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Interference effects due to nuclear motion of the hydrogen molecule
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We show that two-particle interferences can be used to probe the nuclear motion in a doubly excited hydrogen
molecule. The dissociation of molecular hydrogen by electron impact involves several decay channels, associated
with different molecular rotational states, which produce quantum interferences in the detection of the atomic
fragments. Thanks to the correlations between the angular momentum and the vibrational states of the molecule,
the fragments arising from each dissociation channel carry out a phase shift which is a signature of the
molecule rotation. These phase shifts, which cannot be observed in a single-atom detection scheme, may be
witnessed under realistic experimental conditions in a time-of-flight coincidence measurement. We analyze the
interferences arising from the two lowest-energy rotational states of a parahydrogen molecule. Our result shows
the relevance of two-fragment correlations to track the molecular rotation.
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I. INTRODUCTION

Two-photon correlations are essential in the modern def-
inition of coherence [1]. In fact, two-photon interference
experiments, such as the Hong-Ou-Mandel interference [2],
have played a key role in the developments of quantum optics.
Two-particle interference has been performed involving atoms
instead of photons in a Hong-Ou-Mandel type experiment
[3]. Besides, two-photon correlations can provide information
about the light source beyond that obtained with a single
intensity measurement [4]. On the other hand, in the disso-
ciation of a diatomic molecule, the source of the final two-
particle state is the molecule itself. Connected to this, quantum
interferences have been predicted when there are at least two
distinct dissociative states excited at the same energy [5] and,
for instance, have been measured for photodissociation of H2

[6] and more recently for D2 [7]. Quantum interferences have
also been reported in ionization processes [8–10] involving an
asymmetric molecular fragmentation [11,12].

In this paper it is shown that two-atom correlations may
provide an insight into the nuclear motion that is unaccessible
to single-atom measurements; more precisely, it is theoreti-
cally foreseen an interference pattern in the superposition of
the wave functions of two H(2s) fragments, which emerge
from the dissociation of H2, related to different molecular
rotational states. It must be emphasized that such two-atom
interferences may be observed in a standard coincidence time-
of-flight detection experiment similar to the setup reported in
Ref. [13] for the production of metastable H(2s) hydrogen
fragments. The knowledge of the initial molecular state is
important to design an experiment such as the one suggested
in Ref. [14], which constitutes a potential twin-atom source.

*ginette@if.ufrj.br

Long-lived metastable fragments can be obtained through
the H(2s) + H(2s) dissociation channel of the doubly excited
states of molecular hydrogen. The production of these doubly
excited states by electron impact has been recently analyzed
[15]. Multiple dissociative states correspond to different angu-
lar momentum contributions of the internuclear axis rotation.
Hence, the distinct dissociation paths which produce quantum
interferences are labeled by different rotational states of the
molecule.

The effective molecular potential felt by the nuclei couples
the angular momentum of them to the vibrational state of the
molecule. The phase shifts imprinted on the atomic fragments
by this effective molecular potential depend on the molecule
rotation. These “rotational” phases cannot be observed in an
experiment involving a single atomic detector. Their differ-
ence may nevertheless be measured in a coincidence time-of-
flight detection experiment involving simultaneously the two
H(2s) fragments produced in the dissociation. Even though
the molecular state arising from the dissociation is indeed
entangled [16,17], the proposed measurement of the rotational
phases does not use any specific property of entanglement.

II. THEORETICAL DESCRIPTION

A. Description of the H2 wave function in
the Born-Oppenheimer approximation

In the Born-Oppenheimer approximation, following
Refs. [18,19], the molecular wave function in the laboratory
frame without spins is given by

�mol = 1

r

∑
J,MJ

cJ,MJ
ψel,�χν,J Y

MJ

J (θ, φ), (1)

where J = L + N is the total angular momentum; L and
N stand for the electrons and nuclei angular momenta,
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respectively; � and MJ are the projections of L and J

along the internuclear axis, respectively; ψel,� is the electronic
wave function; χν,J and Y J

MJ
are the nuclear vibrational and

rotational wave functions; and finally (θ, φ) are the angles of
the nuclear axis with respect to the laboratory frame [18,19].

The molecular wave function must fulfill symmetry re-
quirements in compliance with the fermionic nature of its
components. In its ground state H2 lies in the 1�+

g elec-
tronic state and it has been shown that the doubly excited
state, which produces H(2s) + H(2s) fragments and cannot
be reached by photon excitation, has the same electronic sym-
metry [20]. Therefore, it leads to L = 0, � = 0, and J = N .
It is worth mentioning that the electronic part is symmetric
by the exchange of nuclei. Considering �̃mol = �molξel as the
molecular wave function plus the electronic spin (ξel) and
taking into account the nuclear spin, ξN , one has two distinct
possibilities:

(i) �A
tot = �̃S

mol ξ
A
N (parahydrogen),

(ii) �A
tot = �̃A

molξ
S
N (orthohydrogen).

Therefore, for the electronic state 1�+
g , one has the wave

function �̃S
mol for J = N even and �̃A

mol for J = N odd.
We consider only the parahydrogen configuration. Although
under ordinary conditions a sample of H2, in its ground state,
has its ortho form three times as abundant as the para one,
the choice of only considering the parahydrogen corresponds
nevertheless to a realistic experimental configuration as pure
samples of parahydrogen can be produced with well-known
techniques [21,22].

As the molecule nuclear spin state is unchanged by the
electron collision, one can say that the global excited state
here considered has the same symmetry as the initial ground
state.

At room temperature, the ground state of the molecular
hydrogen in thermal equilibrium has few rotational levels
significantly populated (up to N = 3). Moreover, rotational
transitions are not likely to happen in electron impact col-
lisions (especially in the high-electron-impact energy range)
[23]; therefore one can consider that only rotational transitions
with small �N take place after collision. Thus, noting that
we are dealing with parahydrogen, we assume that the initial
rotational state is only N = 0 [24], leading to an excited state
which is a linear combination of N = 0 and N = 2. Without
the center-of-mass motion, one can write Eq. (1) as

ψmol =
∑

N∈{0,2},MN

cN,MN
ψel,0

χν,N

r
YN

MN
(θ, φ). (2)

Instead of deriving explicitly the coefficients cN,MN
associated

with the collisional process, we focus on the asymptotic
form of the wave function and look for the associated nuclei
momentum distributions.

As we are interested in the outgoing fragments, only the
outgoing contribution of the asymptotic form of the vibra-
tional wave function χν,N (r → +∞) = ei(kr+2δN − Nπ

2 ) is re-
tained. The associated frequency reads hν = h̄2k2

2μ
, where μ

is the reduced mass and h̄k is the relative momentum of the
nuclei and r is its relative position. One of the signatures
of the repulsive potential is contained in the phase shift δN ,

which can be obtained by treating the dissociation process as
a time-reversed collisional process.

A complete description in the laboratory frame requires
one to take into account the center-of-mass motion. In this
sense, it is useful to project the nuclei’s momenta along the
axes formed by the two detectors and to introduce the wave
vectors of the nuclei:

k±
A = K

2
± k, k±

B = K

2
∓ k, (3)

where h̄K corresponds to the center of mass and h̄k to the
relative momentum of the two nuclei labeled by the letters
A and B. The signals + and − correspond to the direction
of emission of the nucleus A in the center-of-mass frame.
Moreover, in order to obtain a proper description of the
asymptotic wave function one has to take into account all
the possible relative momenta allowed in the Franck-Condon
region [18]. The detection system can be designed to be
sensitive exclusively to the fragments in the |2s〉 state [13].
Thus, in the asymptotic limit r → ∞, the molecular wave
function corresponding to the dissociation of H2 in the state
Q2

1�+
g takes the following form:

�asy =
∑

N,MN

∫
dKG(K )

∫
dkfN (k)e− iNπ

2 ei2δN

× [
�(rB −rA)ei(k−

A rA+k−
B rB ) + �(rA−rB )ei(k+

A rA+k+
B rB )

]
× (|2s〉1

A|2s〉2
B + |2s〉2

A|2s〉1
B

)
Y

MN

N (θ, φ), (4)

where G(K ) is related to the center-of-mass moment distri-
bution and fN (k) to the relative one, which is obtained from
the reflection method [25]. Note that the function �(ri − rj )
(i and j standing for A and B) guarantees the correct signs
of the exponentials’ arguments depending on which particle
goes to the left and which goes to the right. From now on we
replace Y

MN

N (θ, φ) by |N,MN 〉. As we are dealing with ther-
mal molecules whose velocities are null on average, we may
consider null the molecule’s center-of-mass moment, which
corresponds to G(K ) = δ(0); consequently, the moments of
the fragments are opposite and of the same magnitude in the
laboratory frame of reference as can be seen in Eq. (3).

B. Quantum description of the detection apparatus

The geometry of the detection system is depicted in Fig. 1.
The detectors should be aligned to ensure that if one atom is
detected, the other one, arriving from the same dissociation, is
also detected by the other detector.

The propagation of the fragments occurs along the internu-
clear axis, so that the aperture of the detectors filters a finite
solid angle � of the possible angular positions (θ, φ). This
finite aperture effect is of crucial importance, as it provides
different weights for the angular momentum states N = 0
and 2.

Besides, there is a unique correspondence between these
momenta and the time-of-flight of the fragments to the detec-
tors. Thus, a couple of momentum eigenstates (kA, kB ) yield
well-defined arrival times (τA, τB ). As we are dealing with
identical fragments, each click registered in a detector may
correspond to either one of the fragments.
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FIG. 1. The Z axis in laboratory frame is defined by the line
crossing the center of both detectors. The variables (θ, φ) are the
angles of the nuclear axis with respect to the laboratory frame and,
as it is mentioned in the text, (�, �) corresponds to the detector’s
solid angle �.

Summing up these considerations, one may think of the
detectors in terms of projection operators in the momentum
and angular (detector’s solid angle �) spaces, and a transition
operator from the 2s to the 1s electronic state, with the latter
corresponding to the process that takes place in the detection.
Therefore

D̂r = [IA ⊗ (|kr〉B |1s〉BB〈kr |B〈2s|)
+ (|kr〉A|1s〉AA〈kr |A〈2s|) ⊗ IB]

×
∫

�

d�|�,�〉〈�,�|, (5)

where subscript r stands for right side detection. For example,
when D̂r acts on atom B, its linear moment k is detected. For
the left side one has a similar expression for D̂l . Detection in
coincidence corresponds to the application of both operators
D̂l and D̂r .

The counting number in each detector (the probability per
unit of momentum) is proportional to Pi = 〈�asy|D̂†

i D̂i |�asy〉,
where i = l or r depending on which side is addressed.
Analogously the detection in coincidence is proportional to

Pcoinc = 〈�asy|D̂†
l D̂

†
r D̂lD̂r |�asy〉 = |D̂lD̂r�

P
asy|2.

III. RESULTS AND DISCUSSION

As we consider the parahydrogen with N = 0 and N = 2,
we obtain the following from Eqs. (4) and (5):∣∣D̂lD̂r�

P
asy

∣∣2

= 2

{
f 2

0 (kr )
∫

�∩
d�〈0, 0|�,�〉〈�,�|0, 0〉

+ f 2
2 (kr )

∑
M2,M

′
2

∫
�∩

d�〈2,M ′
2|�,�〉〈�,�|2,M2〉

− 2

[
f2(kr )f0(kr )cos[2(δ2 − δ0)]

×
∑
M2

∫
�∩

d�〈0, 0|�,�〉〈�,�|2,M2〉
]}

, (6)

where �∩ is the solid angle of the detector that is farthest from
the dissociation region. For this reason, the integral of Eq. (6)

must be performed for the smaller solid angle between the two
detectors.

In the case of simple detection, one can show that

|D̂r�asy|2 = �

2π

∑
N,MN

f 2
N (kr ), (7)

which reflects the fact that one has no privileged axis of
detection. Unlike that, in coincidence measurement one has
a privileged axis formed by the line of the two detectors. This
means that the integral of the third term in Eq. (6) does not
vanish. The first two terms of Eq. (6) are similar to the ones
obtained in the simple detection case. On the other hand, the
third one corresponds to an interference term between the two
possible paths in the dissociation of the molecule.

The phase shifts in Eq. (6) (see the Appendix) were ob-
tained by modifying a code written by Canto and Hussein [26]
aimed at nuclear systems and changed to systems of molecular
physics. In this code δ0 and δ2 are obtained as a function of the
kinetic energy of the fragments, E (eV).

For the numerical analysis of the coincidence detection, we
consider that the two detectors are aligned with respect to the
dissociation region and that the farthest detector is at 21 cm
from this region, while the nearest detector is 18 cm away
from the dissociation region. As the detectors are aligned, the
solid angle �∩ considered will be the one associated with the
detector that is farther from the dissociation region (at 21 cm).

The connection between the relative momentum k and
the difference in time-of-flight �t of each atom is given by
k = 2(μ/h̄)(�l/�t ), where �l = ll − lr is the modulus of
the difference between the distances traveled by the atoms
from the dissociation region to their detection by the detectors
D̂l and D̂r , respectively.

In order to conciliate the theory, expressed by
|D̂eD̂d�asy|2, with the experimental counting rate, the
following transformation is necessary:

|D̂eD̂d�asy|2dk = hc(�t )d�t. (8)

FIG. 2. Detection in coincidence, in arbitrary units, as a function
of �t . This figure presents the probability density of detection
hc(�t ) [solid line, Eq. (8)], the probability density of detection
without the interference term (dotted line), and the module of the
interference term (dashed line). Both detectors are aligned relative to
the dissociation region, with one of them spaced 18 cm apart from
this region and the other one 21 cm apart.
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FIG. 3. (a) Oscillation of the normalized counting rate P(�t);
(b) cos[2(δ2 − δ0 )] as a function of �t . For details, see the text.

Figure 2 shows hc(�t ), in arbitrary units, obtained from
Eq. (8), together with the contribution originated from the two
first terms of Eq. (6) (dotted line) and the modulus of the third
one, the interference term (dashed line). The main difference
between the probability density with and without interference
is related to the amplitude, although the two distributions are
slightly shifted.

Despite the presence of the interference term, it is not
possible to observe oscillatory behavior in hc(t ), as shown in
Fig. 2. This is due to the fact that the oscillations which arise
from cos[2(δ2 − δ0)] are quite small in the energy range of
interest, fixed by the Franck-Condon region.

To enhance the phase-shift difference effect in the interfer-
ence term of Eq. (6), we divide the Eq. (6) by

p(kr ) = 2

{
f 2

0 (kr )
∫

�∩
d�〈0, 0|�,�〉〈�,�|0, 0〉

+ f 2
2 (kr )

∑
M2,M

′
2

∫
�∩

d�〈2,M ′
2|�,�〉〈�,�|2,M2〉

− 2

[
f2(kr )f0(kr )

∑
M2

∫
�∩

d�〈0, 0|�,�〉〈�,�|2,M2〉
]}

(9)

and then convert the result in terms of �t . The behavior of
the resulting expression, P (�t ), is displayed in Fig. 3(a). It
is worth mentioning that Eq. (9) is equal to Eq. (6), except
for the replacement of cos[2(δ2 − δ0)] by 1. The quantity
P (�t ) = p(�t )/hc(�t ) plays the role of a normalized count-
ing rate and allows us to see oscillations from the result of the
detection in coincidence.

It is important to notice that this normalization does not
introduce oscillatory behavior in P (�t), depicted in Fig. 3(a),
since p(kr ) does not contain the information carried by the
phase shifts. In a way, by doing the division of |D̂lD̂r�

P
asy|2

by p(kr ), we remove from the data all information concerning
every aspect of the system other than the phase-shift differ-
ence effect. In fact, comparing P (�t) with cos[2(δ2 − δ0)]
in Fig. 3, we can see that their oscillations are completely
connected.

IV. CONCLUSION

In this paper we have shown that, through the coincidence
detection of the H(2s) atoms coming from the same H2

molecule dissociation, it is possible to observe interference
patterns due to different possible fragmentation paths in the
dissociation process; this behavior is connected with the phase
shifts imprinted by the repulsive effective molecular potential
and reveals the coupling between the angular momentum and
the vibrational states of the molecule. This result is foreseen
for the data obtained in an ordinary coincidence time-of-flight
detection experiment. It is also verified that this behavior
cannot be observed in an experiment involving only a single
detector.
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APPENDIX: THE PHASE SHIFT δN

We detail below the method used to calculate the dis-
sociation phase shifts δN involved in Eq. (6). We proceed
by treating the molecule dissociation process as a“reverse
collision,” in which the projectile and the target are the nuclei
arising from the dissociation. Within the Born-Oppenheimer
approximation, the vibrational wave function is a solution of
the differential equation[

d2

dρ2
+ 1 − N (N + 1)

ρ2

]
uN (k, ρ) = U (k, ρ)uN (k, ρ), (A1)

where ρ ≡ kr .
For ρ > ρ̄, the interaction potential U (k, ρ) vanishes. This

leads us to consider two different domains: domain I (ρ < ρ̄)
associated with a nonzero interaction potential for which a
numerical solution is required, and domain II (ρ > ρ̄) corre-
sponding to a free propagation of the fragments. In the second
domain, Eq. (A1) takes the simple form[

d2

dρ2
+ 1 − N (N + 1)

ρ2

]
uN (k, ρ) = 0, (A2)

whose solutions can be expressed in terms of Ricatti-Bessel
functions:

uN (k, ρ) = αN

[
ĵN (ρ) + βNn̂N (ρ)

]
, (A3)
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where αN is a global constant of normalization and, for
convenience, βN can be written in terms of the phase shift
δN as βN = tanδN .

By linearity of Eq. (A1), any linear combination of Bessel
and Neumann functions is also a solution. Thus, one may also
conveniently express the wave function in terms of Ricatti-
Haenkel functions:

uN (k, ρ) = α′
N

[
ĥ

(−)
N (ρ) − SNĥ

(+)
N (ρ)

]
, (A4)

where α′
N = ie−iδN αN/ cos δN is just a new constant of nor-

malization and SN = ei2δN .

Within domain I the vibrational differential equation is
solved numerically (e.g., with the Runge-Kutta method). The
numerical solution (in fact, its logarithmic derivative L ≡
u′

N (k,ρ)
uN (k,ρ) ) must be chosen so as to ensure the continuity of the
wave function and its spatial derivative throughout the whole
space. This condition imposes that the logarithmic derivatives
must match across the boundary of domain I and domain II,
i.e., LI = LII. Finally, this boundary condition determines the
phase shift δN as

SN =
[

ĥ
′(−)
N (ρ̄ ) − ĥ

(−)
N (ρ̄)LI

ĥ
′(+)
N (ρ̄ ) − ĥ

(+)
N (ρ̄)LI

]
. (A5)

[1] R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[2] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044

(1987).
[3] R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and

C. I. Westbrook, Nature (London) 520, 66 (2015).
[4] C. Jurczak, K. Sengstock, R. Kaiser, N. Vansteenkiste, C. I.

Westbrook, and A. Aspect, Opt. Commun. 115, 480 (1995).
[5] J. A. Beswick and M. Glass-Maujean, Phys. Rev. A 35, 3339

(1987).
[6] M. Glass-Maujean, H. Frohlich, and J. A. Beswick, Phys. Rev.

Lett. 61, 157 (1988).
[7] J. Wang, Q. Meng, and Y. Mo, Phys. Rev. Lett. 119, 053002

(2017).
[8] D. Akoury et al., Science 318, 949 (2007).
[9] B. Zimmermann et al., Nat. Phys. 4, 649 (2008).

[10] M. S. Schoeffler et al., New J. Phys. 13, 095013 (2011).
[11] F. Martín et al., Science 315, 629 (2007).
[12] M. S. Schoeffler et al., Science 320, 920 (2008).
[13] J. Robert, F. Zappa, C. R. de Carvalho, G. Jalbert, R. F.

Nascimento, A. Trimeche, O. Dulieu, A. Medina, C. Carvalho,
and N. V. de Castro Faria, Phys. Rev. Lett. 111, 183203 (2013).

[14] C. R. de Carvalho, G. Jalbert, F. Impens, J. Robert, A. Medina,
F. Zappa, and N. V. de Castro Faria, Europhys. Lett. 110, 50001
(2015).

[15] L. O. Santos, A. B. Rocha, N. V. de Castro Faria, and G. Jalbert,
Eur. Phys. J. D 71, 1 (2017).

[16] T. Opatrný and G. Kurizki, Phys. Rev. Lett. 86, 3180 (2001).
[17] D. Petrosyan, G. Kurizki, and M. Shapiro, Phys. Rev. A 67,

012318 (2003).
[18] B. H. Bransden and C. J. Joachain, Physics of Atoms and

Molecules (Wiley & Sons, New York, 1990).
[19] L. D. A. Siebbeles, J. M. Schins, W. J. van der Zande, and J. A.

Beswich, Chem. Phys. Lett. 187, 633 (1991).
[20] L. O. Santos, A. B. Rocha, R. F. Nascimento, N. V. de Castro

Faria, and G. Jalbert, J. Phys. B: At. Mol. Opt. Phys. 48, 185104
(2015).

[21] R. B. Leighton, Principles of Modern Physics (McGraw-Hill,
New York, 1959).

[22] F. T. Wall, Chemical Thermodynamics (Freeman, S. Francisco,
1974).

[23] Yu. D. Oksyuk, J. Exp. Theor. Phys. (U.S.S.R.) 49, 1261 (1965)
[Sov. Phys. JETP 22, 873 (1966].

[24] The initial state may contain higher rotational terms (N > 0).
However, the presence of such terms would merely change the
values of the coefficients cN,MN

involved in Eq. (2) without
affecting the general expression of the interference pattern.

[25] A. Medina, G. Rahmat, C. R. de Carvalho, G. Jalbert, F. Zappa,
R. F. Nascimento, R. Cireasa, N. Vanhaecke, I. F. Schneider,
N. V. de Castro Faria, and J. Robert, J. Phys. B: At. Mol. Opt.
Phys. 44, 215203 (2011).

[26] L. F. Canto and M. S. Hussein, Scattering Theory of Molecules,
Atoms and Nuclei (World Scientific, Singapore, 2013).

052136-5

https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1038/nature14331
https://doi.org/10.1038/nature14331
https://doi.org/10.1038/nature14331
https://doi.org/10.1038/nature14331
https://doi.org/10.1016/0030-4018(95)00023-2
https://doi.org/10.1016/0030-4018(95)00023-2
https://doi.org/10.1016/0030-4018(95)00023-2
https://doi.org/10.1016/0030-4018(95)00023-2
https://doi.org/10.1103/PhysRevA.35.3339
https://doi.org/10.1103/PhysRevA.35.3339
https://doi.org/10.1103/PhysRevA.35.3339
https://doi.org/10.1103/PhysRevA.35.3339
https://doi.org/10.1103/PhysRevLett.61.157
https://doi.org/10.1103/PhysRevLett.61.157
https://doi.org/10.1103/PhysRevLett.61.157
https://doi.org/10.1103/PhysRevLett.61.157
https://doi.org/10.1103/PhysRevLett.119.053002
https://doi.org/10.1103/PhysRevLett.119.053002
https://doi.org/10.1103/PhysRevLett.119.053002
https://doi.org/10.1103/PhysRevLett.119.053002
https://doi.org/10.1126/science.1144959
https://doi.org/10.1126/science.1144959
https://doi.org/10.1126/science.1144959
https://doi.org/10.1126/science.1144959
https://doi.org/10.1038/nphys993
https://doi.org/10.1038/nphys993
https://doi.org/10.1038/nphys993
https://doi.org/10.1038/nphys993
https://doi.org/10.1088/1367-2630/13/9/095013
https://doi.org/10.1088/1367-2630/13/9/095013
https://doi.org/10.1088/1367-2630/13/9/095013
https://doi.org/10.1088/1367-2630/13/9/095013
https://doi.org/10.1126/science.1136598
https://doi.org/10.1126/science.1136598
https://doi.org/10.1126/science.1136598
https://doi.org/10.1126/science.1136598
https://doi.org/10.1126/science.1154989
https://doi.org/10.1126/science.1154989
https://doi.org/10.1126/science.1154989
https://doi.org/10.1126/science.1154989
https://doi.org/10.1103/PhysRevLett.111.183203
https://doi.org/10.1103/PhysRevLett.111.183203
https://doi.org/10.1103/PhysRevLett.111.183203
https://doi.org/10.1103/PhysRevLett.111.183203
https://doi.org/10.1209/0295-5075/110/50001
https://doi.org/10.1209/0295-5075/110/50001
https://doi.org/10.1209/0295-5075/110/50001
https://doi.org/10.1209/0295-5075/110/50001
https://doi.org/10.1140/epjd/e2017-70405-7
https://doi.org/10.1140/epjd/e2017-70405-7
https://doi.org/10.1140/epjd/e2017-70405-7
https://doi.org/10.1140/epjd/e2017-70405-7
https://doi.org/10.1103/PhysRevLett.86.3180
https://doi.org/10.1103/PhysRevLett.86.3180
https://doi.org/10.1103/PhysRevLett.86.3180
https://doi.org/10.1103/PhysRevLett.86.3180
https://doi.org/10.1103/PhysRevA.67.012318
https://doi.org/10.1103/PhysRevA.67.012318
https://doi.org/10.1103/PhysRevA.67.012318
https://doi.org/10.1103/PhysRevA.67.012318
https://doi.org/10.1016/0009-2614(91)90449-J
https://doi.org/10.1016/0009-2614(91)90449-J
https://doi.org/10.1016/0009-2614(91)90449-J
https://doi.org/10.1016/0009-2614(91)90449-J
https://doi.org/10.1088/0953-4075/48/18/185104
https://doi.org/10.1088/0953-4075/48/18/185104
https://doi.org/10.1088/0953-4075/48/18/185104
https://doi.org/10.1088/0953-4075/48/18/185104
https://doi.org/10.1088/0953-4075/44/21/215203
https://doi.org/10.1088/0953-4075/44/21/215203
https://doi.org/10.1088/0953-4075/44/21/215203
https://doi.org/10.1088/0953-4075/44/21/215203



