10,

γ = 4. (All plotted quantities are in dimensionless units.)

The effect of control with U2, for the chosen value of �t ,
is different. In this case the dynamical coexistence is strongly
suppressed, as manifested by the shallower nature of k(s)
and its susceptibility χ (s), Figs. 2(b) and 2(c). The behavior
is essentially that of a single phase (there is no sharpness
anywhere in s, in contrast to both the original dynamics
and the first kind of control) with a low average number of
emissions; see the typical trajectory at the bottom of Fig. 1(b).

Figure 2(d) compares the probabilities of the total number
of emissions, Pt (K ), in the different dynamics. For the orig-
inal dynamics (black dotted curve), Pt (K ) is very broad due
to the strong correlations in the dynamics—for comparison
we also show a Poisson distribution with the same average
(dashed curve). Both controls (red and blue dashed curves)
make Pt (K ) narrower than in the original dynamics, i.e., they
suppress manifestations of phase coexistence in the observed
fluctuations. [Note the leftmost tail in the probability for U�t

control (red curve): this is in the effect in probability of the
sharp feature in the SCGF, cf. Fig. 2(a), corresponding to
a “Maxwell construction” associated to the (almost) phase
transition that occurs in very rare trajectories of very low
emissions.]

The effect of the control depends on the time �t at which it
is applied. Figure 3 shows what occurs when �t is varied, by
comparing the average number of emissions, k = t−1〈K〉 =
−θ ′(0) (a), and its scaled variance, χ = t−1var(K ) = θ ′′(0)
(b), in the original dynamics (black) and in the controlled
dynamics with U�t (red circles) and U2 (blue squares). The
control with U�t always promotes the active dynamics (as
expected as it always suppresses the state 2), while for the
control with U2 which phase is favored depends on �t ;
cf. inset to Fig. 1(c). Nevertheless, for both controls, the
fluctuations in the typical dynamics are attenuated for all �t ,
Fig. 3(b), meaning that the control suppresses intermittency
by removing the phase coexistence in the typical dynamics.

IV. CONTROL APPLIED REPEATEDLY
IN NO-JUMP PERIODS

A. Feedback-control scheme and its LD properties

In the previous sections we discussed the application of
a single control pulse at time �t after the last emission, in

analogy with the experiment of Ref. [5]. While this may
suppress the likelihood of entering the dark inactive phase,
it does not suppress it completely, cf. Fig. 2: for control with
U�t , at �t after the application of the unitary the population
in 2 is completely removed, but nothing prevents a further
buildup of this population in the (very unlikely) event of a
subsequent long period without emissions.

One can then consider a repeated application of the control
at intervals of �t of no emissions having occurred. The
analysis of Sec. III can be extended for this new dynamics.
Generalizing Eq. (14) we can define

QU,M
t2,t1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eτR, τ ∈ [0,�t ),
e(τ−�t )R U e�tR, τ ∈ [�t, 2�t ),

...
e(τ−M�t )R (U e�tR)M, τ ∈ [M�t,∞),

(36)

corresponding to the application of the unitary M times,
where τ = t2 − t1. After some algebra, Eq. (23) generalizes to

Q̂U,M
x = (x I − R)−1

×
[
I −

M∑
m=1

e−m�t x (I − U ) e�tR(U e�tR)m−1

]
,

(37)

with Eq. (24) simply becoming

FU,M
x = J Q̂U,M

x . (38)

In particular, we can consider the case M → ∞, i.e., the
unitary is applied at every interval �t during the no emissions
period until an emission occurs. In this case Eqs. (37) and (38)
become

Q̂U,∞
x = I − e�t (R−xI )

x I − R (1 − Ue�t (R−xI ) )−1 (39)

and

FU,∞
x = J Q̂U,∞

x . (40)

Proceeding as in the previous section we can obtain the
fluctuation properties of the dynamics for the repeated control
at long times from the largest eigenvalue of FU,∞

x via Eq. (29).
Figure 4 shows the results when the unitary applied repeatedly
at intervals �t is U ′

�t defined such that, cf. Eqs. (30) and (31),

U ′
�t |ψ�t 〉 = |0〉. (41)

Both the SCGF, Fig. 4(a), and the s-dependent activity,
Fig. 4(b), are completely smooth in s, and all hint of two
dynamical phases has disappeared, as also confirmed by the
virtual absence of any peak in the s-dependent susceptibility
in the repeated control case; see inset to Fig. 4(b). Correspond-
ingly, the probability of the number of emissions Pt (K ) for
the control case becomes essentially Poissonian; see Fig. 4(c).
Figure 4(d) confirms this observation for other values of �t .
The physics is clear: the repeated action with the unitary
prevents the system from populating the dark state, so that in
the controlled case a single phase of the dynamics survives.
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FIG. 4. Repeated control within no-jump periods. (a) LD scaled cumulant generating functions θ (s ) for the original dynamics (black
dotted) and for the controlled dynamics U ′

�t applied repeatedly at intervals �t = 3 within no-emission periods (magenta full). (b) s-dependent
activities k(s ) = −θ ′(s ) for the two dynamics. Inset: activity susceptibilities χ (s ) = θ ′′(s ) for the three dynamics. (c) Scaled logarithm of
the probability of the number of emissions in the two dynamics; abscissa shifted by 〈k〉. The gray dashed curve is the corresponding Poisson
distribution with the same average as the black dotted curve. (d) Average rate of emissions 〈k〉 = −θ ′(0) as a function of control time �t for
the two dynamics. Inset: corresponding emission susceptibilities χ = θ ′′(0). Parameters: �01 = 1, �02 = 1/10, γ = 4. (All plotted quantities
are in dimensionless units.)

B. Markovian implementation with a classical controller

The way we implemented the feedback dynamics in
Secs. III and IV A relies on applying a conditional control
unitary at certain time intervals �t . A consequence of this
is that the system evolution is not described by a Markov
semigroup anymore, in contrast to the original uncontrolled
dynamics; cf. Eqs. (1)–(3). This prevented us from applying
the usual LD approach for studying the trajectory ensemble
of Markovian systems [based on the properties of a tilted
generator such as Eq. (9), the so-called s-ensemble method].
To circumvent this problem we exploited the so-called x-
ensemble method [50,51] for ensembles of trajectories with
fixed number of jumps (rather than fixed overall time), as in
that case the controlled dynamics can still be described by
a single discrete transition operator per jump; cf. Eqs. (24)
and (40).

We now show that the above control procedure can also
be described in a Markovian way using an additional classical
controller which keeps track of the time elapsed from the last
jump. (For other instances of a Markovian formulation of a
non-Markovian dynamics via an extension of the state space,
see e.g. [52,53].)

For simplicity and clarity we discretize the time evolution
in small time intervals δt during which the system can either
emit a photon or not, with corresponding Kraus operators [3]

Kδt
0 = e−iδtH

√
1 − δtJ †J , Kδt

1 = e−iδtH
√

δtJ, (42)

so that the infinitesimal master evolution is given by

T δt (·) = K
δt†
0 (·)Kδt†

0 + Kδt
1 (·)Kδt†

1 . (43)

Let n = �t/δt be the number of discrete steps in the
time interval �t and consider a classical controller with con-
figurations labeled {0, 1, . . . , n − 1}. The classical counting
measurement output of the three-level system is fed forward
and drives the controller’s dynamics as follows: Assuming
that the controller is in state l < n − 1, if no photon is detected
in the next time interval δt , then the controller moves to l + 1
(that is, the controller acts as a “clock” timing the duration
of a no-jump period). In contrast, if a photon is detected the
controller is reset back to zero. When the controller reaches
the state n − 1 (which indicates that a time �t has passed with

no emissions) the unitary feedback operator U is applied and
the controller is reset to zero.

This dynamics can be described by a discrete time tran-
sition operator on the hybrid quantum-classical system with
state space M3 ⊗ Cn in terms of augmented Kraus operators
that read [43]

Kδt
0 =

n−2∑
l=0

Kδt
0 ⊗ |l + 1〉〈l| + UKδt

0 ⊗ |0〉〈n − 1| (44)

and

Kδt
1 =

n−1∑
l=0

Kδt
1 ⊗ |0〉〈l|, (45)

where {|l〉 : l = 0, . . . , n − 1} represent the states of the clas-
sical controller. (To lighten the expressions in what follows
we do not label the operators and superoperators with U in
contrast to what we did in the previous sections.) With these
definitions, the joint system-controller evolution is then given
by the transition operator

Tδt (·) = Kδt
0 (·) + Kδt

1 (·), (46)

where Kδt
0,1(·) = Kδt

0,1 · Kδt†
0,1. Since for our discretized dynam-

ics Eq. (46) is the operator that “generates” it, we can study
the associated LD properties via the standard approach, cf.
Sec. II B, by defining the tilted operator

Tδt
s (·) = Kδt

0 (·) + e−sKδt
1 (·) (47)

and finding its largest eigenvalue.
We now confirm that this yields the same result as in

Sec. IV A. The x-ensemble formulation for trajectories with
a fixed number of jumps K in the system-controller dynamics
has evolution operator for each jump

Fδt
x =

∞∑
k=0

Kδt
1

(
e−xδtKδt

0

)k = Kδt
1

(
I − e−xδtKδt

0

)−1
(48)

corresponding to an arbitrary application of the no-jump
step Kδt

0 terminated by a jump Kδt
1 , and where each step is

weighted by e−xδt ; cf. Eqs. (24) and (40). Note that Fδt
x maps

any state into the product of the zero state of the atom and the
zero state for the controller, �00 = |0〉〈0| ⊗ |0〉〈0|. That is, if
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the joint state of the system controller is

� =
n−1∑
l=0

ρl ⊗ |l〉〈l|, (49)

then

Kδt
1 (�) = γ

n−1∑
l=0

〈1|ρl|1〉 �00 =
(

n−1∑
l=0

J ρl

)
⊗ |0〉〈0|, (50)

where we have used Eq. (17) in the last equality.
Consider now the action of the operator Eq. (48) on the

combined, � = ρ0 ⊗ |0〉〈0|, which would correspond either to
the initial state or to the state just after a jump (ρ0 = |0〉〈0|).
From Eqs. (48) and (50) we have that

Fδt
x � =

(
n−1∑
l=0

J τl

)
⊗ |0〉〈0|, (51)

where we have defined

n−1∑
l=0

τl ⊗ |l〉〈l| = (
I − e−xδtKδt

0

)−1
�. (52)

The equation above can be inverted to give

τl = (
e−xδtKδt

0

)l[I − U
(
e−xδtKδt

0

)]−1
ρ0, (53)

where Kδt
0 (·) = Kδt

0 (·)Kδt†
0 . By taking the limit δt to zero

(and consequently n = �t/δt to infinity) the sum in Eq. (51)
becomes an integral, and using Eq. (53) we can write

Fδt
x � =

∫ �t

0
dt J et (R−x)(I − U et (R−x) )−1ρ0 ⊗ |0〉〈0|

= J I − e�t (R−xI )

x I − R (I − U et (R−x) )−1ρ0 ⊗ |0〉〈0|

= (
FU,∞

x ρ0
) ⊗ |0〉〈0|, (54)

where we have used that limδt→0 (Kδt
0 )

t/δt = etR. The above
shows that in the limit of δt → 0 the action of the evolution
operator Eq. (48) for the system-controller combined setup
is the same as that of the non-Markovian evolution operator
Eq. (40) once the controller is traced out. This implies that
in this limit the SCGF function extracted from the tilted
generator Eq. (47) is the same as that obtained in Sec. IV A.

V. CONCLUSIONS

Here we have considered feedback-control schemes based
on the one applied in the experiment of Ref. [5] to catch and
revert quantum jumps. (For other control schemes aiming to
temper intermittency or to find dark states, see for example
[54–56].) We have focused on the case of an intermittent
three-level system, as in the experiment, but our approach can
be generalized to more complex situations. We have consid-
ered in particular the statistics of dynamical fluctuations by
means of large deviation methods. Our central observation
is that unitary perturbations applied conditioned on the time
elapsed without emissions lead to a modification of the ob-
served dynamics where intermittency is either suppressed or

completely removed. From the thermodynamics of trajecto-
ries perspective [21,42], intermittency is due to the existence
of a nearby dynamical first-order transition (smoothed to a
first-order crossover in a finite state system such as the one
considered here [43]) between active and inactive phases:
the controlled dynamics suppresses this transition by favoring
one or the other dynamical phase, depending on the details of
the control operation. Within this thermodynamic perspective
of dynamics, catching and reversing a quantum jump is similar
to pricking the (time) bubbles of the inactive phase that give
rise to the intermittent dynamics [57].

On the technical level, we have used the tools of large
deviations to obtain our results. Since the control dynamics
as defined in Secs. III and IV A (single, or multiple, ap-
plication of a unitary perturbation during no-jump regimes,
respectively) are not Markovian, we have exploited trajectory
ensemble equivalence [51,58] (yet another thermodynamic
analogy) to recover the LD properties for trajectories of
fixed total time from that of trajectories of fixed number of
jumps. In Sec. IV B we showed that the repeated control
scheme of Sec. IV A can be implemented in a Markovian,
time-independent fashion, using classical feed forward and
feedback with an auxiliary classical controller. The single-
application unitary scheme of Sec. III can also be imple-
mented by further enlarging the controller such that it keeps
track of the bit of information regarding whether the unitary
has been already applied since the last photon emission. This
opens the way for treating more complicated system dynam-
ics, with controllers which (partly) encode the measurement
trajectory and trigger the control action in a Markovian fash-
ion. In particular, an interesting type of controller would be
based on sliding window encoder of a finite portion of the
trajectory. Here one can use ideas from symbolic dynamics
and coding [59]. More generally, the controller can be fully
quantum, rather than classical, exploiting the methods of
coherent feedback and quantum networks theory [60].

In future work we hope to generalize the control schemes
described above to more complex settings involving multiple
jump operators, multiple dynamical phases, and many-body
models. Furthermore, the control approach we studied here,
based on that used in Ref. [5], in turn can lead to new thinking
in the study of complex nonequilibrium dynamics. In a system
with interesting rare dynamical fluctuations, as revealed by
LD methods, a general problem of interest is how to engineer
the dynamics to make those fluctuations typical. A common
approach is that of the so-called generalized Doob transforma-
tion [21,61–64]. This can be formulated as an optimal control
problem [65,66] which aims to find a continuously controlled
system that evolves (in the long time limit) with a new
dynamics that is time homogeneous if the original one was so.
The Doob transformed dynamics can thus be defined to target
atypical dynamics of the original problem, for example, at
some nonzero value of the counting field s in order to stabilize
a dynamical phase. An interesting question is therefore to
what extent one can use instead a control scheme that is
local in time applied conditionally on the observed dynamics,
similar to what was done above. The time-local control might
offer an efficient alternative to the Doob transform [21,61–64]
for generating interesting trajectory ensembles in a manner
reminiscent of classical stabilization via resets [67–70].
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